Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark

This study used the bark of the forest species Campomanesia guazumifolia modified with H2SO4 to absorb the anti-inflammatory ketoprofen from aqueous solutions. FTIR spectra confirmed that the main bands remained after the chemical treatment, with the appearance of two new bands related to the elonga...

Full description

Autores:
Preigschadt, Isadora A.
Bevilacqua, Raíssa C.
Netto, Matias S.
georgin, jordana
Franco, Dison S. P.
Mallmann, Evandro S.
Pinto, Diana
Foletto, Edson
Dotto, Guilherme Luiz
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9137
Acceso en línea:
https://hdl.handle.net/11323/9137
https://doi.org/10.1007/s11356-021-15668-7
https://repositorio.cuc.edu.co/
Palabra clave:
Campomanesia guazumifolia
Acid treatment
Adsorption
Bark
Ketoprofen
Rights
embargoedAccess
License
© 2022 Springer Nature Switzerland AG. Part of Springer Nature.
id RCUC2_d6182d813ed67ef4679f591f9c6b0823
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9137
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark
title Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark
spellingShingle Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark
Campomanesia guazumifolia
Acid treatment
Adsorption
Bark
Ketoprofen
title_short Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark
title_full Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark
title_fullStr Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark
title_full_unstemmed Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark
title_sort Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark
dc.creator.fl_str_mv Preigschadt, Isadora A.
Bevilacqua, Raíssa C.
Netto, Matias S.
georgin, jordana
Franco, Dison S. P.
Mallmann, Evandro S.
Pinto, Diana
Foletto, Edson
Dotto, Guilherme Luiz
dc.contributor.author.spa.fl_str_mv Preigschadt, Isadora A.
Bevilacqua, Raíssa C.
Netto, Matias S.
georgin, jordana
Franco, Dison S. P.
Mallmann, Evandro S.
Pinto, Diana
Foletto, Edson
Dotto, Guilherme Luiz
dc.subject.proposal.eng.fl_str_mv Campomanesia guazumifolia
Acid treatment
Adsorption
Bark
Ketoprofen
topic Campomanesia guazumifolia
Acid treatment
Adsorption
Bark
Ketoprofen
description This study used the bark of the forest species Campomanesia guazumifolia modified with H2SO4 to absorb the anti-inflammatory ketoprofen from aqueous solutions. FTIR spectra confirmed that the main bands remained after the chemical treatment, with the appearance of two new bands related to the elongation of the carbonyl group present in hemicellulose. Micrographs confirmed that the surface started to contain a new textural shape after acid activation, having new pores and cavities. The drug adsorption’s optimum conditions were obtained by response surface methodology (RSM). The adsorption was favored at acidic pH (2). The dosage of 1 g L−1 was considered ideal, obtaining good indications of removal and capacity. The Elovich model very well represented the kinetic curves. The isotherm studies indicated that the increase in temperature negatively affected the adsorption of ketoprofen. A maximum adsorption capacity of 158.3 mg g−1 was obtained at the lower temperature of 298 K. Langmuir was the best-fit isotherm. Thermodynamic parameters confirmed the exothermic nature of the system (ΔH0 = −8.78 kJ mol−1). In treating a simulated effluent containing different drugs and salts, the removal values were 35, 50, and 80% at 15, 30, and 180 min, respectively. Therefore, the development of adsorbent from the bark of Campomanesia guazumifolia treated with H2SO4 represents a remarkable alternative for use in effluent treatment containing ketoprofen.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-04-29T13:03:45Z
dc.date.available.none.fl_str_mv 2022-04-29T13:03:45Z
2023
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Preigschadt, .A., Bevilacqua, R.C., Netto, M.S. et al. Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark. Environ Sci Pollut Res 29, 2122–2135 (2022). https://doi.org/10.1007/s11356-021-15668-7
dc.identifier.issn.spa.fl_str_mv 0944-1344
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9137
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1007/s11356-021-15668-7
dc.identifier.doi.spa.fl_str_mv 10.1007/s11356-021-15668-7
dc.identifier.eissn.spa.fl_str_mv 1614-7499
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Preigschadt, .A., Bevilacqua, R.C., Netto, M.S. et al. Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark. Environ Sci Pollut Res 29, 2122–2135 (2022). https://doi.org/10.1007/s11356-021-15668-7
0944-1344
10.1007/s11356-021-15668-7
1614-7499
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9137
https://doi.org/10.1007/s11356-021-15668-7
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Environmental Science and Pollution Research
dc.relation.references.spa.fl_str_mv Abdulhameed AS, Firdaus Hum NNM, Rangabhashiyam S et al (2021) Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3activator. J Environ Chem Eng 9:105530. https://doi.org/10.1016/j.jece.2021.105530
Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydr Polym 83:676–687. https://doi.org/10.1016/j.carbpol.2010.08.039
Ahmed MJ (2017) Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review. J Environ Manag 190:274–282. https://doi.org/10.1016/j.jenvman.2016.12.073
Alkimin GD, Soares AMVM, Barata C, Nunes B (2020) Evaluation of ketoprofen toxicity in two freshwater species: effects on biochemical, physiological and population endpoints. Environ Pollut 265:114993. https://doi.org/10.1016/j.envpol.2020.114993
Baccar R, Sarrà M, Bouzid J, Feki M, Blánquez P (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211–212:310–317. https://doi.org/10.1016/j.cej.2012.09.099
Benvenuti J, Fisch A, Dos Santos JHZ, Gutterres M (2019) Silica-based adsorbent material with grape bagasse encapsulated by the sol-gel method for the adsorption of Basic Blue 41 dye. J Environ Chem Eng 7:103342. https://doi.org/10.1016/j.jece.2019.103342
Biswal AK, Samal AK, Tripathy M, Misra PK (2019) Identification of the secondary structure of protein isolated from deoiled cake flour of Mahua (Madhuca Latifolia). Mater Today Proc 9:605–614. https://doi.org/10.1016/j.matpr.2018.10.382
Bonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Avila HE (2017) Adsorption processes for water treatment and purification. Springer International Publishing, Cham
Catelan TBS, Santos Radai JA, Leitão MM, Branquinho LS, Vasconcelos PCP, Heredia-Vieira SC, Kassuya CAL, Cardoso CAL (2018) Evaluation of the toxicity and anti-inflammatory activities of the infusion of leaves of Campomanesia guazumifolia (Cambess.) O. Berg. J Ethnopharmacol 226:132–142. https://doi.org/10.1016/j.jep.2018.08.015
Cesca K, Netto MS, Ely VL et al (2020) Synthesis of spherical bacterial nanocellulose as a potential silver adsorption agent for antimicrobial purposes. Cellul Chem Technol 54:285–290. https://doi.org/10.35812/CELLULOSECHEMTECHNOL.2020.54.30
Cesca K, Schadeck Netto M, Lunkes Ely V, Luiz Dotto G, Luiz Foletto E, Hotza D (2020) Synthesis of spherical bacterial nanocelluloseas a potential silver adsorption agent for antimicrobial purposes. Cellulose Chem Technol 54(3–4):285–290
Chandrashekar Kollarahithlu S, Balakrishnan RM (2021) Adsorption of pharmaceuticals pollutants, Ibuprofen, Acetaminophen, and Streptomycin from the aqueous phase using amine functionalized superparamagnetic silica nanocomposite. J Clean Prod 294:126155. https://doi.org/10.1016/j.jclepro.2021.126155
Chen M, Ren L, Qi K, Li Q, Lai M, Li Y, Li X, Wang Z (2020) Enhanced removal of pharmaceuticals and personal care products from real municipal wastewater using an electrochemical membrane bioreactor. Bioresour Technol 311:123579. https://doi.org/10.1016/j.biortech.2020.123579
Dubinin MM, Astakhov VA (1971) Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Bull Acad Sci USSR Div Chem Sci 20:3–7. https://doi.org/10.1007/BF00849307
Elovich SY, Larionov OG (1962) Theory of adsorption from nonelectrolyte solutions on solid adsorbents - 2. Experimental verification of the equation for the adsorption isotherm from solutions. Bull Acad Sci USSR Div Chem Sci 11:198–203. https://doi.org/10.1007/BF00908017
Fabbri E (2015) Pharmaceuticals in the environment: expected and unexpected effects on aquatic fauna. Ann N Y Acad Sci 1340:20–28. https://doi.org/10.1111/nyas.12605
Feng Z, Odelius K, Rajarao GK, Hakkarainen M (2018) Microwave carbonized cellulose for trace pharmaceutical adsorption. Chem Eng J 346:557–566. https://doi.org/10.1016/j.cej.2018.04.014
Franco DSP, Piccin JS, Lima EC, Dotto GL (2015) Interpretations about methylene blue adsorption by surface modified chitin using the statistical physics treatment. Adsorption 21:557–564. https://doi.org/10.1007/s10450-015-9699-z
Franco DSP, Tanabe EH, Dotto GL (2017) Continuous adsorption of a cationic dye on surface modified rice husk: statistical optimization and dynamic models. Chem Eng Commun 204:625–634. https://doi.org/10.1080/00986445.2017.1300150
Franco DSP, Georgin J, Drumm FC, Netto MS, Allasia D, Oliveira MLS, Dotto GL (2020) Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. Environ Sci Pollut Res 27:11184–11194. https://doi.org/10.1007/s11356-019-07490-z
Freundlich H (1907) Über die Adsorption in Lösungen. Z Phys Chem 57U:385–470. https://doi.org/10.1515/zpch-1907-5723
Fröhlich AC, dos Reis GS, Pavan FA, Lima ÉC, Foletto EL, Dotto GL (2018) Improvement of activated carbon characteristics by sonication and its application for pharmaceutical contaminant adsorption. Environ Sci Pollut Res 25:24713–24725. https://doi.org/10.1007/s11356-018-2525-x
Fröhlich AC, Foletto EL, Dotto GL (2019) Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J Clean Prod 229:828–837. https://doi.org/10.1016/j.jclepro.2019.05.037
Ganesan S, Karthick K, Namasivayam C, Arul Pragasan L, Kirankumar VS, Devaraj S, Ponnusamy VK (2020) Discarded biodiesel waste–derived lignocellulosic biomass as effective biosorbent for removal of sulfamethoxazole drug. Environ Sci Pollut Res 27:17619–17630. https://doi.org/10.1007/s11356-019-07022-9
Ganzenko O, Oturan N, Sirés I, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2018) Fast and complete removal of the 5-fluorouracil drug from water by electro-Fenton oxidation. Environ Chem Lett 16:281–286. https://doi.org/10.1007/s10311-017-0659-6
Gao Y, Deshusses MA (2011) Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter. Environ Technol 32:1719–1727. https://doi.org/10.1080/09593330.2011.554888
Georgin J, Franco D, Drumm FC, Grassi P, Netto MS, Allasia D, Dotto GL (2020) Powdered biosorbent from the mandacaru cactus (cereus jamacaru) for discontinuous and continuous removal of Basic Fuchsin from aqueous solutions. Powder Technol 364:584–592. https://doi.org/10.1016/j.powtec.2020.01.064
Georgin J, de O Salomón YL, Franco DSP et al (2021) Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen. J Environ Chem Eng 9:105676. https://doi.org/10.1016/j.jece.2021.105676
Giles CH, Smith D (1974) A general treatment and classification of the solute adsorption isotherm part I. Theoretical. J Colloid Interface Sci 47:755–765. https://doi.org/10.1016/0021-9797(74)90252-5
Grisales-Cifuentes CM, Serna Galvis EA, Porras J, Flórez E, Torres-Palma RA, Acelas N (2021) Kinetics, isotherms, effect of structure, and computational analysis during the removal of three representative pharmaceuticals from water by adsorption using a biochar obtained from oil palm fiber. Bioresour Technol 326:124753. https://doi.org/10.1016/j.biortech.2021.124753
Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5
Hounfodji JW, Kanhounnon WG, Kpotin G, Atohoun GS, Lainé J, Foucaud Y, Badawi M (2021) Molecular insights on the adsorption of some pharmaceutical residues from wastewater on kaolinite surfaces. Chem Eng J 407:127176. https://doi.org/10.1016/j.cej.2020.127176
Humelnicu D, Dragan ES (2021) Evaluation of phosphate adsorption by porous strong base anion exchangers having hydroxyethyl substituents: kinetics, equilibrium, and thermodynamics. Environ Sci Pollut Res 28:7105–7115. https://doi.org/10.1007/s11356-020-10976-w
Ivanković K, Kern M, Rožman M (2021) Modelling of the adsorption of pharmaceutically active compounds on carbon-based nanomaterials. J Hazard Mater 414. https://doi.org/10.1016/j.jhazmat.2021.125554
Jawad AH (2018) Carbonization of rubber (Hevea brasiliensis) seed shell by one-step liquid phase activation with H2SO4 for methylene blue adsorption. Desalin Water Treat 129:279–288. https://doi.org/10.5004/dwt.2018.23090
Jawad AH, Rashid RA, Ishak MAM, Wilson LD (2016) Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat 57:25194–25206. https://doi.org/10.1080/19443994.2016.1144534
Jawad AH, Mamat NFH, Abdullah MF, Ismail K (2017) Adsorption of methylene blue onto acid-treated mango peels: kinetic, equilibrium and thermodynamic study. Desalin Water Treat 59:210–219. https://doi.org/10.5004/dwt.2017.0097
Jawad AH, Mohammed SA, Mastuli MS, Abdullah MF (2018a) Carbonization of corn (Zea mays) cob agricultural residue by one-step activation with sulfuric acid for methylene blue adsorption. Desalin Water Treat 118:342–351. https://doi.org/10.5004/dwt.2018.22680
Jawad AH, Rashid RA, Ishak MAM, Ismail K (2018b) Adsorptive removal of methylene blue by chemically treated cellulosic waste banana ( Musa sapientum ) peels. J Taibah Univ Sci 12:809–819. https://doi.org/10.1080/16583655.2018.1519893
Jawad AH, Razuan R, Appaturi JN, Wilson LD (2019) Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus)rind prepared via one-step liquid phase H 2 SO 4 activation. Surfaces Interfaces 16:76–84. https://doi.org/10.1016/j.surfin.2019.04.012
Jawad AH, Abdulhameed AS, Mastuli MS (2020a) Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. J Taibah Univ Sci 14:305–313. https://doi.org/10.1080/16583655.2020.1736767
Jawad AH, Mohd Firdaus Hum NN, Abdulhameed AS, Mohd Ishak MA (2020b) Mesoporous activated carbon from grass waste via H3PO4-activation for methylene blue dye removal: modelling, optimisation, and mechanism study. Int J Environ Anal Chem 00:1–17. https://doi.org/10.1080/03067319.2020.1807529
Kanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12:27–47. https://doi.org/10.1007/s10311-013-0428-0
Kebede TG, Dube S, Nindi MM (2018) Removal of non-steroidal anti-inflammatory drugs (NSAIDs) and carbamazepine from wastewater using water-soluble protein extracted from Moringa stenopetala seeds. J Environ Chem Eng 6(2):3095–3103. https://doi.org/10.1016/j.jece.2018.04.066
Kebede TG, Dube S, Nindi MM (2019) Biopolymer electrospun nanofibres for the adsorption of pharmaceuticals from water systems. J Environ Chem Eng 7:103330. https://doi.org/10.1016/j.jece.2019.103330
Kong L, Gong L, Wang J (2015) Removal of methylene blue from wastewater using fallen leaves as an adsorbent. Desalin Water Treat 53:2489–2500. https://doi.org/10.1080/19443994.2013.863738
Kumar J, Balomajumder C, Mondal P (2011) Application of agro-based biomasses for zinc removal from wastewater - a review. Clean Soil Air Water 39:641–652. https://doi.org/10.1002/clen.201000100
Lagergren SY (1898) Zur Theorie der sogenannten Adsorption geloster stoffe. Kung Svenska Vetenskap Handl 24:1–39
Lam SS, Azwar E, Peng W, Tsang YF, Ma NL, Liu Z, Park YK, Kwon EE (2019) Cleaner conversion of bamboo into carbon fibre with favourable physicochemical and capacitive properties via microwave pyrolysis combining with solvent extraction and chemical impregnation. J Clean Prod 236:1–11. https://doi.org/10.1016/j.jclepro.2019.117692
Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004
Lawal IA, Moodley B (2017) Sorption mechansim of pharmaceuticals from aqueous medium on ionic liquid modified biomass. J Chem Technol Biotechnol 92:808–818. https://doi.org/10.1002/jctb.5063
Lawal IA, Lawal MM, Akpotu SO, Okoro HK, Klink M, Ndungu P (2020) Noncovalent graphene oxide functionalized with ionic liquid: theoretical, isotherm, kinetics, and regeneration studies on the adsorption of pharmaceuticals. Ind Eng Chem Res 59:4945–4957. https://doi.org/10.1021/acs.iecr.9b06634
Li Z, Hanafy H, Zhang L, Sellaoui L, Schadeck Netto M, Oliveira MLS, Seliem MK, Luiz Dotto G, Bonilla-Petriciolet A, Li Q (2020a) Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: experiments, characterization and physical interpretations. Chem Eng J 388:124263. https://doi.org/10.1016/j.cej.2020.124263
Li Z, Sellaoui L, Franco D, Netto MS, Georgin J, Dotto GL, Bajahzar A, Belmabrouk H, Bonilla-Petriciolet A, Li Q (2020b) Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: experimental study and physicochemical interpretation of the adsorption mechanism. Chem Eng J 389:124467. https://doi.org/10.1016/j.cej.2020.124467
Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048
Lin AYC, Yu TH, Lin CF (2008) Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere 74:131–141. https://doi.org/10.1016/j.chemosphere.2008.08.027
Liu Y, Shen L (2008) A general rate law equation for biosorption. Biochem 38:390–394. https://doi.org/10.1016/j.bej.2007.08.003
Liu FF, Zhao J, Wang S, du P, Xing B (2014) Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes. Environ Sci Technol 48:13197–13206. https://doi.org/10.1021/es5034684
Liu H, Xu G, Li G (2021) Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline. J Colloid Interface Sci 587:271–278. https://doi.org/10.1016/j.jcis.2020.12.014
Lotfi R, Hayati B, Rahimi S, Shekarchi AA, Mahmoodi NM, Bagheri A (2019) Synthesis and characterization of PAMAM/SiO 2 nanohybrid as a new promising adsorbent for pharmaceuticals. Microchem J 146:1150–1159. https://doi.org/10.1016/j.microc.2019.02.048
Low LW, Teng TT, Ahmad A, Morad N, Wong YS (2011) A novel pretreatment method of lignocellulosic material as adsorbent and kinetic study of dye waste adsorption. Water Air Soil Pollut 218:293–306. https://doi.org/10.1007/s11270-010-0642-3
Machado FM, Bergmann CP, Fernandes THM, Lima EC, Royer B, Calvete T, Fagan SB (2011) Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192:1122–1131. https://doi.org/10.1016/j.jhazmat.2011.06.020
Madikizela LM, Zunngu SS, Mlunguza NY, Tavengwa NT, Mdluli PS, Chimuka L (2018) Application of molecularly imprinted polymer designed for the selective extraction of ketoprofen from wastewater. Water SA 44:406–418. https://doi.org/10.4314/wsa.v44i3.08
Malesic-Eleftheriadou N, Evgenidou E, Lazaridou M, Bikiaris DN, Yang X, Kyzas GZ, Lambropoulou DA (2021) Simultaneous removal of anti-inflammatory pharmaceutical compounds from an aqueous mixture with adsorption onto chitosan zwitterionic derivative. Colloids Surf A Physicochem Eng Asp 619:126498. https://doi.org/10.1016/j.colsurfa.2021.126498
Mallek M, Chtourou M, Portillo M, Monclús H, Walha K, Salah A, Salvadó V (2018) Granulated cork as biosorbent for the removal of phenol derivatives and emerging contaminants. J Environ Manag 223:576–585. https://doi.org/10.1016/j.jenvman.2018.06.069
Melo LLA, Ide AH, Duarte JLS, Zanta CLPS, Oliveira LMTM, Pimentel WRO, Meili L (2020) Caffeine removal using Elaeis guineensis activated carbon: adsorption and RSM studies. Environ Sci Pollut Res 27:27048–27060. https://doi.org/10.1007/s11356-020-09053-z
Mirzaei A, Chen Z, Haghighat F, Yerushalmi L (2017) Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes – a review. Chemosphere 174:665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019
Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W (2017) Occurrence of personal care products as emerging chemicals of concern in water resources: a review. Sci Total Environ 595:601–614. https://doi.org/10.1016/j.scitotenv.2017.03.286
Oikonomopoulos I, Perraki T, Tougiannidis N (2017) Ftir study of two different lignite lithotypes from Neocene Achlada lignite deposits in NW Greece. Bull Geol Soc Greece 43:2284. https://doi.org/10.12681/bgsg.14312
Ouasfi N, Zbair M, Bouzikri S, Anfar Z, Bensitel M, Ait Ahsaine H, Sabbar E, Khamliche L (2019) Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. RSC Adv 9:9792–9808. https://doi.org/10.1039/C9RA01086F
Özkaya B (2006) Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J Hazard Mater 129:158–163. https://doi.org/10.1016/j.jhazmat.2005.08.025
Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU Jr, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299
Pejić BM, Kramar AD, Obradović BM, Kuraica MM, Žekić AA, Kostić MM (2020) Effect of plasma treatment on chemical composition, structure and sorption properties of lignocellulosic hemp fibers (Cannabis sativa L.). Carbohydr Polym 236:116000. https://doi.org/10.1016/j.carbpol.2020.116000
Pinto BP, de Santa Maria LC, Sena ME (2007) Sulfonated poly(ether imide): a versatile route to prepare functionalized polymers by homogenous sulfonation. Mater Lett 61:2540–2543. https://doi.org/10.1016/j.matlet.2006.09.060
Ranjbari S, Tanhaei B, Ayati A, Khadempir S, Sillanpää M (2020) Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: mechanism, kinetic, isotherms and thermodynamic study. Int J Biol Macromol 155:421–429. https://doi.org/10.1016/j.ijbiomac.2020.03.188
Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172. https://doi.org/10.1016/j.biortech.2012.01.001
Sarker M, Song JY, Jhung SH (2018) Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem Eng J 335:74–81. https://doi.org/10.1016/j.cej.2017.10.138
Schadeck Netto M, da Silva NF, Mallmann ES et al (2019) Effect of Salinity on the Adsorption Behavior of Methylene Blue onto Comminuted Raw Avocado Residue: CCD-RSM Design. Water Air Soil Pollut 230:187. https://doi.org/10.1007/s11270-019-4230-x
Sellaoui L, Guedidi H, Sarrawjihi et al (2016) Experimental and theoretical studies of adsorption of ibuprofen on raw and two chemically modified activated carbons: New physicochemical interpretations. RSC Adv 6:12363–12373. https://doi.org/10.1039/c5ra22302d
Souza MT, Souza MT, Panobianco M (2018) Morphological characterization of fruit, seed and seedling, and seed germination test of campomanesia guazumifolia. J Seed Sci 40:75–81. https://doi.org/10.1590/2317-1545v40n1186143
Surip SN, Abdulhameed AS, Garba ZN, Syed-Hassan SSA, Ismail K, Jawad AH (2020) H2SO4-treated Malaysian low rank coal for methylene blue dye decolourization and cod reduction: optimization of adsorption and mechanism study. Surfaces Interfaces 21:100641. https://doi.org/10.1016/j.surfin.2020.100641
Tóth J (2002) Adsorption: Theory, modeling, and analysis. Marcel Dekker, New York
Tran HN, Tomul F, Thi Hoang Ha N, Nguyen DT, Lima EC, le GT, Chang CT, Masindi V, Woo SH (2020) Innovative spherical biochar for pharmaceutical removal from water: insight into adsorption mechanism. J Hazard Mater 394:122255. https://doi.org/10.1016/j.jhazmat.2020.122255
Vannini C, Domingo G, Marsoni M, de Mattia F, Labra M, Castiglioni S, Bracale M (2011) Effects of a complex mixture of therapeutic drugs on unicellular algae Pseudokirchneriella subcapitata. Aquat Toxicol 101:459–465. https://doi.org/10.1016/j.aquatox.2010.10.011
Wang L, Albasi C, Faucet-Marquis V, Pfohl-Leszkowicz A, Dorandeu C, Marion B, Causserand C (2009) Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane. Water Res 43:4115–4122. https://doi.org/10.1016/j.watres.2009.06.007
Wang W, Qi M, Jia X, Jin J, Zhou Q, Zhang M, Zhou W, Li A (2020) Differential adsorption of zwitterionic PPCPs by multifunctional resins: the influence of the hydrophobicity and electrostatic potential of PPCPs. Chemosphere 241:125023. https://doi.org/10.1016/j.chemosphere.2019.125023
Yakaboylu GA, Jiang C, Yumak T, Zondlo JW, Wang J, Sabolsky EM (2021) Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renew Energy 163:276–287. https://doi.org/10.1016/j.renene.2020.08.092
Zhao X, Chen J, Chen F, Wang X, Zhu Q, Ao Q (2013) Surface characterization of corn stalk superfine powder studied by FTIR and XRD. Colloids Surf B: Biointerfaces 104:207–212. https://doi.org/10.1016/j.colsurfb.2012.12.00
dc.relation.citationendpage.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 29
dc.rights.spa.fl_str_mv © 2022 Springer Nature Switzerland AG. Part of Springer Nature.
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv © 2022 Springer Nature Switzerland AG. Part of Springer Nature.
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 1 página
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Science + Business Media
dc.publisher.place.spa.fl_str_mv Germany
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/article/10.1007/s11356-021-15668-7
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/afa49376-701e-43b7-9906-4a71a60c613b/download
https://repositorio.cuc.edu.co/bitstreams/92dd041d-00d5-4705-8384-ab1fbe70d6f9/download
https://repositorio.cuc.edu.co/bitstreams/b274e564-feb5-40e2-b75a-bed4590b926a/download
https://repositorio.cuc.edu.co/bitstreams/dc7cbc76-7c9c-478b-a825-3d4f245e5aba/download
bitstream.checksum.fl_str_mv 3e943c68152ec7f559c6f60dc99c4c07
e30e9215131d99561d40d6b0abbe9bad
3cf5e10c6452f73e0177c4f76a614f25
c16973b20f17b8194e0384b2cc1d3029
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760773387517952
spelling Preigschadt, Isadora A.Bevilacqua, Raíssa C.Netto, Matias S.georgin, jordanaFranco, Dison S. P.Mallmann, Evandro S.Pinto, DianaFoletto, EdsonDotto, Guilherme Luiz2022-04-29T13:03:45Z20232022-04-29T13:03:45Z2021Preigschadt, .A., Bevilacqua, R.C., Netto, M.S. et al. Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark. Environ Sci Pollut Res 29, 2122–2135 (2022). https://doi.org/10.1007/s11356-021-15668-70944-1344https://hdl.handle.net/11323/9137https://doi.org/10.1007/s11356-021-15668-710.1007/s11356-021-15668-71614-7499Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study used the bark of the forest species Campomanesia guazumifolia modified with H2SO4 to absorb the anti-inflammatory ketoprofen from aqueous solutions. FTIR spectra confirmed that the main bands remained after the chemical treatment, with the appearance of two new bands related to the elongation of the carbonyl group present in hemicellulose. Micrographs confirmed that the surface started to contain a new textural shape after acid activation, having new pores and cavities. The drug adsorption’s optimum conditions were obtained by response surface methodology (RSM). The adsorption was favored at acidic pH (2). The dosage of 1 g L−1 was considered ideal, obtaining good indications of removal and capacity. The Elovich model very well represented the kinetic curves. The isotherm studies indicated that the increase in temperature negatively affected the adsorption of ketoprofen. A maximum adsorption capacity of 158.3 mg g−1 was obtained at the lower temperature of 298 K. Langmuir was the best-fit isotherm. Thermodynamic parameters confirmed the exothermic nature of the system (ΔH0 = −8.78 kJ mol−1). In treating a simulated effluent containing different drugs and salts, the removal values were 35, 50, and 80% at 15, 30, and 180 min, respectively. Therefore, the development of adsorbent from the bark of Campomanesia guazumifolia treated with H2SO4 represents a remarkable alternative for use in effluent treatment containing ketoprofen.1 páginaapplication/pdfengSpringer Science + Business MediaGermany© 2022 Springer Nature Switzerland AG. Part of Springer Nature.Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfOptimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia barkArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_b1a7d7d4d402bccehttps://link.springer.com/article/10.1007/s11356-021-15668-7Environmental Science and Pollution ResearchAbdulhameed AS, Firdaus Hum NNM, Rangabhashiyam S et al (2021) Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3activator. J Environ Chem Eng 9:105530. https://doi.org/10.1016/j.jece.2021.105530Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydr Polym 83:676–687. https://doi.org/10.1016/j.carbpol.2010.08.039Ahmed MJ (2017) Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review. J Environ Manag 190:274–282. https://doi.org/10.1016/j.jenvman.2016.12.073Alkimin GD, Soares AMVM, Barata C, Nunes B (2020) Evaluation of ketoprofen toxicity in two freshwater species: effects on biochemical, physiological and population endpoints. Environ Pollut 265:114993. https://doi.org/10.1016/j.envpol.2020.114993Baccar R, Sarrà M, Bouzid J, Feki M, Blánquez P (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211–212:310–317. https://doi.org/10.1016/j.cej.2012.09.099Benvenuti J, Fisch A, Dos Santos JHZ, Gutterres M (2019) Silica-based adsorbent material with grape bagasse encapsulated by the sol-gel method for the adsorption of Basic Blue 41 dye. J Environ Chem Eng 7:103342. https://doi.org/10.1016/j.jece.2019.103342Biswal AK, Samal AK, Tripathy M, Misra PK (2019) Identification of the secondary structure of protein isolated from deoiled cake flour of Mahua (Madhuca Latifolia). Mater Today Proc 9:605–614. https://doi.org/10.1016/j.matpr.2018.10.382Bonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Avila HE (2017) Adsorption processes for water treatment and purification. Springer International Publishing, ChamCatelan TBS, Santos Radai JA, Leitão MM, Branquinho LS, Vasconcelos PCP, Heredia-Vieira SC, Kassuya CAL, Cardoso CAL (2018) Evaluation of the toxicity and anti-inflammatory activities of the infusion of leaves of Campomanesia guazumifolia (Cambess.) O. Berg. J Ethnopharmacol 226:132–142. https://doi.org/10.1016/j.jep.2018.08.015Cesca K, Netto MS, Ely VL et al (2020) Synthesis of spherical bacterial nanocellulose as a potential silver adsorption agent for antimicrobial purposes. Cellul Chem Technol 54:285–290. https://doi.org/10.35812/CELLULOSECHEMTECHNOL.2020.54.30Cesca K, Schadeck Netto M, Lunkes Ely V, Luiz Dotto G, Luiz Foletto E, Hotza D (2020) Synthesis of spherical bacterial nanocelluloseas a potential silver adsorption agent for antimicrobial purposes. Cellulose Chem Technol 54(3–4):285–290Chandrashekar Kollarahithlu S, Balakrishnan RM (2021) Adsorption of pharmaceuticals pollutants, Ibuprofen, Acetaminophen, and Streptomycin from the aqueous phase using amine functionalized superparamagnetic silica nanocomposite. J Clean Prod 294:126155. https://doi.org/10.1016/j.jclepro.2021.126155Chen M, Ren L, Qi K, Li Q, Lai M, Li Y, Li X, Wang Z (2020) Enhanced removal of pharmaceuticals and personal care products from real municipal wastewater using an electrochemical membrane bioreactor. Bioresour Technol 311:123579. https://doi.org/10.1016/j.biortech.2020.123579Dubinin MM, Astakhov VA (1971) Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Bull Acad Sci USSR Div Chem Sci 20:3–7. https://doi.org/10.1007/BF00849307Elovich SY, Larionov OG (1962) Theory of adsorption from nonelectrolyte solutions on solid adsorbents - 2. Experimental verification of the equation for the adsorption isotherm from solutions. Bull Acad Sci USSR Div Chem Sci 11:198–203. https://doi.org/10.1007/BF00908017Fabbri E (2015) Pharmaceuticals in the environment: expected and unexpected effects on aquatic fauna. Ann N Y Acad Sci 1340:20–28. https://doi.org/10.1111/nyas.12605Feng Z, Odelius K, Rajarao GK, Hakkarainen M (2018) Microwave carbonized cellulose for trace pharmaceutical adsorption. Chem Eng J 346:557–566. https://doi.org/10.1016/j.cej.2018.04.014Franco DSP, Piccin JS, Lima EC, Dotto GL (2015) Interpretations about methylene blue adsorption by surface modified chitin using the statistical physics treatment. Adsorption 21:557–564. https://doi.org/10.1007/s10450-015-9699-zFranco DSP, Tanabe EH, Dotto GL (2017) Continuous adsorption of a cationic dye on surface modified rice husk: statistical optimization and dynamic models. Chem Eng Commun 204:625–634. https://doi.org/10.1080/00986445.2017.1300150Franco DSP, Georgin J, Drumm FC, Netto MS, Allasia D, Oliveira MLS, Dotto GL (2020) Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. Environ Sci Pollut Res 27:11184–11194. https://doi.org/10.1007/s11356-019-07490-zFreundlich H (1907) Über die Adsorption in Lösungen. Z Phys Chem 57U:385–470. https://doi.org/10.1515/zpch-1907-5723Fröhlich AC, dos Reis GS, Pavan FA, Lima ÉC, Foletto EL, Dotto GL (2018) Improvement of activated carbon characteristics by sonication and its application for pharmaceutical contaminant adsorption. Environ Sci Pollut Res 25:24713–24725. https://doi.org/10.1007/s11356-018-2525-xFröhlich AC, Foletto EL, Dotto GL (2019) Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J Clean Prod 229:828–837. https://doi.org/10.1016/j.jclepro.2019.05.037Ganesan S, Karthick K, Namasivayam C, Arul Pragasan L, Kirankumar VS, Devaraj S, Ponnusamy VK (2020) Discarded biodiesel waste–derived lignocellulosic biomass as effective biosorbent for removal of sulfamethoxazole drug. Environ Sci Pollut Res 27:17619–17630. https://doi.org/10.1007/s11356-019-07022-9Ganzenko O, Oturan N, Sirés I, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2018) Fast and complete removal of the 5-fluorouracil drug from water by electro-Fenton oxidation. Environ Chem Lett 16:281–286. https://doi.org/10.1007/s10311-017-0659-6Gao Y, Deshusses MA (2011) Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter. Environ Technol 32:1719–1727. https://doi.org/10.1080/09593330.2011.554888Georgin J, Franco D, Drumm FC, Grassi P, Netto MS, Allasia D, Dotto GL (2020) Powdered biosorbent from the mandacaru cactus (cereus jamacaru) for discontinuous and continuous removal of Basic Fuchsin from aqueous solutions. Powder Technol 364:584–592. https://doi.org/10.1016/j.powtec.2020.01.064Georgin J, de O Salomón YL, Franco DSP et al (2021) Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen. J Environ Chem Eng 9:105676. https://doi.org/10.1016/j.jece.2021.105676Giles CH, Smith D (1974) A general treatment and classification of the solute adsorption isotherm part I. Theoretical. J Colloid Interface Sci 47:755–765. https://doi.org/10.1016/0021-9797(74)90252-5Grisales-Cifuentes CM, Serna Galvis EA, Porras J, Flórez E, Torres-Palma RA, Acelas N (2021) Kinetics, isotherms, effect of structure, and computational analysis during the removal of three representative pharmaceuticals from water by adsorption using a biochar obtained from oil palm fiber. Bioresour Technol 326:124753. https://doi.org/10.1016/j.biortech.2021.124753Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5Hounfodji JW, Kanhounnon WG, Kpotin G, Atohoun GS, Lainé J, Foucaud Y, Badawi M (2021) Molecular insights on the adsorption of some pharmaceutical residues from wastewater on kaolinite surfaces. Chem Eng J 407:127176. https://doi.org/10.1016/j.cej.2020.127176Humelnicu D, Dragan ES (2021) Evaluation of phosphate adsorption by porous strong base anion exchangers having hydroxyethyl substituents: kinetics, equilibrium, and thermodynamics. Environ Sci Pollut Res 28:7105–7115. https://doi.org/10.1007/s11356-020-10976-wIvanković K, Kern M, Rožman M (2021) Modelling of the adsorption of pharmaceutically active compounds on carbon-based nanomaterials. J Hazard Mater 414. https://doi.org/10.1016/j.jhazmat.2021.125554Jawad AH (2018) Carbonization of rubber (Hevea brasiliensis) seed shell by one-step liquid phase activation with H2SO4 for methylene blue adsorption. Desalin Water Treat 129:279–288. https://doi.org/10.5004/dwt.2018.23090Jawad AH, Rashid RA, Ishak MAM, Wilson LD (2016) Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat 57:25194–25206. https://doi.org/10.1080/19443994.2016.1144534Jawad AH, Mamat NFH, Abdullah MF, Ismail K (2017) Adsorption of methylene blue onto acid-treated mango peels: kinetic, equilibrium and thermodynamic study. Desalin Water Treat 59:210–219. https://doi.org/10.5004/dwt.2017.0097Jawad AH, Mohammed SA, Mastuli MS, Abdullah MF (2018a) Carbonization of corn (Zea mays) cob agricultural residue by one-step activation with sulfuric acid for methylene blue adsorption. Desalin Water Treat 118:342–351. https://doi.org/10.5004/dwt.2018.22680Jawad AH, Rashid RA, Ishak MAM, Ismail K (2018b) Adsorptive removal of methylene blue by chemically treated cellulosic waste banana ( Musa sapientum ) peels. J Taibah Univ Sci 12:809–819. https://doi.org/10.1080/16583655.2018.1519893Jawad AH, Razuan R, Appaturi JN, Wilson LD (2019) Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus)rind prepared via one-step liquid phase H 2 SO 4 activation. Surfaces Interfaces 16:76–84. https://doi.org/10.1016/j.surfin.2019.04.012Jawad AH, Abdulhameed AS, Mastuli MS (2020a) Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. J Taibah Univ Sci 14:305–313. https://doi.org/10.1080/16583655.2020.1736767Jawad AH, Mohd Firdaus Hum NN, Abdulhameed AS, Mohd Ishak MA (2020b) Mesoporous activated carbon from grass waste via H3PO4-activation for methylene blue dye removal: modelling, optimisation, and mechanism study. Int J Environ Anal Chem 00:1–17. https://doi.org/10.1080/03067319.2020.1807529Kanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12:27–47. https://doi.org/10.1007/s10311-013-0428-0Kebede TG, Dube S, Nindi MM (2018) Removal of non-steroidal anti-inflammatory drugs (NSAIDs) and carbamazepine from wastewater using water-soluble protein extracted from Moringa stenopetala seeds. J Environ Chem Eng 6(2):3095–3103. https://doi.org/10.1016/j.jece.2018.04.066Kebede TG, Dube S, Nindi MM (2019) Biopolymer electrospun nanofibres for the adsorption of pharmaceuticals from water systems. J Environ Chem Eng 7:103330. https://doi.org/10.1016/j.jece.2019.103330Kong L, Gong L, Wang J (2015) Removal of methylene blue from wastewater using fallen leaves as an adsorbent. Desalin Water Treat 53:2489–2500. https://doi.org/10.1080/19443994.2013.863738Kumar J, Balomajumder C, Mondal P (2011) Application of agro-based biomasses for zinc removal from wastewater - a review. Clean Soil Air Water 39:641–652. https://doi.org/10.1002/clen.201000100Lagergren SY (1898) Zur Theorie der sogenannten Adsorption geloster stoffe. Kung Svenska Vetenskap Handl 24:1–39Lam SS, Azwar E, Peng W, Tsang YF, Ma NL, Liu Z, Park YK, Kwon EE (2019) Cleaner conversion of bamboo into carbon fibre with favourable physicochemical and capacitive properties via microwave pyrolysis combining with solvent extraction and chemical impregnation. J Clean Prod 236:1–11. https://doi.org/10.1016/j.jclepro.2019.117692Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004Lawal IA, Moodley B (2017) Sorption mechansim of pharmaceuticals from aqueous medium on ionic liquid modified biomass. J Chem Technol Biotechnol 92:808–818. https://doi.org/10.1002/jctb.5063Lawal IA, Lawal MM, Akpotu SO, Okoro HK, Klink M, Ndungu P (2020) Noncovalent graphene oxide functionalized with ionic liquid: theoretical, isotherm, kinetics, and regeneration studies on the adsorption of pharmaceuticals. Ind Eng Chem Res 59:4945–4957. https://doi.org/10.1021/acs.iecr.9b06634Li Z, Hanafy H, Zhang L, Sellaoui L, Schadeck Netto M, Oliveira MLS, Seliem MK, Luiz Dotto G, Bonilla-Petriciolet A, Li Q (2020a) Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: experiments, characterization and physical interpretations. Chem Eng J 388:124263. https://doi.org/10.1016/j.cej.2020.124263Li Z, Sellaoui L, Franco D, Netto MS, Georgin J, Dotto GL, Bajahzar A, Belmabrouk H, Bonilla-Petriciolet A, Li Q (2020b) Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: experimental study and physicochemical interpretation of the adsorption mechanism. Chem Eng J 389:124467. https://doi.org/10.1016/j.cej.2020.124467Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048Lin AYC, Yu TH, Lin CF (2008) Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere 74:131–141. https://doi.org/10.1016/j.chemosphere.2008.08.027Liu Y, Shen L (2008) A general rate law equation for biosorption. Biochem 38:390–394. https://doi.org/10.1016/j.bej.2007.08.003Liu FF, Zhao J, Wang S, du P, Xing B (2014) Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes. Environ Sci Technol 48:13197–13206. https://doi.org/10.1021/es5034684Liu H, Xu G, Li G (2021) Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline. J Colloid Interface Sci 587:271–278. https://doi.org/10.1016/j.jcis.2020.12.014Lotfi R, Hayati B, Rahimi S, Shekarchi AA, Mahmoodi NM, Bagheri A (2019) Synthesis and characterization of PAMAM/SiO 2 nanohybrid as a new promising adsorbent for pharmaceuticals. Microchem J 146:1150–1159. https://doi.org/10.1016/j.microc.2019.02.048Low LW, Teng TT, Ahmad A, Morad N, Wong YS (2011) A novel pretreatment method of lignocellulosic material as adsorbent and kinetic study of dye waste adsorption. Water Air Soil Pollut 218:293–306. https://doi.org/10.1007/s11270-010-0642-3Machado FM, Bergmann CP, Fernandes THM, Lima EC, Royer B, Calvete T, Fagan SB (2011) Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192:1122–1131. https://doi.org/10.1016/j.jhazmat.2011.06.020Madikizela LM, Zunngu SS, Mlunguza NY, Tavengwa NT, Mdluli PS, Chimuka L (2018) Application of molecularly imprinted polymer designed for the selective extraction of ketoprofen from wastewater. Water SA 44:406–418. https://doi.org/10.4314/wsa.v44i3.08Malesic-Eleftheriadou N, Evgenidou E, Lazaridou M, Bikiaris DN, Yang X, Kyzas GZ, Lambropoulou DA (2021) Simultaneous removal of anti-inflammatory pharmaceutical compounds from an aqueous mixture with adsorption onto chitosan zwitterionic derivative. Colloids Surf A Physicochem Eng Asp 619:126498. https://doi.org/10.1016/j.colsurfa.2021.126498Mallek M, Chtourou M, Portillo M, Monclús H, Walha K, Salah A, Salvadó V (2018) Granulated cork as biosorbent for the removal of phenol derivatives and emerging contaminants. J Environ Manag 223:576–585. https://doi.org/10.1016/j.jenvman.2018.06.069Melo LLA, Ide AH, Duarte JLS, Zanta CLPS, Oliveira LMTM, Pimentel WRO, Meili L (2020) Caffeine removal using Elaeis guineensis activated carbon: adsorption and RSM studies. Environ Sci Pollut Res 27:27048–27060. https://doi.org/10.1007/s11356-020-09053-zMirzaei A, Chen Z, Haghighat F, Yerushalmi L (2017) Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes – a review. Chemosphere 174:665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W (2017) Occurrence of personal care products as emerging chemicals of concern in water resources: a review. Sci Total Environ 595:601–614. https://doi.org/10.1016/j.scitotenv.2017.03.286Oikonomopoulos I, Perraki T, Tougiannidis N (2017) Ftir study of two different lignite lithotypes from Neocene Achlada lignite deposits in NW Greece. Bull Geol Soc Greece 43:2284. https://doi.org/10.12681/bgsg.14312Ouasfi N, Zbair M, Bouzikri S, Anfar Z, Bensitel M, Ait Ahsaine H, Sabbar E, Khamliche L (2019) Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. RSC Adv 9:9792–9808. https://doi.org/10.1039/C9RA01086FÖzkaya B (2006) Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J Hazard Mater 129:158–163. https://doi.org/10.1016/j.jhazmat.2005.08.025Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU Jr, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299Pejić BM, Kramar AD, Obradović BM, Kuraica MM, Žekić AA, Kostić MM (2020) Effect of plasma treatment on chemical composition, structure and sorption properties of lignocellulosic hemp fibers (Cannabis sativa L.). Carbohydr Polym 236:116000. https://doi.org/10.1016/j.carbpol.2020.116000Pinto BP, de Santa Maria LC, Sena ME (2007) Sulfonated poly(ether imide): a versatile route to prepare functionalized polymers by homogenous sulfonation. Mater Lett 61:2540–2543. https://doi.org/10.1016/j.matlet.2006.09.060Ranjbari S, Tanhaei B, Ayati A, Khadempir S, Sillanpää M (2020) Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: mechanism, kinetic, isotherms and thermodynamic study. Int J Biol Macromol 155:421–429. https://doi.org/10.1016/j.ijbiomac.2020.03.188Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172. https://doi.org/10.1016/j.biortech.2012.01.001Sarker M, Song JY, Jhung SH (2018) Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem Eng J 335:74–81. https://doi.org/10.1016/j.cej.2017.10.138Schadeck Netto M, da Silva NF, Mallmann ES et al (2019) Effect of Salinity on the Adsorption Behavior of Methylene Blue onto Comminuted Raw Avocado Residue: CCD-RSM Design. Water Air Soil Pollut 230:187. https://doi.org/10.1007/s11270-019-4230-xSellaoui L, Guedidi H, Sarrawjihi et al (2016) Experimental and theoretical studies of adsorption of ibuprofen on raw and two chemically modified activated carbons: New physicochemical interpretations. RSC Adv 6:12363–12373. https://doi.org/10.1039/c5ra22302dSouza MT, Souza MT, Panobianco M (2018) Morphological characterization of fruit, seed and seedling, and seed germination test of campomanesia guazumifolia. J Seed Sci 40:75–81. https://doi.org/10.1590/2317-1545v40n1186143Surip SN, Abdulhameed AS, Garba ZN, Syed-Hassan SSA, Ismail K, Jawad AH (2020) H2SO4-treated Malaysian low rank coal for methylene blue dye decolourization and cod reduction: optimization of adsorption and mechanism study. Surfaces Interfaces 21:100641. https://doi.org/10.1016/j.surfin.2020.100641Tóth J (2002) Adsorption: Theory, modeling, and analysis. Marcel Dekker, New YorkTran HN, Tomul F, Thi Hoang Ha N, Nguyen DT, Lima EC, le GT, Chang CT, Masindi V, Woo SH (2020) Innovative spherical biochar for pharmaceutical removal from water: insight into adsorption mechanism. J Hazard Mater 394:122255. https://doi.org/10.1016/j.jhazmat.2020.122255Vannini C, Domingo G, Marsoni M, de Mattia F, Labra M, Castiglioni S, Bracale M (2011) Effects of a complex mixture of therapeutic drugs on unicellular algae Pseudokirchneriella subcapitata. Aquat Toxicol 101:459–465. https://doi.org/10.1016/j.aquatox.2010.10.011Wang L, Albasi C, Faucet-Marquis V, Pfohl-Leszkowicz A, Dorandeu C, Marion B, Causserand C (2009) Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane. Water Res 43:4115–4122. https://doi.org/10.1016/j.watres.2009.06.007Wang W, Qi M, Jia X, Jin J, Zhou Q, Zhang M, Zhou W, Li A (2020) Differential adsorption of zwitterionic PPCPs by multifunctional resins: the influence of the hydrophobicity and electrostatic potential of PPCPs. Chemosphere 241:125023. https://doi.org/10.1016/j.chemosphere.2019.125023Yakaboylu GA, Jiang C, Yumak T, Zondlo JW, Wang J, Sabolsky EM (2021) Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renew Energy 163:276–287. https://doi.org/10.1016/j.renene.2020.08.092Zhao X, Chen J, Chen F, Wang X, Zhu Q, Ao Q (2013) Surface characterization of corn stalk superfine powder studied by FTIR and XRD. Colloids Surf B: Biointerfaces 104:207–212. https://doi.org/10.1016/j.colsurfb.2012.12.0011229Campomanesia guazumifoliaAcid treatmentAdsorptionBarkKetoprofenPublicationORIGINALOptimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark.pdfOptimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark.pdfapplication/pdf63123https://repositorio.cuc.edu.co/bitstreams/afa49376-701e-43b7-9906-4a71a60c613b/download3e943c68152ec7f559c6f60dc99c4c07MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/92dd041d-00d5-4705-8384-ab1fbe70d6f9/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTOptimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark.pdf.txtOptimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark.pdf.txttext/plain1919https://repositorio.cuc.edu.co/bitstreams/b274e564-feb5-40e2-b75a-bed4590b926a/download3cf5e10c6452f73e0177c4f76a614f25MD53THUMBNAILOptimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark.pdf.jpgOptimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H2SO4 activated Campomanesia guazumifolia bark.pdf.jpgimage/jpeg14673https://repositorio.cuc.edu.co/bitstreams/dc7cbc76-7c9c-478b-a825-3d4f245e5aba/downloadc16973b20f17b8194e0384b2cc1d3029MD5411323/9137oai:repositorio.cuc.edu.co:11323/91372024-09-17 11:05:25.139https://creativecommons.org/licenses/by-nc-sa/4.0/© 2022 Springer Nature Switzerland AG. Part of Springer Nature.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==