Evaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining: Experimental Proof Using Black Oats and Maize Crops
This study was focused on physical, petrographical, mineralogical, and chemical characterization of a volcanic-rock mining by-product (dacite rock), as well as on greenhouse experiment with black oats and maize crops to evaluate the potential use of the by-product as soil re-mineralizer. The by-prod...
- Autores:
-
Gindri Ramos, Claudete
dos Santos de Medeiros, Diego
Gomez, Leandro
Silva Oliveira, Luis Felipe
Homrich Schneider, Ivo André
Muller Kautzmann, Rubens
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5141
- Acceso en línea:
- https://hdl.handle.net/11323/5141
https://repositorio.cuc.edu.co/
- Palabra clave:
- Volcanic rock by-product
Soil re-mineralization
Agronomic efficiency
Sustainable agriculture
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_d6eebfa3ed740550071cc06491e6d274 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5141 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining: Experimental Proof Using Black Oats and Maize Crops |
title |
Evaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining: Experimental Proof Using Black Oats and Maize Crops |
spellingShingle |
Evaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining: Experimental Proof Using Black Oats and Maize Crops Volcanic rock by-product Soil re-mineralization Agronomic efficiency Sustainable agriculture |
title_short |
Evaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining: Experimental Proof Using Black Oats and Maize Crops |
title_full |
Evaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining: Experimental Proof Using Black Oats and Maize Crops |
title_fullStr |
Evaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining: Experimental Proof Using Black Oats and Maize Crops |
title_full_unstemmed |
Evaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining: Experimental Proof Using Black Oats and Maize Crops |
title_sort |
Evaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining: Experimental Proof Using Black Oats and Maize Crops |
dc.creator.fl_str_mv |
Gindri Ramos, Claudete dos Santos de Medeiros, Diego Gomez, Leandro Silva Oliveira, Luis Felipe Homrich Schneider, Ivo André Muller Kautzmann, Rubens |
dc.contributor.author.spa.fl_str_mv |
Gindri Ramos, Claudete dos Santos de Medeiros, Diego Gomez, Leandro Silva Oliveira, Luis Felipe Homrich Schneider, Ivo André Muller Kautzmann, Rubens |
dc.subject.spa.fl_str_mv |
Volcanic rock by-product Soil re-mineralization Agronomic efficiency Sustainable agriculture |
topic |
Volcanic rock by-product Soil re-mineralization Agronomic efficiency Sustainable agriculture |
description |
This study was focused on physical, petrographical, mineralogical, and chemical characterization of a volcanic-rock mining by-product (dacite rock), as well as on greenhouse experiment with black oats and maize crops to evaluate the potential use of the by-product as soil re-mineralizer. The by-product sample was obtained from a quarry in the Nova Prata mining district in southern Brazil. The particle size distribution of the by-product and soil was determined by sieving. Dacite rock petrographic description was performed on a polished thin section by optical microscopy. The soil and dacite rock mineralogical phases were identified by X-ray diffraction. The by-product and soil chemical composition was determined by X-ray fluorescence. Inductively coupled plasma mass spectrometry was performed to determine potentially toxic elements, As, Cd, Hg and Pb in by-product. Additional chemical compositions of the by-product and soil were analyzed using a scanning electron microscope equipped with an energy dispersive X-ray detector. Black oats and, sequentially maize, crops were cultivated in a typical Hapludox soil treated with the by-product in a greenhouse. Five by-product doses (0, 906, 1813, 3625, and 7251 kg ha−1) were added into pots containing soil, each with seven replications. Responses to treatments were evaluated from dry matter production, nutritional status of the crops, and in the changes in soil properties after 70 days of each cultivation. The results showed that the by-product is composed of plagioclase, K-feldspar, quartz, clinopyroxene, smectites, and opaque minerals with apatite as accessory mineral. The addition of 3625 and 7251 kg ha−1 doses of the by-product substantially increased the dry matter yield in maize leaves. The Ca uptake by maize leaves cultivated in soil with 7251 kg ha−1 dose of the by-product was significantly higher in soil with other doses, and all by-product doses promoted high concentrations of Mg and Ca. The accumulated amounts of Ca, K, Mg and P indicated that they were enough to supply maize nutritional needs. Improvements in soil properties, such as high levels of Ca, K and P and low levels of exchangeable Al and Al saturation were observed. The results of the study suggest that the by-product can be used as soil re-mineralizer. The dacite rock by-product studied here has potential to be an environmental solution to soil fertilization problem because it does not require chemical processing and can be used as it is mined. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-08-09T17:28:11Z |
dc.date.available.none.fl_str_mv |
2019-08-09T17:28:11Z |
dc.date.issued.none.fl_str_mv |
2019-08-08 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5141 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/5141 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.1007/s11053-019-09529-x |
dc.relation.references.spa.fl_str_mv |
ABNT. (1986). NBR 7181 Amostragem de solo: Preparação para ensaios de compactação e ensaios de caracterização. São Paulo: Associação Brasileira de Normas Técnicas (ABNT). Google Scholar Bakken, A. K., Gautneb, H., Sveistrup, T., & Myhr, K. (2000). Crushed rocks and mine tailings applied as K fertilizers on grassland. Nutrient Cycling in Agroecosystems, 56(1), 53–57. CrossRefGoogle Scholar Barbosa, J. Z., Motta, A. C. V., Consalter, R., & Pauletti, V. (2017). Wheat (Triticum aestivum L.) response to boron in contrasting soil acidity conditions. Revista Brasileira de Ciências Agrárias, 12, 148–157. CrossRefGoogle Scholar Beerling, D. J., Leake, J. R., Long, S. P., Scholes, J. D., Ton, J., Nelson, P. N., et al. (2018). Farming with crops and rocks to address global climate, food and soil security. Nature Plants, 4(3), 138. CrossRefGoogle Scholar Bergmann, M., Juchen, P. L., Petroli, L., & Sander, A. (2017). Caracterização litoquímica e petrográfica de riodacitos vítreos mineralizados com ametista no RS: Possíveis fontes de potássio e multinutrientes para remineralização de solos. In M. Donato, L. C. Duarte, & F. S. Vilasboas (Eds.), Ações Aplicadas à cadeia produtiva de Gemas e Joias do Rio Grande do Sul (pp. 26–35). Porto Alegre: IGEO/UFRGS. Google Scholar Brazil. (2013). Lei 12.890/2013 de 10 de dezembro de 2013—Altera a Lei no 6.894, de 16 de dezembro de 1980. https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2013/lei/l12890.htm. Accessed May 28, 2019. Brazil. (2016). Instrução Normativa Nº 05 de 10 de março de 2016. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-5-de-10-3-16-remineralizadores-e-substratos-para-plantas.pdf. Accessed May 28, 2019. Cabot, C., Sibole, J. V., Barceló, J., & Poschenrieder, C. (2014). Lessons from crop plants struggling with salinity. Plant Science, 226, 2–13. CrossRefGoogle Scholar Carvalho, M. D., Nascente, A. S., Ferreira, G. B., Mutadiua, C. A., & Denardin, J. E. (2018). Phosphorus and potassium fertilization increase common bean grain yield in Mozambique. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(5), 308–314. CrossRefGoogle Scholar Ciceri, D., Oliveira, M., & Allanore, A. (2017). Potassium fertilizer via hydrothermal alteration of K-feldspar ore. Green Chemistry. https://doi.org/10.1039/C7GC02633A. Google Scholar Coelho, A. M., & França, G. E. (1995). Seja doutor do seu milho: nutrição e adubação. Piracicaba, SP: Potafos. Google Scholar Cordell, D., & White, S. (2011). Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability. https://doi.org/10.3390/su3102027. Google Scholar Curi, N., Kampf, N., & Marques, J. J. (2005). Mineralogia e formas de potássio em solos brasileiros—Potássio na agricultura brasileira. Piracicaba, SP: Instituto da Potassa e do Fosfato. Google Scholar Deer, W. A., Howie, R. A., & Zussman, J. (2013). An introduction to the rock-forming minerals (3rd ed.). London: The Mineralogical Society. Google Scholar Dumitru, I., Zdrilic, A., & Azzopardi, A. (1999). Soil Remineralisation with basaltic rock dust in Australia. http://cinderite.com/wp-content/uploads/2018/05/basaltic_rock_dust_paper_1-3.pdf. Accessed November 19, 2018. Escosteguy, P. A. V., & Klamt, E. (1998). Ground basalt as nutrient source. Revista Brasileira de Ciência do Solo. https://doi.org/10.1590/S0100-06831998000100002. Google Scholar Evans, H. (1947). Annual report. In: Investigations on the fertilizer value os crushed basaltic rock. Mauritius Sugar Cane Research Station, 18, 227. Google Scholar Fageria, N. K. (1998). Optimizing nutrient use efficiency in crop production. Revista Brasileira de Engenharia Agricola e Ambiental, 122, 122. https://doi.org/10.1590/1807-1929/agriambi.v02n01p6-16. Google Scholar Fageria, N. K. (2009). The use of nutrients in crop plants. Boca Raton, FL: CRC Press. Google Scholar Faquin, V. (1982). Efeito do tratamento térmico do sienito nefelínico adicionado de calcário dolomítico, na disponibilidade de potássio ao milho (Zea mays L.), em casa de vegetação. Tese de Mestrado. Escola Superior de Agricultura “Luiz de Queiroz”. Piracicaba, SP. Google Scholar Ferrari, V., Taffarel, S. R., Espinosa-Fuentes, E., Oliveira, M. L., Saikia, B. K., & Oliveira, L. F. (2019). Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. Journal of Cleaner Production, 208, 297–306. CrossRefGoogle Scholar Gilliham, M., Dayod, M., Hocking, B. J., Xu, B., Conn, S. J., Kaiser, B. N., et al. (2011). Calcium delivery and storage in plant leaves: Exploring the link with water flow. Journal of Experimental Botany, 62(7), 2233–2250. CrossRefGoogle Scholar Gillman, G. P., Burkett, D. C., & Coventry, R. J. (2001). A laboratory study of application of basalt dust to highly weathered soils: Effect on soil cation chemistry. Soil Research, 39(4), 799–811. CrossRefGoogle Scholar Guo, W., Nazim, H., Liang, Z., & Yang, D. (2016). Magnesium deficiency in plants: An urgent problem. The Crop Journal, 4(2), 83–91. CrossRefGoogle Scholar Haynes, R. J. (2014). A contemporary overview of silicon availability in agricultural soils. Journal of Plant Nutrition and Soil Science, 177, 831–844. CrossRefGoogle Scholar Huggett, J. M. (2015). Clay minerals, reference module in earth systems and environmental sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09519-1. Google Scholar Jones, J. B., Wolf, B., & Mills, H. A. (1991). Plant analysis handbook: A practical sampling, preparation, analysis, and interpreting guide. Athens, GA: Micro-Macro Publishing. Google Scholar Keeping, M. G. (2017). Uptake of silicon by sugarcane from applied sources may not reflect plant-available soil silicon and total silicon content of sources. Frontiers in Plant Science, 8, 760. CrossRefGoogle Scholar Korchagin, J., Caner, L., & Bortoluzzi, E. C. (2019). Variability of amethyst mining waste: A mineralogical and geochemical approach to evaluate the potential use in agriculture. Journal of Cleaner Production, 210, 749–758. CrossRefGoogle Scholar Kronberg, B. I., Leonardos, O. H., Fyfe, W. S., Mattoso, S. Q., & Santos, A. M. (1976). Alguns dados geoquímicos sobre solos do Brasil: Uso potencial do pó de pedreira como fonte de nutrientes críticos em solos altamente lixiviados – com atenção de geoquímica de alguns solos da Amazônia. Ouro Preto, MG: SBG. Google Scholar Leonardos, O. H., Fyfe, W. S., & Kronberg, B. I. (1976). Rochagem O método de Aumento da Fertilidade em Solos Lixiviados e Arenosos. Belo Horizonte, MG: CBG. Google Scholar Lindsay, W. L. (1979). Chemical equilibria in soils. New York: Wiley. Google Scholar Machado, A. F, Lucena, G. N., Carneiro, J. S. S., Negreiros Neto, J. V., Santos, A. C., & Silva, R. R. (2014). Aproveitamento de rejeito de mineração na blendagem de calcário comercial para correção do solo. http://www.gurupi.uft.edu.br/amazonsoil/pdf/03.pdf. Accessed May 17, 2019. Malavolta, E., Vitti, G. C., & Oliveira, S. A. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba, SP: Potafos. Google Scholar Manning, D. A., Baptista, J., Limon, M. S., & Brandt, K. (2017). Testing the ability of plants to access potassium from framework silicate minerals. Science of the Total Environment, 574, 476–481. CrossRefGoogle Scholar Manning, D. A., & Theodoro, S. H. (2018). Enabling food security through use of local rocks and minerals. The Extractive Industries and Society. Amsterdam: Elsevier. https://doi.org/10.1016/j.exis.2018.11.002. Google Scholar Melfi, A., Cerri, C. C., Fritsch, E., & Formoso, M. L. L. (1999). Tropical soils: genesis, distribution and degradation of lateritic pedological systems. In Workshop on topical soils. Rio de Janeiro, RJ: Academia Brasileira de Ciências, pp. 9–30. Google Scholar Meunier, A., Formoso, M. L. L., Patrier, P., & Chies, J. O. (1988). Altération hydrothermale de roches volcaniques liée à la genèse des améthystes-Bassin du Paraná-Sud du Brésil. Geochimica Brasiliensis, 2(2), 127–142. Google Scholar Motta, A. C. V., & Feiden, A. (1992). Avaliação do P em LE submetido a diferentes doses de basalto. Agrárias, 12(47), 54. Google Scholar Nascimento, M., & Loureiro, F. E. L. (2004). Fertilizantes e sustentabilidade: o potássio na agricultura brasileira, fontes e rotas alternativas. Série Estudos e Documentos 61. Rio de Janeiro, RJ: CETEM/MCT. Google Scholar Nieves-Cordones, M., Al Shiblawi, F. R., & Sentenac, H. (2016). Roles and transport of sodium and potassium in plants. In A. Sigel, H. Sigel, & R. Sigel (Eds.), The alkali metal ions: Their role for life (pp. 291–324). Cham: Springer. CrossRefGoogle Scholar Nowaki, R. H., Parent, S. É., Cecílio Filho, A. B., Rozane, D. E., Meneses, N. B., Silva, J. A., et al. (2017). Phosphorus over-fertilization and nutrient misbalance of irrigated tomato crops in Brazil. Frontiers in Plant Science, 8, 825. CrossRefGoogle Scholar Nunes, J. M. G., Kautzmann, R. M., & Oliveira, C. (2014). Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil). Journal of Cleaner Production, 84, 649–656. CrossRefGoogle Scholar Pauletti, V. (2004). Nutrientes: Teores e interpretações. Castro, PR: Fundação ABC para a Assistência e Divulgação Técnica Agropecuária. Google Scholar Piccoli, P. M., & Candela, P. A. (2002). Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48(1), 255–292. CrossRefGoogle Scholar Priyono, J., & Gilkes, R. J. (2008). High-energy milling improves the effectiveness of silicate rock fertilizers: A glasshouse assessment. Communications in Soil Science and Plant Analysis, 39(3–4), 358–369. CrossRefGoogle Scholar Ptáček, P. (2016). Apatites and their synthetic analogues: Synthesis, structure, properties and applications. BoD–Books on Demand. https://books.google.com.br/books?hl=pt-BR&lr=&id=dmqQDwAAQBAJ&oi=fnd&pg=PA1&dq=related:08xOVM0BtRnkgM:scholar.google.com/&ots=LohoL23lEw&sig=KWUlq2MFqVT-uaX3fDEXrffiL8I&redir_esc=y#v=onepage&q&f=false. Accessed July 17, 2019. Querol, X., Whateley, M. K. G., Fernandez-Turiel, J. L., & Tuncali, E. (1997). Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. International Journal of Coal Geology, 33(3), 255–271. CrossRefGoogle Scholar Rabel, D. O., Motta, A. C. V., Barbosa, J. Z., Melo, V. F., & Prior, S. A. (2018). Depth distribution of exchangeable aluminum in acid soils: A study from subtropical Brazil. Acta Scientiarum. Agronomy. https://doi.org/10.4025/actasciagron.v40i1.39320. Google Scholar Ramos, C. G., Querol, X., Dalmora, A. C., de Jesus Pires, K. C., Schneider, I. A. H., Oliveira, L. F. S., et al. (2017). Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. Journal of Cleaner Production, 142, 2700–2706. CrossRefGoogle Scholar Ramos, C. G., Querol, X., Oliveira, M. L., Pires, K., Kautzmann, R. M., & Oliveira, L. F. (2015). A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer. Science of the Total Environment, 512, 371–380. CrossRefGoogle Scholar Ribes, R., Buss, R., Lazari, R., Potes, M., & Bamberg, A. (2012). Efeito de rochas moídas sobre a concentração de macronutrientes na parte áerea de plantas de milho. In Embrapa Clima Temperado. In Workshop Insumos Para Agricultura Sustentável, 2012, Pelotas. Anais… Pelotas: Embrapa Clima Temperado. Google Scholar Ridley, W. I. (2012). Petrology of associated igneous rocks. In C. P. Shanks III, R. Thurston (Eds.), Volcanogenic massive sulfide occurrence model. Virginia, U.S: Geological Survey Scientific Investigations Report 2010–5070–C, Virginia. Google Scholar Ros, C. O. D., Matsuoka, M., Silva, R. F. D., & Silva, V. R. D. (2017). Interference from the vertical variation of soil phosphorus and from water stress on growth in maize, the soybean and sunflower. Revista Ciência Agronômica, 48(3), 419–427. CrossRefGoogle Scholar Rosenstengel, L. M., & Hartmann, L. A. (2012). Geochemical stratigraphy of lavas and fault-block structures in the Ametista do Sul geode mining district, Paraná volcanic province, southern Brazil. Ore Geology Reviews, 48, 332–348. CrossRefGoogle Scholar Sade, H., Meriga, B., Surapu, V., Gadi, J., Sunita, M. S. L., Suravajhala, P., et al. (2016). Toxicity and tolerance of aluminum in plants: Tailoring plants to suit to acid soils. BioMetals, 29(2), 187–210. CrossRefGoogle Scholar Sánchez-Peña, N. E., Narváez-Semanate, J. L., Pabón-Patiño, D., Fernández-Mera, J. E., Oliveira, M. L., da Boit, K., et al. (2018). Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere, 191, 1048–1055. CrossRefGoogle Scholar Santos, W. O., Mattiello, E. M., Vergutz, L., & Costa, R. F. (2016). Production and evaluation of potassium fertilizers from silicate rock. Journal of Plant Nutrition and Soil Science, 179(4), 547–556. CrossRefGoogle Scholar Silva, R. C. (2016). Intemperismo de minerais de um remineralizador (p. 183). Tese (Doutorado), Piracicaba, SP: Escola Superior de Agricultura Luiz de Queiroz. Google Scholar Silva, L. F., Izquierdo, M., Querol, X., Finkelman, R. B., Oliveira, M. L., Wollenschlager, M., et al. (2011). Leaching of potential hazardous elements of coal cleaning rejects. Environmental Monitoring and Assessment, 175(1–4), 109–126. CrossRefGoogle Scholar Silveira, C. A. P., Ferreira, L. H. G., Pillon, C. N. Giacomini, S. J. E., & Santos, L. C. (2010). Efeito da combinação de calcário de xisto e calcário dolomítico sobre a produtividade de grãos de dois sistemas de rotação de culturas. Anais do I Congresso Brasileiro de Rochagem. Brasília. Embrapa. Brasília/DF: CBR. Google Scholar Sociedade Brasileira de Ciência do Solo—SBCS. (2004). Manual de Adubação e de Calagem: para os estados do Rio Grande do Sul e Santa Catarina. Porto Alegre, RS: Comissão de Química e Fertilidade do Solo. Google Scholar Streckeisen, A. (1976). To each plutonic rock its proper name. Earth-Science Reviews, 12, 1–33. CrossRefGoogle Scholar Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análise do solo plantas e outros materiais (2nd ed.). Porto Alegre, RS: Departamento de Solos da UFRGS. Google Scholar Theodoro, S. H., & Leonardos, O. H. (2006). The use of rocks to improve family agriculture in Brazil. Anais da Academia Brasileira de Ciências, 78(4), 721–730. CrossRefGoogle Scholar Theodoro, S. H., Leonardos, O. H., & de Almeida, E. (2010). Mecanismos para Disponibilização de Nutrientes Minerais a Partir de Processos Biológicos. Planaltina, DF: EMBRAPA. Google Scholar United States Department of Agriculture—USDA. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd ed.). Washington: Agriculture Handbook. Google Scholar Van Straaten, P. (2007). Agrogeology: The use of rocks for crops (No. 631.811 S894a). Ontario, CA: Enviroquest. Google Scholar Zhang, Y., Nachimuthu, G., Mason, S., McLaughlin, M. J., McNeill, A., & Bell, M. J. (2017). Comparison of soil analytical methods for estimating wheat potassium fertilizer requirements in response to contrasting plant K demand in the glasshouse. Scientific Reports, 7(1), 11391. CrossRefGoogle Scholar |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a46c25bc-a138-45ba-a0eb-214f997b04ef/download https://repositorio.cuc.edu.co/bitstreams/d11b99c3-8c09-42c9-b74b-f91ffe72f3b7/download https://repositorio.cuc.edu.co/bitstreams/225bb200-60c2-4cb8-a588-d7f877193838/download https://repositorio.cuc.edu.co/bitstreams/dde6198c-21ee-4b4f-9796-70c382b4441a/download https://repositorio.cuc.edu.co/bitstreams/0e9bf3d2-91ec-48cc-915a-eb06c2a6cfd6/download |
bitstream.checksum.fl_str_mv |
9c5aa023c65515b38ad7b511b0ad87c4 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 1e41aa103189e070affe4f38b3463fe6 a2d5fa3808b865d59a20893f38b31d46 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760727611932672 |
spelling |
Gindri Ramos, Claudetedos Santos de Medeiros, DiegoGomez, LeandroSilva Oliveira, Luis FelipeHomrich Schneider, Ivo AndréMuller Kautzmann, Rubens2019-08-09T17:28:11Z2019-08-09T17:28:11Z2019-08-08https://hdl.handle.net/11323/5141Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study was focused on physical, petrographical, mineralogical, and chemical characterization of a volcanic-rock mining by-product (dacite rock), as well as on greenhouse experiment with black oats and maize crops to evaluate the potential use of the by-product as soil re-mineralizer. The by-product sample was obtained from a quarry in the Nova Prata mining district in southern Brazil. The particle size distribution of the by-product and soil was determined by sieving. Dacite rock petrographic description was performed on a polished thin section by optical microscopy. The soil and dacite rock mineralogical phases were identified by X-ray diffraction. The by-product and soil chemical composition was determined by X-ray fluorescence. Inductively coupled plasma mass spectrometry was performed to determine potentially toxic elements, As, Cd, Hg and Pb in by-product. Additional chemical compositions of the by-product and soil were analyzed using a scanning electron microscope equipped with an energy dispersive X-ray detector. Black oats and, sequentially maize, crops were cultivated in a typical Hapludox soil treated with the by-product in a greenhouse. Five by-product doses (0, 906, 1813, 3625, and 7251 kg ha−1) were added into pots containing soil, each with seven replications. Responses to treatments were evaluated from dry matter production, nutritional status of the crops, and in the changes in soil properties after 70 days of each cultivation. The results showed that the by-product is composed of plagioclase, K-feldspar, quartz, clinopyroxene, smectites, and opaque minerals with apatite as accessory mineral. The addition of 3625 and 7251 kg ha−1 doses of the by-product substantially increased the dry matter yield in maize leaves. The Ca uptake by maize leaves cultivated in soil with 7251 kg ha−1 dose of the by-product was significantly higher in soil with other doses, and all by-product doses promoted high concentrations of Mg and Ca. The accumulated amounts of Ca, K, Mg and P indicated that they were enough to supply maize nutritional needs. Improvements in soil properties, such as high levels of Ca, K and P and low levels of exchangeable Al and Al saturation were observed. The results of the study suggest that the by-product can be used as soil re-mineralizer. The dacite rock by-product studied here has potential to be an environmental solution to soil fertilization problem because it does not require chemical processing and can be used as it is mined.Gindri Ramos, Claudetedos Santos de Medeiros, DiegoGomez, LeandroSilva Oliveira, Luis FelipeHomrich Schneider, Ivo AndréMuller Kautzmann, RubensengUniversidad de la Costahttps://doi.org/10.1007/s11053-019-09529-xABNT. (1986). NBR 7181 Amostragem de solo: Preparação para ensaios de compactação e ensaios de caracterização. São Paulo: Associação Brasileira de Normas Técnicas (ABNT). Google Scholar Bakken, A. K., Gautneb, H., Sveistrup, T., & Myhr, K. (2000). Crushed rocks and mine tailings applied as K fertilizers on grassland. Nutrient Cycling in Agroecosystems, 56(1), 53–57. CrossRefGoogle Scholar Barbosa, J. Z., Motta, A. C. V., Consalter, R., & Pauletti, V. (2017). Wheat (Triticum aestivum L.) response to boron in contrasting soil acidity conditions. Revista Brasileira de Ciências Agrárias, 12, 148–157. CrossRefGoogle Scholar Beerling, D. J., Leake, J. R., Long, S. P., Scholes, J. D., Ton, J., Nelson, P. N., et al. (2018). Farming with crops and rocks to address global climate, food and soil security. Nature Plants, 4(3), 138. CrossRefGoogle Scholar Bergmann, M., Juchen, P. L., Petroli, L., & Sander, A. (2017). Caracterização litoquímica e petrográfica de riodacitos vítreos mineralizados com ametista no RS: Possíveis fontes de potássio e multinutrientes para remineralização de solos. In M. Donato, L. C. Duarte, & F. S. Vilasboas (Eds.), Ações Aplicadas à cadeia produtiva de Gemas e Joias do Rio Grande do Sul (pp. 26–35). Porto Alegre: IGEO/UFRGS. Google Scholar Brazil. (2013). Lei 12.890/2013 de 10 de dezembro de 2013—Altera a Lei no 6.894, de 16 de dezembro de 1980. https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2013/lei/l12890.htm. Accessed May 28, 2019. Brazil. (2016). Instrução Normativa Nº 05 de 10 de março de 2016. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-5-de-10-3-16-remineralizadores-e-substratos-para-plantas.pdf. Accessed May 28, 2019. Cabot, C., Sibole, J. V., Barceló, J., & Poschenrieder, C. (2014). Lessons from crop plants struggling with salinity. Plant Science, 226, 2–13. CrossRefGoogle Scholar Carvalho, M. D., Nascente, A. S., Ferreira, G. B., Mutadiua, C. A., & Denardin, J. E. (2018). Phosphorus and potassium fertilization increase common bean grain yield in Mozambique. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(5), 308–314. CrossRefGoogle Scholar Ciceri, D., Oliveira, M., & Allanore, A. (2017). Potassium fertilizer via hydrothermal alteration of K-feldspar ore. Green Chemistry. https://doi.org/10.1039/C7GC02633A. Google Scholar Coelho, A. M., & França, G. E. (1995). Seja doutor do seu milho: nutrição e adubação. Piracicaba, SP: Potafos. Google Scholar Cordell, D., & White, S. (2011). Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability. https://doi.org/10.3390/su3102027. Google Scholar Curi, N., Kampf, N., & Marques, J. J. (2005). Mineralogia e formas de potássio em solos brasileiros—Potássio na agricultura brasileira. Piracicaba, SP: Instituto da Potassa e do Fosfato. Google Scholar Deer, W. A., Howie, R. A., & Zussman, J. (2013). An introduction to the rock-forming minerals (3rd ed.). London: The Mineralogical Society. Google Scholar Dumitru, I., Zdrilic, A., & Azzopardi, A. (1999). Soil Remineralisation with basaltic rock dust in Australia. http://cinderite.com/wp-content/uploads/2018/05/basaltic_rock_dust_paper_1-3.pdf. Accessed November 19, 2018. Escosteguy, P. A. V., & Klamt, E. (1998). Ground basalt as nutrient source. Revista Brasileira de Ciência do Solo. https://doi.org/10.1590/S0100-06831998000100002. Google Scholar Evans, H. (1947). Annual report. In: Investigations on the fertilizer value os crushed basaltic rock. Mauritius Sugar Cane Research Station, 18, 227. Google Scholar Fageria, N. K. (1998). Optimizing nutrient use efficiency in crop production. Revista Brasileira de Engenharia Agricola e Ambiental, 122, 122. https://doi.org/10.1590/1807-1929/agriambi.v02n01p6-16. Google Scholar Fageria, N. K. (2009). The use of nutrients in crop plants. Boca Raton, FL: CRC Press. Google Scholar Faquin, V. (1982). Efeito do tratamento térmico do sienito nefelínico adicionado de calcário dolomítico, na disponibilidade de potássio ao milho (Zea mays L.), em casa de vegetação. Tese de Mestrado. Escola Superior de Agricultura “Luiz de Queiroz”. Piracicaba, SP. Google Scholar Ferrari, V., Taffarel, S. R., Espinosa-Fuentes, E., Oliveira, M. L., Saikia, B. K., & Oliveira, L. F. (2019). Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. Journal of Cleaner Production, 208, 297–306. CrossRefGoogle Scholar Gilliham, M., Dayod, M., Hocking, B. J., Xu, B., Conn, S. J., Kaiser, B. N., et al. (2011). Calcium delivery and storage in plant leaves: Exploring the link with water flow. Journal of Experimental Botany, 62(7), 2233–2250. CrossRefGoogle Scholar Gillman, G. P., Burkett, D. C., & Coventry, R. J. (2001). A laboratory study of application of basalt dust to highly weathered soils: Effect on soil cation chemistry. Soil Research, 39(4), 799–811. CrossRefGoogle Scholar Guo, W., Nazim, H., Liang, Z., & Yang, D. (2016). Magnesium deficiency in plants: An urgent problem. The Crop Journal, 4(2), 83–91. CrossRefGoogle Scholar Haynes, R. J. (2014). A contemporary overview of silicon availability in agricultural soils. Journal of Plant Nutrition and Soil Science, 177, 831–844. CrossRefGoogle Scholar Huggett, J. M. (2015). Clay minerals, reference module in earth systems and environmental sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09519-1. Google Scholar Jones, J. B., Wolf, B., & Mills, H. A. (1991). Plant analysis handbook: A practical sampling, preparation, analysis, and interpreting guide. Athens, GA: Micro-Macro Publishing. Google Scholar Keeping, M. G. (2017). Uptake of silicon by sugarcane from applied sources may not reflect plant-available soil silicon and total silicon content of sources. Frontiers in Plant Science, 8, 760. CrossRefGoogle Scholar Korchagin, J., Caner, L., & Bortoluzzi, E. C. (2019). Variability of amethyst mining waste: A mineralogical and geochemical approach to evaluate the potential use in agriculture. Journal of Cleaner Production, 210, 749–758. CrossRefGoogle Scholar Kronberg, B. I., Leonardos, O. H., Fyfe, W. S., Mattoso, S. Q., & Santos, A. M. (1976). Alguns dados geoquímicos sobre solos do Brasil: Uso potencial do pó de pedreira como fonte de nutrientes críticos em solos altamente lixiviados – com atenção de geoquímica de alguns solos da Amazônia. Ouro Preto, MG: SBG. Google Scholar Leonardos, O. H., Fyfe, W. S., & Kronberg, B. I. (1976). Rochagem O método de Aumento da Fertilidade em Solos Lixiviados e Arenosos. Belo Horizonte, MG: CBG. Google Scholar Lindsay, W. L. (1979). Chemical equilibria in soils. New York: Wiley. Google Scholar Machado, A. F, Lucena, G. N., Carneiro, J. S. S., Negreiros Neto, J. V., Santos, A. C., & Silva, R. R. (2014). Aproveitamento de rejeito de mineração na blendagem de calcário comercial para correção do solo. http://www.gurupi.uft.edu.br/amazonsoil/pdf/03.pdf. Accessed May 17, 2019. Malavolta, E., Vitti, G. C., & Oliveira, S. A. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba, SP: Potafos. Google Scholar Manning, D. A., Baptista, J., Limon, M. S., & Brandt, K. (2017). Testing the ability of plants to access potassium from framework silicate minerals. Science of the Total Environment, 574, 476–481. CrossRefGoogle Scholar Manning, D. A., & Theodoro, S. H. (2018). Enabling food security through use of local rocks and minerals. The Extractive Industries and Society. Amsterdam: Elsevier. https://doi.org/10.1016/j.exis.2018.11.002. Google Scholar Melfi, A., Cerri, C. C., Fritsch, E., & Formoso, M. L. L. (1999). Tropical soils: genesis, distribution and degradation of lateritic pedological systems. In Workshop on topical soils. Rio de Janeiro, RJ: Academia Brasileira de Ciências, pp. 9–30. Google Scholar Meunier, A., Formoso, M. L. L., Patrier, P., & Chies, J. O. (1988). Altération hydrothermale de roches volcaniques liée à la genèse des améthystes-Bassin du Paraná-Sud du Brésil. Geochimica Brasiliensis, 2(2), 127–142. Google Scholar Motta, A. C. V., & Feiden, A. (1992). Avaliação do P em LE submetido a diferentes doses de basalto. Agrárias, 12(47), 54. Google Scholar Nascimento, M., & Loureiro, F. E. L. (2004). Fertilizantes e sustentabilidade: o potássio na agricultura brasileira, fontes e rotas alternativas. Série Estudos e Documentos 61. Rio de Janeiro, RJ: CETEM/MCT. Google Scholar Nieves-Cordones, M., Al Shiblawi, F. R., & Sentenac, H. (2016). Roles and transport of sodium and potassium in plants. In A. Sigel, H. Sigel, & R. Sigel (Eds.), The alkali metal ions: Their role for life (pp. 291–324). Cham: Springer. CrossRefGoogle Scholar Nowaki, R. H., Parent, S. É., Cecílio Filho, A. B., Rozane, D. E., Meneses, N. B., Silva, J. A., et al. (2017). Phosphorus over-fertilization and nutrient misbalance of irrigated tomato crops in Brazil. Frontiers in Plant Science, 8, 825. CrossRefGoogle Scholar Nunes, J. M. G., Kautzmann, R. M., & Oliveira, C. (2014). Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil). Journal of Cleaner Production, 84, 649–656. CrossRefGoogle Scholar Pauletti, V. (2004). Nutrientes: Teores e interpretações. Castro, PR: Fundação ABC para a Assistência e Divulgação Técnica Agropecuária. Google Scholar Piccoli, P. M., & Candela, P. A. (2002). Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48(1), 255–292. CrossRefGoogle Scholar Priyono, J., & Gilkes, R. J. (2008). High-energy milling improves the effectiveness of silicate rock fertilizers: A glasshouse assessment. Communications in Soil Science and Plant Analysis, 39(3–4), 358–369. CrossRefGoogle Scholar Ptáček, P. (2016). Apatites and their synthetic analogues: Synthesis, structure, properties and applications. BoD–Books on Demand. https://books.google.com.br/books?hl=pt-BR&lr=&id=dmqQDwAAQBAJ&oi=fnd&pg=PA1&dq=related:08xOVM0BtRnkgM:scholar.google.com/&ots=LohoL23lEw&sig=KWUlq2MFqVT-uaX3fDEXrffiL8I&redir_esc=y#v=onepage&q&f=false. Accessed July 17, 2019. Querol, X., Whateley, M. K. G., Fernandez-Turiel, J. L., & Tuncali, E. (1997). Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. International Journal of Coal Geology, 33(3), 255–271. CrossRefGoogle Scholar Rabel, D. O., Motta, A. C. V., Barbosa, J. Z., Melo, V. F., & Prior, S. A. (2018). Depth distribution of exchangeable aluminum in acid soils: A study from subtropical Brazil. Acta Scientiarum. Agronomy. https://doi.org/10.4025/actasciagron.v40i1.39320. Google Scholar Ramos, C. G., Querol, X., Dalmora, A. C., de Jesus Pires, K. C., Schneider, I. A. H., Oliveira, L. F. S., et al. (2017). Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. Journal of Cleaner Production, 142, 2700–2706. CrossRefGoogle Scholar Ramos, C. G., Querol, X., Oliveira, M. L., Pires, K., Kautzmann, R. M., & Oliveira, L. F. (2015). A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer. Science of the Total Environment, 512, 371–380. CrossRefGoogle Scholar Ribes, R., Buss, R., Lazari, R., Potes, M., & Bamberg, A. (2012). Efeito de rochas moídas sobre a concentração de macronutrientes na parte áerea de plantas de milho. In Embrapa Clima Temperado. In Workshop Insumos Para Agricultura Sustentável, 2012, Pelotas. Anais… Pelotas: Embrapa Clima Temperado. Google Scholar Ridley, W. I. (2012). Petrology of associated igneous rocks. In C. P. Shanks III, R. Thurston (Eds.), Volcanogenic massive sulfide occurrence model. Virginia, U.S: Geological Survey Scientific Investigations Report 2010–5070–C, Virginia. Google Scholar Ros, C. O. D., Matsuoka, M., Silva, R. F. D., & Silva, V. R. D. (2017). Interference from the vertical variation of soil phosphorus and from water stress on growth in maize, the soybean and sunflower. Revista Ciência Agronômica, 48(3), 419–427. CrossRefGoogle Scholar Rosenstengel, L. M., & Hartmann, L. A. (2012). Geochemical stratigraphy of lavas and fault-block structures in the Ametista do Sul geode mining district, Paraná volcanic province, southern Brazil. Ore Geology Reviews, 48, 332–348. CrossRefGoogle Scholar Sade, H., Meriga, B., Surapu, V., Gadi, J., Sunita, M. S. L., Suravajhala, P., et al. (2016). Toxicity and tolerance of aluminum in plants: Tailoring plants to suit to acid soils. BioMetals, 29(2), 187–210. CrossRefGoogle Scholar Sánchez-Peña, N. E., Narváez-Semanate, J. L., Pabón-Patiño, D., Fernández-Mera, J. E., Oliveira, M. L., da Boit, K., et al. (2018). Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere, 191, 1048–1055. CrossRefGoogle Scholar Santos, W. O., Mattiello, E. M., Vergutz, L., & Costa, R. F. (2016). Production and evaluation of potassium fertilizers from silicate rock. Journal of Plant Nutrition and Soil Science, 179(4), 547–556. CrossRefGoogle Scholar Silva, R. C. (2016). Intemperismo de minerais de um remineralizador (p. 183). Tese (Doutorado), Piracicaba, SP: Escola Superior de Agricultura Luiz de Queiroz. Google Scholar Silva, L. F., Izquierdo, M., Querol, X., Finkelman, R. B., Oliveira, M. L., Wollenschlager, M., et al. (2011). Leaching of potential hazardous elements of coal cleaning rejects. Environmental Monitoring and Assessment, 175(1–4), 109–126. CrossRefGoogle Scholar Silveira, C. A. P., Ferreira, L. H. G., Pillon, C. N. Giacomini, S. J. E., & Santos, L. C. (2010). Efeito da combinação de calcário de xisto e calcário dolomítico sobre a produtividade de grãos de dois sistemas de rotação de culturas. Anais do I Congresso Brasileiro de Rochagem. Brasília. Embrapa. Brasília/DF: CBR. Google Scholar Sociedade Brasileira de Ciência do Solo—SBCS. (2004). Manual de Adubação e de Calagem: para os estados do Rio Grande do Sul e Santa Catarina. Porto Alegre, RS: Comissão de Química e Fertilidade do Solo. Google Scholar Streckeisen, A. (1976). To each plutonic rock its proper name. Earth-Science Reviews, 12, 1–33. CrossRefGoogle Scholar Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análise do solo plantas e outros materiais (2nd ed.). Porto Alegre, RS: Departamento de Solos da UFRGS. Google Scholar Theodoro, S. H., & Leonardos, O. H. (2006). The use of rocks to improve family agriculture in Brazil. Anais da Academia Brasileira de Ciências, 78(4), 721–730. CrossRefGoogle Scholar Theodoro, S. H., Leonardos, O. H., & de Almeida, E. (2010). Mecanismos para Disponibilização de Nutrientes Minerais a Partir de Processos Biológicos. Planaltina, DF: EMBRAPA. Google Scholar United States Department of Agriculture—USDA. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd ed.). Washington: Agriculture Handbook. Google Scholar Van Straaten, P. (2007). Agrogeology: The use of rocks for crops (No. 631.811 S894a). Ontario, CA: Enviroquest. Google Scholar Zhang, Y., Nachimuthu, G., Mason, S., McLaughlin, M. J., McNeill, A., & Bell, M. J. (2017). Comparison of soil analytical methods for estimating wheat potassium fertilizer requirements in response to contrasting plant K demand in the glasshouse. Scientific Reports, 7(1), 11391. CrossRefGoogle ScholarCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Volcanic rock by-productSoil re-mineralizationAgronomic efficiencySustainable agricultureEvaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining: Experimental Proof Using Black Oats and Maize CropsPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALEvaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining Experimental Proof Using Black Oats and Maize Crops.pdfEvaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining Experimental Proof Using Black Oats and Maize Crops.pdfapplication/pdf188120https://repositorio.cuc.edu.co/bitstreams/a46c25bc-a138-45ba-a0eb-214f997b04ef/download9c5aa023c65515b38ad7b511b0ad87c4MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/d11b99c3-8c09-42c9-b74b-f91ffe72f3b7/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/225bb200-60c2-4cb8-a588-d7f877193838/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEvaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining Experimental Proof Using Black Oats and Maize Crops.pdf.jpgEvaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining Experimental Proof Using Black Oats and Maize Crops.pdf.jpgimage/jpeg64096https://repositorio.cuc.edu.co/bitstreams/dde6198c-21ee-4b4f-9796-70c382b4441a/download1e41aa103189e070affe4f38b3463fe6MD55TEXTEvaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining Experimental Proof Using Black Oats and Maize Crops.pdf.txtEvaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining Experimental Proof Using Black Oats and Maize Crops.pdf.txttext/plain2938https://repositorio.cuc.edu.co/bitstreams/0e9bf3d2-91ec-48cc-915a-eb06c2a6cfd6/downloada2d5fa3808b865d59a20893f38b31d46MD5611323/5141oai:repositorio.cuc.edu.co:11323/51412024-09-17 10:50:31.699http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |