Una extensión del marco iStar como alternativa para apoyar las decisiones de diseño en el análisis de tareas realizado en el Área de Interacción Persona-Ordenador (HCI)
Introducción— El objetivo de este trabajo es presentar i* framework como alternativa para dar soporte a las decisiones de diseño en el Área de Interacción Persona-Ordenador (HCI), principalmente, en el proceso de análisis de tareas. Mostramos i* framework un lenguaje de modelado adecuado para una fa...
- Autores:
-
Suescún-Monsalve , Elizabeth
Pardo-Calvache, Cesar Jesús
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12366
- Palabra clave:
- Task Analysis
GOMS
Intentional Modeling
Framework i*
HTA
task analysis
GOMS
intentional modeling
Framework i
HTA
- Rights
- openAccess
- License
- INGE CUC - 2022
id |
RCUC2_d5b45b927c90183a150003531facd5e1 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12366 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Una extensión del marco iStar como alternativa para apoyar las decisiones de diseño en el análisis de tareas realizado en el Área de Interacción Persona-Ordenador (HCI) |
dc.title.translated.eng.fl_str_mv |
An extension to iStar framework as alternative to support design decisions in the task analysis performed in the Human Computer Interaction Area (HCI) |
title |
Una extensión del marco iStar como alternativa para apoyar las decisiones de diseño en el análisis de tareas realizado en el Área de Interacción Persona-Ordenador (HCI) |
spellingShingle |
Una extensión del marco iStar como alternativa para apoyar las decisiones de diseño en el análisis de tareas realizado en el Área de Interacción Persona-Ordenador (HCI) Task Analysis GOMS Intentional Modeling Framework i* HTA task analysis GOMS intentional modeling Framework i HTA |
title_short |
Una extensión del marco iStar como alternativa para apoyar las decisiones de diseño en el análisis de tareas realizado en el Área de Interacción Persona-Ordenador (HCI) |
title_full |
Una extensión del marco iStar como alternativa para apoyar las decisiones de diseño en el análisis de tareas realizado en el Área de Interacción Persona-Ordenador (HCI) |
title_fullStr |
Una extensión del marco iStar como alternativa para apoyar las decisiones de diseño en el análisis de tareas realizado en el Área de Interacción Persona-Ordenador (HCI) |
title_full_unstemmed |
Una extensión del marco iStar como alternativa para apoyar las decisiones de diseño en el análisis de tareas realizado en el Área de Interacción Persona-Ordenador (HCI) |
title_sort |
Una extensión del marco iStar como alternativa para apoyar las decisiones de diseño en el análisis de tareas realizado en el Área de Interacción Persona-Ordenador (HCI) |
dc.creator.fl_str_mv |
Suescún-Monsalve , Elizabeth Pardo-Calvache, Cesar Jesús |
dc.contributor.author.spa.fl_str_mv |
Suescún-Monsalve , Elizabeth Pardo-Calvache, Cesar Jesús |
dc.subject.spa.fl_str_mv |
Task Analysis GOMS Intentional Modeling Framework i* HTA |
topic |
Task Analysis GOMS Intentional Modeling Framework i* HTA task analysis GOMS intentional modeling Framework i HTA |
dc.subject.eng.fl_str_mv |
task analysis GOMS intentional modeling Framework i HTA |
description |
Introducción— El objetivo de este trabajo es presentar i* framework como alternativa para dar soporte a las decisiones de diseño en el Área de Interacción Persona-Ordenador (HCI), principalmente, en el proceso de análisis de tareas. Mostramos i* framework un lenguaje de modelado adecuado para una fase temprana de modelado de sistemas software para entender el dominio del problema, además, que proporciona métodos para representar tareas, así como apoyar las decisiones de diseño el desarrollo que satisfaga los requisitos del proceso desde el principio hasta el final. Para lograr nuestro objetivo, se abordan enfoques para analizar notaciones destinadas al análisis de tareas y su representación. Finalmente, presentamos sugerencias de mejora en el marco i* a través de una propuesta de extensión para refinar el modelo de tareas, instanciando ejemplos y justificando nuestra propuesta a través de la revisión por pares. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-09-11 00:00:00 2024-04-09T20:22:02Z |
dc.date.available.none.fl_str_mv |
2022-09-11 00:00:00 2024-04-09T20:22:02Z |
dc.date.issued.none.fl_str_mv |
2022-09-11 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12366 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/ingecuc.18.2.2022.05 |
dc.identifier.doi.none.fl_str_mv |
10.17981/ingecuc.18.2.2022.05 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 10.17981/ingecuc.18.2.2022.05 2382-4700 |
url |
https://hdl.handle.net/11323/12366 https://doi.org/10.17981/ingecuc.18.2.2022.05 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge Cuc |
dc.relation.references.eng.fl_str_mv |
X. Yang, J. Hyup Kim, & R. Nazareth, “Hierarchical task analysis for driving under divided attention,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 63, no. 1, pp. 1744–1748, Nov. 2019. https://doi.org/10.1177/1071181319631022 D. Kieras, “GOMS models for task analysis,” UMich, Mich, USA, Analysis, 2004. Available from https://web.eecs.umich.edu/~kieras/docs/TA_Modeling/GOMSforTA.pdf E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, “Strengths and Weaknesses of the i* Framework: An Empirical Evaluation”, in E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, Social Modeling for Requirements Engineering, Cambs, MAS, USA: The MIT Press, 2011, pp. 607–643. https://doi.org/10.7551/mitpress/7549.003.0025 F. Dalpiaz, X. Franch & J. Horkoff, “iStar 2.0 Language Guide,” arXiv [cs.SE , 2016. Available: https://arxiv.org/abs/1605.07767 D. Kieras & B. John, “The GOMS Family of Analysis Techniques: Tools for Design and Evaluation”, School of Computer Science, CMU, PGH, PA, USA, CMU-CS-94-181, 1994. Available from https://web.eecs.umich.edu/~kieras/docs/GOMS/John-Kieras-TR94.pdf E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, “Modeling strategic relationships for process reengineering,”, in E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, Social Modeling for Requirements Engineering, Cambs, MAS, USA: The MIT Press, 2011, pp. 111–152. https://doi.org/10.7551/mitpress/7549.003.0005 G. Gema. (2006, Aug). I*wiki [Online . Available: http://istar.rwth-aachen.de/tiki-index.php?page=iStarQuickGuide. Available: http://istar.rwth-aachen.de/tiki-index.php?page=iStarQuickGuide E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, “A Reference Model for i*”, in E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, Social Modeling for Requirements Engineering, Cambs, MAS, USA: The MIT Press, 2010, ch. 17. https://doi.org/10.7551/mitpress/7549.003.0024 A. Dix, J. Finlay, G. Abowd & R. Beale, Human-computer interaction, 3rd ed. NY, NY, USA: Pearson, 2004. S. Barbosa & B. da Silva, Interação Humano-Computador. RJ, BR: Elsevier, 2010. D. Norman & S. Draper, Cognitive engineering, In User Centered System Design: New Perspectives on Human-computer Interaction. HLLSDL, NJ, USA: LEA Inc. Pub, 1986. O. Ayalon & E. Toch, “User-centered privacy-by-design: Evaluating the appropriateness of design prototypes”, Int. J. Hum. Comput. Stud., vol. 154, no. 4, pp. 1–10, Oct. 2021. https://doi.org/10.1016/j.ijhcs.2021.102641 CONFIRMAR PAGS. S. Card, T. Thomas & A. Newell, The Psychology of Human-Computer Interaction. LDN, UK: Lawrence Erbaum Associates, 1983. E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, “Secure Tropos: Extending i* and Tropos to Model Security Throughout the Development Process,” in E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, Social Modeling for Requirements Engineering, Cambs, MAS, USA: The MIT Press, 2011, pp. 363–402. https://doi.org/10.7551/mitpress/7549.003.0015 D. Moody, “The ‘Physics’ of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software Engineering”, IEEE Trans. Software Eng., vol. 35, no. 6, pp. 756–779, Dec. 2009. Available: https://ieeexplore.ieee.org/document/5353439 D. Moody, P. Heymans, & R. Matulevicius, “Improving the Effectiveness of Visual Representations in Requirements Engineering: An Evaluation of i* Visual Syntax”, presented at 17th International Requirements Engineering Conference, IEEE, ATL, GA, USA, 31 Aug. - 4 Sept. 2009. https://doi.org/10.1109/RE.2009.44 T. Green, “Cognitive Dimensions of Notations Resource Site,” CAM.AC [Online . Available: http://www.cl.cam.ac.uk/%7Eafb21/CognitiveDimensions/ T. Green, “Instructions and descriptions: some cognitive aspects of programming and similar activities”, in S. Levialdi, V. Di Gesù & L. Tarantino (Less), AVI´oo: Proceedings of the Working Conference on Advanced Visual Inter- faces, NYC, NY, USA, ACM, 2000, pp. 21–28. https://doi.org/10.1145/345513.345233 A. Blackwell & T. Green, “Notational systems -- the cognitive dimensions of notations framework”, in J. M. Carroll, HCI Models Theories and Frameworks: Toward a multidisciplinary science. SF, CA, USA: Morgan Kaufmann Publisher, 2003, pp. 103–134. Available: https://www.elsevier.com/books/hci-models-theories-and-frameworks/carroll/978-1-55860-808-5 C. Blanco y P. Sánchez, “Aplicando evaluación por pares: análisis y comparativa de distintas técnicas”, presentado al Actas Simposio-Taller JENUI, UJI, CD REAL, ES, 10-13 Jul. 2012. Recuperado de https://core.ac.uk/download/pdf/41791778.pdf M. Serrano & J. Leite, “A rich traceability model for social interactions”, presented at TEFSE ‘11: 6th International Workshop on Traceability in Emerging Forms of Software Engineering, ACM, WAI, HI, USA, 23 May. 2011. https://doi.org/10.1145/1987856.1987871 E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, “Analyzing the Effectiveness of Human Activity System with i*,” in E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, Social Modeling for Requirements Engineering, Cambs, MAS, USA: The MIT Press, 2011, pp. 669–691. https://doi.org/10.7551/mitpress/7549.003.0027 R. Eberts, User Interface Design. LDN, UK: Prentice-Hall, 1994. S. Munir & A. Nadeem, “Cognitive modelling for user interface design in HCI: A comparative analysis on cognitive models,” LGU J. Comp. Sci. Info. Tec., vol. 4, no. 2, pp. 117–129, Jun. 2020. https://doi.org/10.54692/lgurjcsit.2020.0402138 R. Prates & S. Barbosa, “Introdução à Teoria e Prática da Interação Humano Computador fundamentada na Engenharia Semiótica”, submetido ao XXVII Congresso da Sociedade Brasileira de Computação Jornadas de Atualização em Informática, JAI, RJ, BR, 18-23 Jun. 2007. Available from http://www3.serg.inf.puc-rio.br/docs/JAI2007_PratesBarbosa_EngSem.pdf F. Paternò, “ConcurTaskTrees: An Engineered Approach to Model-Based Design of Interative Systems”, In D. Diaper & N. A. Stanton, The Handbook of Analysis for Human Computer Interaction, MHW, NJ, USA: LEA, 2002, pp. 483–501. Available from http://giove.isti.cnr.it/attachments/publications/2003-A1-07.pdf A. Oliveira, Engenharia de Requisitos Intencional: Um Método de Elicitação, Modelagem e Análise de Requisitos. RJ, BR: PUC Rio. 2009. Available: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13061@1 J. Nielsen, Usability Engineering. SN FCO, CA, USA: Morgan Kaufmann, 1994. Available: https://www.nngroup.com/books/usability-engineering/ X. Zhou, F. Teng, X. Du, J. Li, M. Jin, & C. Xue, “H-GOMS: a model for evaluating a virtual-hand interaction system in virtual environments”, Virtual Reality, pp. 1–26, Jul. 2022. https://doi.org/10.1007/s10055-022-00674-y P. Setthawong & R. Setthawong, “Updated Goals Operators Methods and Selection Rules (GOMS) with Touch Screen Operations for Quantitative Analysis of User Interfaces”, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 1, pp. 258–265, Jan. 2019. https://doi.org/10.18517/ijaseit.9.1.7865 D. Cunha, R. Duarte & C. Cunha, “KLM-GOMS Detection of Interaction Patterns Through the Execution of Unplanned Tasks”, In ICCSA 2021, Computational Science and Its Applications. CAL, IT: Springer, 2021, pp. 203–219. https://doi.org/10.1007/978-3-030-86960-1_15 |
dc.relation.citationendpage.none.fl_str_mv |
53–70 |
dc.relation.citationstartpage.none.fl_str_mv |
53–70 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationvolume.spa.fl_str_mv |
18 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/4452/4361 https://revistascientificas.cuc.edu.co/ingecuc/article/download/4452/4622 https://revistascientificas.cuc.edu.co/ingecuc/article/download/4452/4623 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 2 , Año 2022 : (Julio-Diciembre) |
dc.rights.eng.fl_str_mv |
INGE CUC - 2022 |
dc.rights.uri.eng.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
INGE CUC - 2022 http://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.eng.fl_str_mv |
application/pdf text/html text/xml |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.eng.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/4452 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/258afb31-0036-4d48-81be-7c50d9860e04/download |
bitstream.checksum.fl_str_mv |
ee9f182a975c21c6f5f2c707ebb9fd0a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760713685794816 |
spelling |
Suescún-Monsalve , ElizabethPardo-Calvache, Cesar Jesús2022-09-11 00:00:002024-04-09T20:22:02Z2022-09-11 00:00:002024-04-09T20:22:02Z2022-09-110122-6517https://hdl.handle.net/11323/12366https://doi.org/10.17981/ingecuc.18.2.2022.0510.17981/ingecuc.18.2.2022.052382-4700Introducción— El objetivo de este trabajo es presentar i* framework como alternativa para dar soporte a las decisiones de diseño en el Área de Interacción Persona-Ordenador (HCI), principalmente, en el proceso de análisis de tareas. Mostramos i* framework un lenguaje de modelado adecuado para una fase temprana de modelado de sistemas software para entender el dominio del problema, además, que proporciona métodos para representar tareas, así como apoyar las decisiones de diseño el desarrollo que satisfaga los requisitos del proceso desde el principio hasta el final. Para lograr nuestro objetivo, se abordan enfoques para analizar notaciones destinadas al análisis de tareas y su representación. Finalmente, presentamos sugerencias de mejora en el marco i* a través de una propuesta de extensión para refinar el modelo de tareas, instanciando ejemplos y justificando nuestra propuesta a través de la revisión por pares.Introduction— The goal of this work is to present i* framework as alternative to support design decisions in the Human Computer Interaction Area (HCI), mainly, in the process of task analysis. We show i* framework a modeling language suitable for an early phase of software system modeling to understand the problem domain, also, that provides methods to represent tasks, as well as support design decisions the development that satisfies the process requirements from the beginning until the end. To achieve our goal, approaches addressed to analyze notations aimed at task analysis and their representation. Finally, we present suggestions for improvement in the i* framework through a proposed extension for refining task model, instantiating examples and justifying our proposal through peer review.application/pdftext/htmltext/xmlengUniversidad de la CostaINGE CUC - 2022http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/4452Task AnalysisGOMSIntentional ModelingFramework i*HTAtask analysisGOMSintentional modelingFramework iHTAUna extensión del marco iStar como alternativa para apoyar las decisiones de diseño en el análisis de tareas realizado en el Área de Interacción Persona-Ordenador (HCI)An extension to iStar framework as alternative to support design decisions in the task analysis performed in the Human Computer Interaction Area (HCI)Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucX. Yang, J. Hyup Kim, & R. Nazareth, “Hierarchical task analysis for driving under divided attention,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 63, no. 1, pp. 1744–1748, Nov. 2019. https://doi.org/10.1177/1071181319631022D. Kieras, “GOMS models for task analysis,” UMich, Mich, USA, Analysis, 2004. Available from https://web.eecs.umich.edu/~kieras/docs/TA_Modeling/GOMSforTA.pdfE. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, “Strengths and Weaknesses of the i* Framework: An Empirical Evaluation”, in E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, Social Modeling for Requirements Engineering, Cambs, MAS, USA: The MIT Press, 2011, pp. 607–643. https://doi.org/10.7551/mitpress/7549.003.0025F. Dalpiaz, X. Franch & J. Horkoff, “iStar 2.0 Language Guide,” arXiv [cs.SE , 2016. Available: https://arxiv.org/abs/1605.07767D. Kieras & B. John, “The GOMS Family of Analysis Techniques: Tools for Design and Evaluation”, School of Computer Science, CMU, PGH, PA, USA, CMU-CS-94-181, 1994. Available from https://web.eecs.umich.edu/~kieras/docs/GOMS/John-Kieras-TR94.pdfE. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, “Modeling strategic relationships for process reengineering,”, in E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, Social Modeling for Requirements Engineering, Cambs, MAS, USA: The MIT Press, 2011, pp. 111–152. https://doi.org/10.7551/mitpress/7549.003.0005G. Gema. (2006, Aug). I*wiki [Online . Available: http://istar.rwth-aachen.de/tiki-index.php?page=iStarQuickGuide. Available: http://istar.rwth-aachen.de/tiki-index.php?page=iStarQuickGuideE. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, “A Reference Model for i*”, in E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, Social Modeling for Requirements Engineering, Cambs, MAS, USA: The MIT Press, 2010, ch. 17. https://doi.org/10.7551/mitpress/7549.003.0024A. Dix, J. Finlay, G. Abowd & R. Beale, Human-computer interaction, 3rd ed. NY, NY, USA: Pearson, 2004.S. Barbosa & B. da Silva, Interação Humano-Computador. RJ, BR: Elsevier, 2010.D. Norman & S. Draper, Cognitive engineering, In User Centered System Design: New Perspectives on Human-computer Interaction. HLLSDL, NJ, USA: LEA Inc. Pub, 1986.O. Ayalon & E. Toch, “User-centered privacy-by-design: Evaluating the appropriateness of design prototypes”, Int. J. Hum. Comput. Stud., vol. 154, no. 4, pp. 1–10, Oct. 2021. https://doi.org/10.1016/j.ijhcs.2021.102641 CONFIRMAR PAGS. S. Card, T. Thomas & A. Newell, The Psychology of Human-Computer Interaction. LDN, UK: Lawrence Erbaum Associates, 1983. E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, “Secure Tropos: Extending i* and Tropos to Model Security Throughout the Development Process,” in E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, Social Modeling for Requirements Engineering, Cambs, MAS, USA: The MIT Press, 2011, pp. 363–402. https://doi.org/10.7551/mitpress/7549.003.0015 D. Moody, “The ‘Physics’ of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software Engineering”, IEEE Trans. Software Eng., vol. 35, no. 6, pp. 756–779, Dec. 2009. Available: https://ieeexplore.ieee.org/document/5353439 D. Moody, P. Heymans, & R. Matulevicius, “Improving the Effectiveness of Visual Representations in Requirements Engineering: An Evaluation of i* Visual Syntax”, presented at 17th International Requirements Engineering Conference, IEEE, ATL, GA, USA, 31 Aug. - 4 Sept. 2009. https://doi.org/10.1109/RE.2009.44 T. Green, “Cognitive Dimensions of Notations Resource Site,” CAM.AC [Online . Available: http://www.cl.cam.ac.uk/%7Eafb21/CognitiveDimensions/ T. Green, “Instructions and descriptions: some cognitive aspects of programming and similar activities”, in S. Levialdi, V. Di Gesù & L. Tarantino (Less), AVI´oo: Proceedings of the Working Conference on Advanced Visual Inter- faces, NYC, NY, USA, ACM, 2000, pp. 21–28. https://doi.org/10.1145/345513.345233 A. Blackwell & T. Green, “Notational systems -- the cognitive dimensions of notations framework”, in J. M. Carroll, HCI Models Theories and Frameworks: Toward a multidisciplinary science. SF, CA, USA: Morgan Kaufmann Publisher, 2003, pp. 103–134. Available: https://www.elsevier.com/books/hci-models-theories-and-frameworks/carroll/978-1-55860-808-5 C. Blanco y P. Sánchez, “Aplicando evaluación por pares: análisis y comparativa de distintas técnicas”, presentado al Actas Simposio-Taller JENUI, UJI, CD REAL, ES, 10-13 Jul. 2012. Recuperado de https://core.ac.uk/download/pdf/41791778.pdf M. Serrano & J. Leite, “A rich traceability model for social interactions”, presented at TEFSE ‘11: 6th International Workshop on Traceability in Emerging Forms of Software Engineering, ACM, WAI, HI, USA, 23 May. 2011. https://doi.org/10.1145/1987856.1987871 E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, “Analyzing the Effectiveness of Human Activity System with i*,” in E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos & S. Fickas, Social Modeling for Requirements Engineering, Cambs, MAS, USA: The MIT Press, 2011, pp. 669–691. https://doi.org/10.7551/mitpress/7549.003.0027 R. Eberts, User Interface Design. LDN, UK: Prentice-Hall, 1994. S. Munir & A. Nadeem, “Cognitive modelling for user interface design in HCI: A comparative analysis on cognitive models,” LGU J. Comp. Sci. Info. Tec., vol. 4, no. 2, pp. 117–129, Jun. 2020. https://doi.org/10.54692/lgurjcsit.2020.0402138 R. Prates & S. Barbosa, “Introdução à Teoria e Prática da Interação Humano Computador fundamentada na Engenharia Semiótica”, submetido ao XXVII Congresso da Sociedade Brasileira de Computação Jornadas de Atualização em Informática, JAI, RJ, BR, 18-23 Jun. 2007. Available from http://www3.serg.inf.puc-rio.br/docs/JAI2007_PratesBarbosa_EngSem.pdf F. Paternò, “ConcurTaskTrees: An Engineered Approach to Model-Based Design of Interative Systems”, In D. Diaper & N. A. Stanton, The Handbook of Analysis for Human Computer Interaction, MHW, NJ, USA: LEA, 2002, pp. 483–501. Available from http://giove.isti.cnr.it/attachments/publications/2003-A1-07.pdf A. Oliveira, Engenharia de Requisitos Intencional: Um Método de Elicitação, Modelagem e Análise de Requisitos. RJ, BR: PUC Rio. 2009. Available: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13061@1 J. Nielsen, Usability Engineering. SN FCO, CA, USA: Morgan Kaufmann, 1994. Available: https://www.nngroup.com/books/usability-engineering/ X. Zhou, F. Teng, X. Du, J. Li, M. Jin, & C. Xue, “H-GOMS: a model for evaluating a virtual-hand interaction system in virtual environments”, Virtual Reality, pp. 1–26, Jul. 2022. https://doi.org/10.1007/s10055-022-00674-y P. Setthawong & R. Setthawong, “Updated Goals Operators Methods and Selection Rules (GOMS) with Touch Screen Operations for Quantitative Analysis of User Interfaces”, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 1, pp. 258–265, Jan. 2019. https://doi.org/10.18517/ijaseit.9.1.7865 D. Cunha, R. Duarte & C. Cunha, “KLM-GOMS Detection of Interaction Patterns Through the Execution of Unplanned Tasks”, In ICCSA 2021, Computational Science and Its Applications. CAL, IT: Springer, 2021, pp. 203–219. https://doi.org/10.1007/978-3-030-86960-1_1553–7053–70218https://revistascientificas.cuc.edu.co/ingecuc/article/download/4452/4361https://revistascientificas.cuc.edu.co/ingecuc/article/download/4452/4622https://revistascientificas.cuc.edu.co/ingecuc/article/download/4452/4623Núm. 2 , Año 2022 : (Julio-Diciembre)PublicationOREORE.xmltext/xml2786https://repositorio.cuc.edu.co/bitstreams/258afb31-0036-4d48-81be-7c50d9860e04/downloadee9f182a975c21c6f5f2c707ebb9fd0aMD5111323/12366oai:repositorio.cuc.edu.co:11323/123662024-09-17 10:46:12.505http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2022metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |