Adsorption performance of food red 17 dye using an eco-friendly material based on luffa cylindrica and chitosan
Luffa cylindrica (LC), a lignocellulosic material coveted for its versatility, was investigated to immobilize crosslinked chitosan and remove Food red 17 (FR17) dye from aqueous solutions. LC/chitosan was crosslinked with epichlorohydrin (LC/CS/EPIC) and glutaraldehyde (LC/CS/GLUT). LC/CS/GLUT and L...
- Autores:
-
R. Schio, Rejiane da
DA BOIT MARTINELLO, KATIA
Netto, Matias S.
O. Silva, Luis F.
Mallmann, Evandro S.
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9224
- Acceso en línea:
- https://hdl.handle.net/11323/9224
https://doi.org/10.1016/j.molliq.2021.118144
https://repositorio.cuc.edu.co/
- Palabra clave:
- Luffa cylindrical
Chitosan
Adsorption
Dye
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_d4a83ca983a771f6d25bc9ae1fda9b1b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9224 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Adsorption performance of food red 17 dye using an eco-friendly material based on luffa cylindrica and chitosan |
title |
Adsorption performance of food red 17 dye using an eco-friendly material based on luffa cylindrica and chitosan |
spellingShingle |
Adsorption performance of food red 17 dye using an eco-friendly material based on luffa cylindrica and chitosan Luffa cylindrical Chitosan Adsorption Dye |
title_short |
Adsorption performance of food red 17 dye using an eco-friendly material based on luffa cylindrica and chitosan |
title_full |
Adsorption performance of food red 17 dye using an eco-friendly material based on luffa cylindrica and chitosan |
title_fullStr |
Adsorption performance of food red 17 dye using an eco-friendly material based on luffa cylindrica and chitosan |
title_full_unstemmed |
Adsorption performance of food red 17 dye using an eco-friendly material based on luffa cylindrica and chitosan |
title_sort |
Adsorption performance of food red 17 dye using an eco-friendly material based on luffa cylindrica and chitosan |
dc.creator.fl_str_mv |
R. Schio, Rejiane da DA BOIT MARTINELLO, KATIA Netto, Matias S. O. Silva, Luis F. Mallmann, Evandro S. Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
R. Schio, Rejiane da DA BOIT MARTINELLO, KATIA Netto, Matias S. O. Silva, Luis F. Mallmann, Evandro S. Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Luffa cylindrical Chitosan Adsorption Dye |
topic |
Luffa cylindrical Chitosan Adsorption Dye |
description |
Luffa cylindrica (LC), a lignocellulosic material coveted for its versatility, was investigated to immobilize crosslinked chitosan and remove Food red 17 (FR17) dye from aqueous solutions. LC/chitosan was crosslinked with epichlorohydrin (LC/CS/EPIC) and glutaraldehyde (LC/CS/GLUT). LC/CS/GLUT and LC/CS/EPIC presented an adequate morphology for mass transfer, relevant functional groups for adsorption. Furthermore, FR17 dye adsorption was favored at pH 2. Pseudo-second-order and Sips models represented the kinetic and isotherm data satisfactorily. The adsorption process for both adsorbents was endothermic, spontaneous, and favorable. The maximum adsorption capacity for LC/CS/GLUT was 77.66 mg g 1, and for LC/CS/EPIC was 43.01 mg g 1 for dye FR17. Furthermore, when reused, the adsorbents remain at around 70% of their original capacities after six adsorption cycles. Thus, the materials prepared from Luffa cylindrica and chitosan resulted in promising eco-friendly adsorbents. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11-22 |
dc.date.accessioned.none.fl_str_mv |
2022-06-08T21:27:37Z |
dc.date.available.none.fl_str_mv |
2022-06-08T21:27:37Z 2023-11-22 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Rejiane da R. Schio, Kátia da Boit Martinello, Matias S. Netto, Luis F.O. Silva, Evandro S. Mallmann, Guilherme L. Dotto, Adsorption performance of Food Red 17 dye using an eco-friendly material based on Luffa cylindrica and chitosan, Journal of Molecular Liquids, Volume 349, 2022, 118144, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2021.118144. (https://www.sciencedirect.com/science/article/pii/S0167732221028695) |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9224 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.molliq.2021.118144 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.molliq.2021.118144 |
dc.identifier.eissn.spa.fl_str_mv |
0167-7322 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Rejiane da R. Schio, Kátia da Boit Martinello, Matias S. Netto, Luis F.O. Silva, Evandro S. Mallmann, Guilherme L. Dotto, Adsorption performance of Food Red 17 dye using an eco-friendly material based on Luffa cylindrica and chitosan, Journal of Molecular Liquids, Volume 349, 2022, 118144, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2021.118144. (https://www.sciencedirect.com/science/article/pii/S0167732221028695) 10.1016/j.molliq.2021.118144 0167-7322 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9224 https://doi.org/10.1016/j.molliq.2021.118144 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Molecular Liquids |
dc.relation.references.spa.fl_str_mv |
[1] Saeed, M. Iqbal. Loofa (Luffa cylindrical) Sponge: Review of Development of the Biomatrix as a Tool for Biotechnological Applications. Biotechnol. Prog. 29 (3) (2013) 573-600. https://doi.org/10.1002/btpr.1702 [2] M. Salimi, Z. Salehi, H. Heidari, F. Vahabzadeh, Production of activated biochar from Luffa cylindrica and its application for adsorption of 4-Nitrophenol, J. Environ. Chem. Eng. 9 (4) (2021) 105403, https://doi.org/10.1016/ j.jece:2021.105403. [3] M.B. Martinez-Pavetti, L. Medina, M. Espínola, M. Monteiro, Study on two ecofriendly surface treatments on Luffa cylindrica for development of reinforcement and processing materials, J. Mater. Res. Technol. 14 (2021) 2420–2427, https://doi.org/10.1016/j.jmrt.2021.07.141. [4] I. Anastopoulos, I. Pashalidis, Τhe application of oxidized carbon derived from Luffa cylindrica for caffeine removal. Equilibrium, thermodynamic, kinetic and mechanistic analysis, J. Mol. Liq. 296 (2019) 112078, https://doi.org/10.1016/ j.molliq.2019.112078. [5] Z. Li, G. Wang, K. Zhai, C. He, Q. Li, P. Guo, Methylene blue adsorption from aqueous solution by loofah sponge-based porous carbons, Colloids Surf, A Physicochem. Eng. Asp. 538 (2018) 28–35, https://doi.org/10.1016/ j.colsurfa.2017.10.046. [6] S. Bera, K. Mohanty, Areca nut (Areca catechu) husks and Luffa (Luffa cylindrica) sponge as microbial immobilization matrices for efficient phenol degradation, J. Water Process Eng. 33 (2020) 100999, https://doi.org/10.1016/j. jwpe.2019.100999. [7] H. Bou-Saad, A. Boulanger, P. Schellenbaum, S. Neunlist, Performance of Luffa cylindrica as immobilization matrix in bioconversion reactions by Nicotiana tabacum BY-2, J. Biosci. Bioeng. 116 (4) (2013) 506–508, https://doi.org/ 10.1016/j.jbiosc.2013.04.017. [8] A. Khadir, M. Negarestani, A. Mollahosseini, Sequestration of a non-steroidal anti-inflammatory drug from aquatic media by lignocellulosic material (Luffa cylindrica) reinforced with polypyrrole: Study of parameters, kinetics, and equilibrium, J. Environ. Chem. Eng. 8 (3) (2020) 103734, https://doi.org/ 10.1016/j.jece:2020.103734. [9] H. Nadaroglu, S. Cicek, A.A. Gungor, Removing Trypan blue dye using nano-Zn modified Luffa sponge, Spectrochim Acta A: Mol Biomol Spectrosc. 172 (2017) 2–8, https://doi.org/10.1016/j.saa.2016.08.052. [10] G.L. Dotto, R. Ocampo-Pérez, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Adsorption rate of Reactive Black 5 on chitosan based materials: geometry and swelling effects, Adsorption 22 (7) (2016) 973–983, https://doi.org/ 10.1007/s10450-016-9804-y. [11] D.S.P. Franco, J. Vieillard, N.P.G. Salau, G.L. Dotto, Interpretations on the mechanism of In (III) adsorption onto chitosan and chitin: A mass transfer model approach, J. Mol. Liq. 304 (2020) 112758, https://doi.org/10.1016/ j.molliq.2020.112758. [12] L. Sellaoui, F. Dhaouadi, Z. Li, T.R.S. Cadaval, A.V. Igansi, L.A.A. Pinto, G.L. Dotto, A. Bonilla-Petriciolet, D. Pinto, Z. Chen, Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film, J. Environ. Chem. Eng. 9 (4) (2021) 105516, https://doi.org/ 10.1016/j.jece:2021.105516. [13] J.M.N. dos Santos, C.R. Pereira, E.L. Foletto, G.L. Dotto, Alternative synthesis for ZnFe2O4/chitosan magnetic particles to remove diclofenac from water by adsorption, Int. J. Biol. Macromol. 131 (2019) 301–308, https://doi.org/ 10.1016/j.ijbiomac.2019.03.079. [14] P. Zhang, I. Lo, D. O’Connor, S. Pehkonen, H. Cheng, D. Hou, High efficiency removal of methylene blue using SDS surface-modified ZnFe2O4 nanoparticles, J. Colloid Interface Sci. 508 (2017) 39–48, https://doi.org/ 10.1016/j.jcis.2017.08.025. [15] N. N. A. Malek, A. H. Jawad, K. Ismail, R. Razuan, Z. A. ALOthman. Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization. Int. J. Biol. Macromol. 189 (2021) 464-476. https://doi.org/10.1016/j.ijbiomac.2021.08.160. [16] A. Reghioua, D. Barkat, A. H. Jawad, A. S. Abdulhameed, A. A. Al-Kahtani, Z. A. ALOthman. Parametric optimization by Box–Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe3O4 nanocomposite and textile dye removal. J. Environ. Chem. Eng. 9 (3) (2021) 105166. https://doi.org/10.1016/ j.jece.2021.105166. [17] Ali H. Jawad, Ahmed Saud Abdulhameed, Lee D. Wilson, M.A.K.M. Hanafiah, W. I. Nawawi, Zeid A. ALOthman, Mohammad Rizwan Khan, Fabrication of Schiff’s Base Chitosan-Glutaraldehyde/Activated Charcoal Composite for Cationic Dye Removal: Optimization Using Response Surface Methodology, J. Polym. Environ. 29 (9) (2021) 2855–2868, https://doi.org/10.1007/s10924-021- 02057-x. [18] R.R. Schio, B.C. da Rosa, L.O. Gonçalves, L.A.A. Pinto, E.S. Mallmann, G.L. Dotto, Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye, Int. J. Biol. Macromol. 121 (2019) 373–380, https://doi.org/10.1016/j.ijbiomac.2018.09.186. [19] Zichao Li, Lotfi Sellaoui, Dison Franco, Matias Schadeck Netto, Jordana Georgin, Guilherme Luiz Dotto, Abdullah Bajahzar, Hafedh Belmabrouk, Adrian BonillaPetriciolet, Qun Li, Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: Experimental study and physicochemical interpretation of the adsorption mechanism, Chem. Eng. J. 389 (2020) 124467, https://doi.org/10.1016/j.cej.2020.124467. [20] C. Osagie, A. Othmani, S. Ghosh, A. Malloum, Z. Kashitarash, S. Shahin Ahmadi, Dyes adsorption from aqueous media through the nanotechnology: A review, J. Mater. Res. Technol. 14 (2021) 2195–2218, https://doi.org/10.1016/j. jmrt.2021.07.085. [21] V.K. Gupta, I.A. Suhas, V.K. Saini, Adsorption of 2,4-D and carbofuran pesticides using fertilizer and steel industry wastes, J. Colloid Interface Sci. 299 (2006) 556–563, https://doi.org/10.1016/j.jcis.2006.02.017. [22] D. Bhatia, D. Datta, A. Joshi, S. Gupta, Y. Gote, Adsorption of isonicotinic acid from aqueous solution using multi-walled carbon nanotubes/Fe3O4, J. Mol. Liq. 276 (2019) 163–169, https://doi.org/10.1016/j.molliq.2018.11.127. [23] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents, Chemosphere. 250 (2020) 126248, https://doi.org/10.1016/j.chemosphere.2020.126248. [24] Puyue Hua, Lotfi Sellaoui, Dison Franco, Matias S. Netto, Guilherme Luiz Dotto, Abdullah Bajahzar, Hafedh Belmabrouk, A. Bonilla-Petriciolet, Zichao Li, Adsorption of acid green and procion red on a magnetic geopolymer based adsorbent: Experiments, characterization and theoretical treatment, Chem. Eng. J. 383 (2020) 123113, https://doi.org/10.1016/j.cej.2019.123113. [25] J.O. Gonçalves, J.P. Santos, E.C. Rios, M.M. Crispim, G.L. Dotto, L.A.A. Pinto, Development of chitosan based hybrid hydrogels for dyes removal from aqueous binary system, J. Mol. Liq. 225 (2017) 265–270, https://doi.org/ 10.1016/j.molliq.2016.11.067. [26] Huifeng Wang, Zichao Li, Samia Yahyaoui, Hassan Hanafy, Moaaz K. Seliem, Adrian Bonilla-Petriciolet, Guilherme Luiz Dotto, Lotfi Sellaoui, Qun Li, Effective adsorption of dyes on an activated carbon prepared from carboxymethyl cellulose: Experiments, characterization and advanced modelling, Chem. Eng. J. 417 (2021) 128116, https://doi.org/10.1016/j.cej.2020.128116. [27] I. Anastopoulos, J.O. Ighalo, C.A. Igwegbe, D.A. Giannakoudakis, K.S. Triantafyllidis, I. Pashalidis, D. Kalderis, Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water, J. Mol. Liq. 342 (2021) 117540. [28] I. Anastopoulos, D. Ioannou, C. Kallianou, Removal of heavy metals from aqueous solutions through natural Greek clay Selectivity order and isotherms studies, Agrochimica 56 (2) (2012) 98–111. [29] Leila Alidokht, Ioannis Anastopoulos, Dimitrios Ntarlagiannis, Pantelis Soupios, Bassam Tawabini, Dimitrios Kalderis, Alireza Khataee, Recent advances in the application of nanomaterials for the remediation of arsenic-contaminated water and soil, J. Environ. Chem. Eng. 9 (4) (2021) 105533, https://doi.org/ 10.1016/j.jece:2021.105533. [30] Ioannis Anastopoulos, Jelena V. Milojkovic´, Konstantina Tsigkou, Constantina Zafiri, Zorica R. Lopicˇic´, Michael Kornaros, Ioannis Pashalidis, A nappies management by-product for the treatment of uranium-contaminated waters, J. Hazard Mater. 404 (2021) 124147, https://doi.org/10.1016/j. jhazmat.2020.124147. [31] Katerina Philippou, Ioannis Anastopoulos, Ioannis Pashalidis, Ahmad HosseiniBandegharaei, Muhammad Usman, Michael Kornaros, Michalis Omirou, Dimitrios Kalderis, Jelena V. Milojkovic´, Zorica R. Lopicˇic´, Mohamed Abatal, in: Sorbents Materials for Controlling Environmental Pollution, Elsevier, 2021, pp. 113–133, https://doi.org/10.1016/B978-0-12-820042-1.00016-X. [32] J.M. Moura, B.S. Farias, D.A.S. Rodrigues, C.M. Moura, G.L. Dotto, L.A.A. Pinto, Preparation of chitosan with different characteristics and its application for biofilms production, J. Polym. Environ. 23 (2015) 470–477. [33] H. Koseoglu, Biotemplated Luffa cylindrical for the oil spill clean-up from seawater, Desalin. Water Treat. 1–9 (2016). [34] Arh-Hwang Chen, Sheng-Chang Liu, Chia-Yuan Chen, Chia-Yun Chen, Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin, J. Hazard. Mater. 154 (1-3) (2008) 184–191. [35] Nathália F. Silva, Matias S. Netto, Luis F.O. Silva, Evandro S. Mallmann, Eder C. Lima, Valdecir Ferrari, Guilherme L. Dotto, Composite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol, J. Environ. Chem. Eng. 9 (4) (2021) 105421, https://doi.org/10.1016/j.jece:2021.105421. [36] Eder C. Lima, Ahmad Hosseini-Bandegharaei, Juan Carlos Moreno-Piraján, Ioannis Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048. [37] V.B. Gavalyan, Synthesis and characterization of new chitosan-based Schiff base compounds, Carbohydr. Polym. 145 (2016) 37–47, https://doi.org/ 10.1016/j.carbpol.2016.02.076. [38] Narjes Nematidil, Mohammad Sadeghi, Shabnam Nezami, Hossein Sadeghi, Synthesis and characterization of Schiff-base based chitosan-gglutaraldehyde/NaMMTNPs-APTES for removal Pb2+ and Hg2+ ions, Carbohydr. Polym. 222 (2019) 114971, https://doi.org/10.1016/ j.carbpol.2019.114971. [39] Hellen F.G. Barbosa, Daniel S. Francisco, Ana P.G. Ferreira, Éder T.G. Cavalheiro, A new look towards the thermal decomposition of chitins and chitosans with different degrees of deacetylation by coupled TG-FTIR, Carbohydr. Polym. 225 (2019) 115232, https://doi.org/10.1016/j.carbpol.2019.115232. [40] Qing Liu, Na Ji, Liu Xiong, Qingjie Sun, Rapid gelling, self-healing, and fluorescence-responsive chitosan hydrogels formed by dynamic covalent crosslinking, Carbohydr. Polym. 246 (2020) 116586, https://doi.org/10.1016/ j.carbpol.2020.116586. [41] Ali H. Jawad, Ibrahim Awad Mohammed, Ahmed Saud Abdulhameed, Tuning of Fly Ash Loading into Chitosan-Ethylene Glycol Diglycidyl Ether Composite for Enhanced Removal of Reactive Red 120 Dye: Optimization Using the BoxBehnken Design, J. Polym. Environ. 28 (10) (2020) 2720–2733, https://doi.org/ 10.1007/s10924-020-01804-w. [42] A.H. Jawad, S.S.A. Norrahma, B.H. Hameed, K. Ismail, Chitosan-glyoxal film as a superior adsorbent for two structurally different reactive and acid dyes: Adsorption and mechanism study, Int. J. Biol. Macromol. 135 (2019) 569–581, https://doi.org/10.1016/j.ijbiomac.2019.05.127. [43] Gabriela Martínez-Mejía, Nadia Adriana Vázquez-Torres, Andrés CastellRodríguez, José Manuel del Río, Mónica Corea, Rogelio Jiménez-Juárez, Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions, Colloids Surf. A Physicochem. Eng. Asp. 579 (2019) 123658, https://doi.org/10.1016/j.colsurfa.2019.123658. [44] V.N. Tirtom, A. Dinçer, S. Becerik, T. Aydemir, A. Çelik, Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution, Chem. Eng. Sci. 197 (2012) 379–386, https://doi.org/10.1016/j.cej.2012.05.059. [45] A.H. Jawad, N.S.A. Mubarak, A.S. Abdulhameed, Tunable Schiff’s base-crosslinked chitosan composite for the removal of reactive red 120 dye: Adsorption and mechanism study, Int. J. Biol. Macromol. 142 (2020) 732–741, https://doi. org/10.1016/j.ijbiomac.2019.10.014. [46] Dison S.P. Franco, Jordana Georgin, Matias Schadeck Netto, Daniel Allasia, Marcos L.S. Oliveira, Edson Luiz Foletto, Guilherme Luiz Dotto, Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species, J. Environ. Chem. Eng. 9 (5) (2021) 105927, https://doi.org/10.1016/j.jece:2021.105927. [47] Lutiane N. Affonso, Jorge L. Marques, Valéria V.C. Lima, Janaina O. Gonçalves, Sergiane C. Barbosa, Ednei G. Primel, Thiago A.L. Burgo, Guilherme L. Dotto, Luiz A.A. Pinto, Tito R.S. Cadaval, Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge, J. Hazard. Mater. 388 (2020) 122042, https://doi.org/10.1016/j.jhazmat.2020.122042. [48] D.L. Rossatto, M.S. Netto, S.L. Jahn, E.S. Mallmann, G.L. Dotto, E.L. Foletto, Highly efficient adsorption performance of a novel magnetic geopolymer/ Fe3O4 composite towards removal of aqueous acid green 16 dye, J. Environ. Chem. Eng. 8 (3) (2020) 103804, https://doi.org/10.1016/j.jece:2020.103804. [49] A. Bonilla-Petriciolet, D. I. Mendoza-Castillo, H. E. Reynel-Ávila HE (eds). Adsorption processes for water treatment and purification. Springer International Publishing, New York. (2017). https://doi.org/10. 1007/978-3- 319-58136-1 [50] H. Qiu, L. Lv, B.-C. Pan, Q.-J. Zhang, W.-M. Zhang, Q.-X. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ.-Sci. A. 10 (5) (2009) 716–724, https://doi.org/10.1631/jzus.A0820524. [51] J. Georgin, L.D.O. Yamil, D.S. Franco, M.S. Netto, D.G. Piccilli, E.L. Foletto, G.L. Dotto, Successful adsorption of bright blue and methylene blue on modified pods of Caesalpinia echinata in discontinuous system, Environ. Sci. Pollut. Res. 28 (7) (2021) 8407–8420, https://doi.org/10.1007/s11356-020-11210-3. [52] K. Amela, M.A. Hassen, D. Kerroum, Isotherm and kinetics study of biosorption of cationic dye onto banana peel, Energy Procedia 19 (2012) 286–295, https:// doi.org/10.1016/j.egypro.2012.05.208. [53] Y. C. Wong, Y. S. Szeto, W. Cheung, G. McKay, G. Adsorption of acid dyes on chitosan—equilibrium isotherm analyses. Process Biochemistry, 39(6) (2004) 695-704. https://doi.org/10.1016/S0032-9592(03)00152-3 [54] D. M. Ruthven. Principles of adsorption and adsorption processes. John Wiley & Sons (1984). [55] C. H. Giles, T. H. MacEwan, S. N. Nakhwa, D. Smith, D. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society. (1960) 3973-3993. https://doi. org/10.1039/JR9600003973 [56] F. Güzel, H. Sayg˘ılı, G.A. Sayg˘ılı, F. Koyuncu, New low-cost nanoporous carbonaceous adsorbent developed from carob (Ceratonia siliqua) processing industry waste for the adsorption of anionic textile dye: characterization, equilibrium and kinetic modeling, J. Mol. Liquids 206 (2015) 244–255, https:// doi.org/10.1016/j.molliq.2015.02.037. [57] S.K. Papageorgiou, F.K. Katsaros, E.P. Kouvelos, J.W. Nolan, H. Le Deit, N.K. Kanellopoulos, Heavy metal sorption by calcium alginate beads from Laminaria digitata, Journal of Hazardous Mater. 137 (3) (2006) 1765–1772, https://doi.org/10.1016/j.jhazmat.2006.05.017. [58] F. Marrakchi, B.H. Hameed, E.H. Hummadi, Mesoporous biohybrid epichlorohydrin crosslinked chitosan/carbon–clay adsorbent for effective cationic and anionic dyes adsorption, Int. J. Biolog. Macromol. 163 (2020) 1079–1086, https://doi.org/10.1016/j.ijbiomac.2020.07.032. [59] M.S. Netto, D.L. Rossatto, S.L. Jahn, E.S. Mallmann, G.L. Dotto, E.L. Foletto, Preparation of a novel magnetic geopolymer/zero–valent iron composite with remarkable adsorption performance towards aqueous Acid Red 97, Chem. Eng. Commun. 207 (8) (2020) 1048–1061, https://doi.org/10.1080/ 00986445.2019.1635467. [60] T.K. Saha, R.K. Bishwas, S. Karmaker, Z. Islam, Adsorption Characteristics of Allura Red AC onto Sawdust and Hexadecylpyridinium Bromide-Treated Sawdust in Aqueous Solution, ACS omega 5 (22) (2020) 13358–13374, https://doi.org/10.1021/acsomega.0c01493. [61] Mohamed A. Salem, Rehab G. Elsharkawy, Mohamed I. Ayad, Mahmoud Y. Elgendy, Silver nanoparticles deposition on silica, magnetite, and alumina surfaces for effective removal of Allura red from aqueous solutions, J. Sol-Gel Sci. Technol. 91 (3) (2019) 523–538, https://doi.org/10.1007/s10971-019- 05055-7. [62] G. Durán-Jiménez, V. Hernández-Montoya, M.A. Montes-Morán, A. BonillaPetriciolet, N.A. Rangel-Vázquez, Adsorption of dyes with different molecular properties on activated carbons prepared from lignocellulosic wastes by Taguchi method, Micropor. Mesopor. Mater. 199 (2014) 99–107, https://doi. org/10.1016/j.micromeso.2014.08.013. [63] S. A. Alkahtani, S. S. Abu-Alrub, A. M. Mahmoud. Adsorption of food coloring allura red dye (E129) from aqueous solutions using activated carbon. International Journal of Food and Allied Sciences. 3 (1) (2017) 10-19. http:// dx.doi.org/10.21620/ijfaas.2017110-26 [64] Samira Benabid, Angélica F.M. Streit, Yacine Benguerba, Guilherme L. Dotto, Alessandro Erto, Barbara Ernst, Molecular modeling of anionic and cationic dyes adsorption on sludge derived activated carbon, J. Mol. Liquids. 289 (2019) 111119, https://doi.org/10.1016/j.molliq.2019.111119. |
dc.relation.citationstartpage.spa.fl_str_mv |
118144 |
dc.relation.citationvolume.spa.fl_str_mv |
349 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) 2021 Elsevier B.V. All rights reserved. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) 2021 Elsevier B.V. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0167732221028695 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/fcba99e2-659f-4e30-885d-433e4c72648f/download https://repositorio.cuc.edu.co/bitstreams/8038a1a0-b89e-42c3-85eb-7d25dfb98c5a/download https://repositorio.cuc.edu.co/bitstreams/ba5bdd88-d0eb-4e33-80cb-0f56c4c4cf7f/download https://repositorio.cuc.edu.co/bitstreams/fb38ee84-e894-4cba-8df4-8732fbb7b402/download |
bitstream.checksum.fl_str_mv |
d5441a2753fe2ca2daed26771d332e5d e30e9215131d99561d40d6b0abbe9bad ab3635218ce337108152d8629e5b058f bc00b4ffe1edbc616260c2c2b87b518c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760669457907712 |
spelling |
R. Schio, Rejiane daDA BOIT MARTINELLO, KATIANetto, Matias S.O. Silva, Luis F.Mallmann, Evandro S.Dotto, Guilherme Luiz2022-06-08T21:27:37Z2023-11-222022-06-08T21:27:37Z2021-11-22Rejiane da R. Schio, Kátia da Boit Martinello, Matias S. Netto, Luis F.O. Silva, Evandro S. Mallmann, Guilherme L. Dotto, Adsorption performance of Food Red 17 dye using an eco-friendly material based on Luffa cylindrica and chitosan, Journal of Molecular Liquids, Volume 349, 2022, 118144, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2021.118144. (https://www.sciencedirect.com/science/article/pii/S0167732221028695)https://hdl.handle.net/11323/9224https://doi.org/10.1016/j.molliq.2021.11814410.1016/j.molliq.2021.1181440167-7322Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Luffa cylindrica (LC), a lignocellulosic material coveted for its versatility, was investigated to immobilize crosslinked chitosan and remove Food red 17 (FR17) dye from aqueous solutions. LC/chitosan was crosslinked with epichlorohydrin (LC/CS/EPIC) and glutaraldehyde (LC/CS/GLUT). LC/CS/GLUT and LC/CS/EPIC presented an adequate morphology for mass transfer, relevant functional groups for adsorption. Furthermore, FR17 dye adsorption was favored at pH 2. Pseudo-second-order and Sips models represented the kinetic and isotherm data satisfactorily. The adsorption process for both adsorbents was endothermic, spontaneous, and favorable. The maximum adsorption capacity for LC/CS/GLUT was 77.66 mg g 1, and for LC/CS/EPIC was 43.01 mg g 1 for dye FR17. Furthermore, when reused, the adsorbents remain at around 70% of their original capacities after six adsorption cycles. Thus, the materials prepared from Luffa cylindrica and chitosan resulted in promising eco-friendly adsorbents.9 páginasapplication/pdfengElsevierNetherlandsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)2021 Elsevier B.V. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAdsorption performance of food red 17 dye using an eco-friendly material based on luffa cylindrica and chitosanArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S0167732221028695Journal of Molecular Liquids[1] Saeed, M. Iqbal. Loofa (Luffa cylindrical) Sponge: Review of Development of the Biomatrix as a Tool for Biotechnological Applications. Biotechnol. Prog. 29 (3) (2013) 573-600. https://doi.org/10.1002/btpr.1702[2] M. Salimi, Z. Salehi, H. Heidari, F. Vahabzadeh, Production of activated biochar from Luffa cylindrica and its application for adsorption of 4-Nitrophenol, J. Environ. Chem. Eng. 9 (4) (2021) 105403, https://doi.org/10.1016/ j.jece:2021.105403.[3] M.B. Martinez-Pavetti, L. Medina, M. Espínola, M. Monteiro, Study on two ecofriendly surface treatments on Luffa cylindrica for development of reinforcement and processing materials, J. Mater. Res. Technol. 14 (2021) 2420–2427, https://doi.org/10.1016/j.jmrt.2021.07.141.[4] I. Anastopoulos, I. Pashalidis, Τhe application of oxidized carbon derived from Luffa cylindrica for caffeine removal. Equilibrium, thermodynamic, kinetic and mechanistic analysis, J. Mol. Liq. 296 (2019) 112078, https://doi.org/10.1016/ j.molliq.2019.112078.[5] Z. Li, G. Wang, K. Zhai, C. He, Q. Li, P. Guo, Methylene blue adsorption from aqueous solution by loofah sponge-based porous carbons, Colloids Surf, A Physicochem. Eng. Asp. 538 (2018) 28–35, https://doi.org/10.1016/ j.colsurfa.2017.10.046.[6] S. Bera, K. Mohanty, Areca nut (Areca catechu) husks and Luffa (Luffa cylindrica) sponge as microbial immobilization matrices for efficient phenol degradation, J. Water Process Eng. 33 (2020) 100999, https://doi.org/10.1016/j. jwpe.2019.100999.[7] H. Bou-Saad, A. Boulanger, P. Schellenbaum, S. Neunlist, Performance of Luffa cylindrica as immobilization matrix in bioconversion reactions by Nicotiana tabacum BY-2, J. Biosci. Bioeng. 116 (4) (2013) 506–508, https://doi.org/ 10.1016/j.jbiosc.2013.04.017.[8] A. Khadir, M. Negarestani, A. Mollahosseini, Sequestration of a non-steroidal anti-inflammatory drug from aquatic media by lignocellulosic material (Luffa cylindrica) reinforced with polypyrrole: Study of parameters, kinetics, and equilibrium, J. Environ. Chem. Eng. 8 (3) (2020) 103734, https://doi.org/ 10.1016/j.jece:2020.103734.[9] H. Nadaroglu, S. Cicek, A.A. Gungor, Removing Trypan blue dye using nano-Zn modified Luffa sponge, Spectrochim Acta A: Mol Biomol Spectrosc. 172 (2017) 2–8, https://doi.org/10.1016/j.saa.2016.08.052.[10] G.L. Dotto, R. Ocampo-Pérez, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Adsorption rate of Reactive Black 5 on chitosan based materials: geometry and swelling effects, Adsorption 22 (7) (2016) 973–983, https://doi.org/ 10.1007/s10450-016-9804-y.[11] D.S.P. Franco, J. Vieillard, N.P.G. Salau, G.L. Dotto, Interpretations on the mechanism of In (III) adsorption onto chitosan and chitin: A mass transfer model approach, J. Mol. Liq. 304 (2020) 112758, https://doi.org/10.1016/ j.molliq.2020.112758.[12] L. Sellaoui, F. Dhaouadi, Z. Li, T.R.S. Cadaval, A.V. Igansi, L.A.A. Pinto, G.L. Dotto, A. Bonilla-Petriciolet, D. Pinto, Z. Chen, Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film, J. Environ. Chem. Eng. 9 (4) (2021) 105516, https://doi.org/ 10.1016/j.jece:2021.105516.[13] J.M.N. dos Santos, C.R. Pereira, E.L. Foletto, G.L. Dotto, Alternative synthesis for ZnFe2O4/chitosan magnetic particles to remove diclofenac from water by adsorption, Int. J. Biol. Macromol. 131 (2019) 301–308, https://doi.org/ 10.1016/j.ijbiomac.2019.03.079.[14] P. Zhang, I. Lo, D. O’Connor, S. Pehkonen, H. Cheng, D. Hou, High efficiency removal of methylene blue using SDS surface-modified ZnFe2O4 nanoparticles, J. Colloid Interface Sci. 508 (2017) 39–48, https://doi.org/ 10.1016/j.jcis.2017.08.025.[15] N. N. A. Malek, A. H. Jawad, K. Ismail, R. Razuan, Z. A. ALOthman. Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization. Int. J. Biol. Macromol. 189 (2021) 464-476. https://doi.org/10.1016/j.ijbiomac.2021.08.160.[16] A. Reghioua, D. Barkat, A. H. Jawad, A. S. Abdulhameed, A. A. Al-Kahtani, Z. A. ALOthman. Parametric optimization by Box–Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe3O4 nanocomposite and textile dye removal. J. Environ. Chem. Eng. 9 (3) (2021) 105166. https://doi.org/10.1016/ j.jece.2021.105166.[17] Ali H. Jawad, Ahmed Saud Abdulhameed, Lee D. Wilson, M.A.K.M. Hanafiah, W. I. Nawawi, Zeid A. ALOthman, Mohammad Rizwan Khan, Fabrication of Schiff’s Base Chitosan-Glutaraldehyde/Activated Charcoal Composite for Cationic Dye Removal: Optimization Using Response Surface Methodology, J. Polym. Environ. 29 (9) (2021) 2855–2868, https://doi.org/10.1007/s10924-021- 02057-x.[18] R.R. Schio, B.C. da Rosa, L.O. Gonçalves, L.A.A. Pinto, E.S. Mallmann, G.L. Dotto, Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye, Int. J. Biol. Macromol. 121 (2019) 373–380, https://doi.org/10.1016/j.ijbiomac.2018.09.186.[19] Zichao Li, Lotfi Sellaoui, Dison Franco, Matias Schadeck Netto, Jordana Georgin, Guilherme Luiz Dotto, Abdullah Bajahzar, Hafedh Belmabrouk, Adrian BonillaPetriciolet, Qun Li, Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: Experimental study and physicochemical interpretation of the adsorption mechanism, Chem. Eng. J. 389 (2020) 124467, https://doi.org/10.1016/j.cej.2020.124467.[20] C. Osagie, A. Othmani, S. Ghosh, A. Malloum, Z. Kashitarash, S. Shahin Ahmadi, Dyes adsorption from aqueous media through the nanotechnology: A review, J. Mater. Res. Technol. 14 (2021) 2195–2218, https://doi.org/10.1016/j. jmrt.2021.07.085.[21] V.K. Gupta, I.A. Suhas, V.K. Saini, Adsorption of 2,4-D and carbofuran pesticides using fertilizer and steel industry wastes, J. Colloid Interface Sci. 299 (2006) 556–563, https://doi.org/10.1016/j.jcis.2006.02.017.[22] D. Bhatia, D. Datta, A. Joshi, S. Gupta, Y. Gote, Adsorption of isonicotinic acid from aqueous solution using multi-walled carbon nanotubes/Fe3O4, J. Mol. Liq. 276 (2019) 163–169, https://doi.org/10.1016/j.molliq.2018.11.127.[23] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents, Chemosphere. 250 (2020) 126248, https://doi.org/10.1016/j.chemosphere.2020.126248.[24] Puyue Hua, Lotfi Sellaoui, Dison Franco, Matias S. Netto, Guilherme Luiz Dotto, Abdullah Bajahzar, Hafedh Belmabrouk, A. Bonilla-Petriciolet, Zichao Li, Adsorption of acid green and procion red on a magnetic geopolymer based adsorbent: Experiments, characterization and theoretical treatment, Chem. Eng. J. 383 (2020) 123113, https://doi.org/10.1016/j.cej.2019.123113.[25] J.O. Gonçalves, J.P. Santos, E.C. Rios, M.M. Crispim, G.L. Dotto, L.A.A. Pinto, Development of chitosan based hybrid hydrogels for dyes removal from aqueous binary system, J. Mol. Liq. 225 (2017) 265–270, https://doi.org/ 10.1016/j.molliq.2016.11.067.[26] Huifeng Wang, Zichao Li, Samia Yahyaoui, Hassan Hanafy, Moaaz K. Seliem, Adrian Bonilla-Petriciolet, Guilherme Luiz Dotto, Lotfi Sellaoui, Qun Li, Effective adsorption of dyes on an activated carbon prepared from carboxymethyl cellulose: Experiments, characterization and advanced modelling, Chem. Eng. J. 417 (2021) 128116, https://doi.org/10.1016/j.cej.2020.128116.[27] I. Anastopoulos, J.O. Ighalo, C.A. Igwegbe, D.A. Giannakoudakis, K.S. Triantafyllidis, I. Pashalidis, D. Kalderis, Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water, J. Mol. Liq. 342 (2021) 117540.[28] I. Anastopoulos, D. Ioannou, C. Kallianou, Removal of heavy metals from aqueous solutions through natural Greek clay Selectivity order and isotherms studies, Agrochimica 56 (2) (2012) 98–111.[29] Leila Alidokht, Ioannis Anastopoulos, Dimitrios Ntarlagiannis, Pantelis Soupios, Bassam Tawabini, Dimitrios Kalderis, Alireza Khataee, Recent advances in the application of nanomaterials for the remediation of arsenic-contaminated water and soil, J. Environ. Chem. Eng. 9 (4) (2021) 105533, https://doi.org/ 10.1016/j.jece:2021.105533.[30] Ioannis Anastopoulos, Jelena V. Milojkovic´, Konstantina Tsigkou, Constantina Zafiri, Zorica R. Lopicˇic´, Michael Kornaros, Ioannis Pashalidis, A nappies management by-product for the treatment of uranium-contaminated waters, J. Hazard Mater. 404 (2021) 124147, https://doi.org/10.1016/j. jhazmat.2020.124147.[31] Katerina Philippou, Ioannis Anastopoulos, Ioannis Pashalidis, Ahmad HosseiniBandegharaei, Muhammad Usman, Michael Kornaros, Michalis Omirou, Dimitrios Kalderis, Jelena V. Milojkovic´, Zorica R. Lopicˇic´, Mohamed Abatal, in: Sorbents Materials for Controlling Environmental Pollution, Elsevier, 2021, pp. 113–133, https://doi.org/10.1016/B978-0-12-820042-1.00016-X.[32] J.M. Moura, B.S. Farias, D.A.S. Rodrigues, C.M. Moura, G.L. Dotto, L.A.A. Pinto, Preparation of chitosan with different characteristics and its application for biofilms production, J. Polym. Environ. 23 (2015) 470–477.[33] H. Koseoglu, Biotemplated Luffa cylindrical for the oil spill clean-up from seawater, Desalin. Water Treat. 1–9 (2016).[34] Arh-Hwang Chen, Sheng-Chang Liu, Chia-Yuan Chen, Chia-Yun Chen, Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin, J. Hazard. Mater. 154 (1-3) (2008) 184–191.[35] Nathália F. Silva, Matias S. Netto, Luis F.O. Silva, Evandro S. Mallmann, Eder C. Lima, Valdecir Ferrari, Guilherme L. Dotto, Composite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol, J. Environ. Chem. Eng. 9 (4) (2021) 105421, https://doi.org/10.1016/j.jece:2021.105421.[36] Eder C. Lima, Ahmad Hosseini-Bandegharaei, Juan Carlos Moreno-Piraján, Ioannis Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.[37] V.B. Gavalyan, Synthesis and characterization of new chitosan-based Schiff base compounds, Carbohydr. Polym. 145 (2016) 37–47, https://doi.org/ 10.1016/j.carbpol.2016.02.076.[38] Narjes Nematidil, Mohammad Sadeghi, Shabnam Nezami, Hossein Sadeghi, Synthesis and characterization of Schiff-base based chitosan-gglutaraldehyde/NaMMTNPs-APTES for removal Pb2+ and Hg2+ ions, Carbohydr. Polym. 222 (2019) 114971, https://doi.org/10.1016/ j.carbpol.2019.114971.[39] Hellen F.G. Barbosa, Daniel S. Francisco, Ana P.G. Ferreira, Éder T.G. Cavalheiro, A new look towards the thermal decomposition of chitins and chitosans with different degrees of deacetylation by coupled TG-FTIR, Carbohydr. Polym. 225 (2019) 115232, https://doi.org/10.1016/j.carbpol.2019.115232.[40] Qing Liu, Na Ji, Liu Xiong, Qingjie Sun, Rapid gelling, self-healing, and fluorescence-responsive chitosan hydrogels formed by dynamic covalent crosslinking, Carbohydr. Polym. 246 (2020) 116586, https://doi.org/10.1016/ j.carbpol.2020.116586.[41] Ali H. Jawad, Ibrahim Awad Mohammed, Ahmed Saud Abdulhameed, Tuning of Fly Ash Loading into Chitosan-Ethylene Glycol Diglycidyl Ether Composite for Enhanced Removal of Reactive Red 120 Dye: Optimization Using the BoxBehnken Design, J. Polym. Environ. 28 (10) (2020) 2720–2733, https://doi.org/ 10.1007/s10924-020-01804-w.[42] A.H. Jawad, S.S.A. Norrahma, B.H. Hameed, K. Ismail, Chitosan-glyoxal film as a superior adsorbent for two structurally different reactive and acid dyes: Adsorption and mechanism study, Int. J. Biol. Macromol. 135 (2019) 569–581, https://doi.org/10.1016/j.ijbiomac.2019.05.127.[43] Gabriela Martínez-Mejía, Nadia Adriana Vázquez-Torres, Andrés CastellRodríguez, José Manuel del Río, Mónica Corea, Rogelio Jiménez-Juárez, Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions, Colloids Surf. A Physicochem. Eng. Asp. 579 (2019) 123658, https://doi.org/10.1016/j.colsurfa.2019.123658.[44] V.N. Tirtom, A. Dinçer, S. Becerik, T. Aydemir, A. Çelik, Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution, Chem. Eng. Sci. 197 (2012) 379–386, https://doi.org/10.1016/j.cej.2012.05.059.[45] A.H. Jawad, N.S.A. Mubarak, A.S. Abdulhameed, Tunable Schiff’s base-crosslinked chitosan composite for the removal of reactive red 120 dye: Adsorption and mechanism study, Int. J. Biol. Macromol. 142 (2020) 732–741, https://doi. org/10.1016/j.ijbiomac.2019.10.014.[46] Dison S.P. Franco, Jordana Georgin, Matias Schadeck Netto, Daniel Allasia, Marcos L.S. Oliveira, Edson Luiz Foletto, Guilherme Luiz Dotto, Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species, J. Environ. Chem. Eng. 9 (5) (2021) 105927, https://doi.org/10.1016/j.jece:2021.105927.[47] Lutiane N. Affonso, Jorge L. Marques, Valéria V.C. Lima, Janaina O. Gonçalves, Sergiane C. Barbosa, Ednei G. Primel, Thiago A.L. Burgo, Guilherme L. Dotto, Luiz A.A. Pinto, Tito R.S. Cadaval, Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge, J. Hazard. Mater. 388 (2020) 122042, https://doi.org/10.1016/j.jhazmat.2020.122042.[48] D.L. Rossatto, M.S. Netto, S.L. Jahn, E.S. Mallmann, G.L. Dotto, E.L. Foletto, Highly efficient adsorption performance of a novel magnetic geopolymer/ Fe3O4 composite towards removal of aqueous acid green 16 dye, J. Environ. Chem. Eng. 8 (3) (2020) 103804, https://doi.org/10.1016/j.jece:2020.103804.[49] A. Bonilla-Petriciolet, D. I. Mendoza-Castillo, H. E. Reynel-Ávila HE (eds). Adsorption processes for water treatment and purification. Springer International Publishing, New York. (2017). https://doi.org/10. 1007/978-3- 319-58136-1[50] H. Qiu, L. Lv, B.-C. Pan, Q.-J. Zhang, W.-M. Zhang, Q.-X. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ.-Sci. A. 10 (5) (2009) 716–724, https://doi.org/10.1631/jzus.A0820524.[51] J. Georgin, L.D.O. Yamil, D.S. Franco, M.S. Netto, D.G. Piccilli, E.L. Foletto, G.L. Dotto, Successful adsorption of bright blue and methylene blue on modified pods of Caesalpinia echinata in discontinuous system, Environ. Sci. Pollut. Res. 28 (7) (2021) 8407–8420, https://doi.org/10.1007/s11356-020-11210-3.[52] K. Amela, M.A. Hassen, D. Kerroum, Isotherm and kinetics study of biosorption of cationic dye onto banana peel, Energy Procedia 19 (2012) 286–295, https:// doi.org/10.1016/j.egypro.2012.05.208.[53] Y. C. Wong, Y. S. Szeto, W. Cheung, G. McKay, G. Adsorption of acid dyes on chitosan—equilibrium isotherm analyses. Process Biochemistry, 39(6) (2004) 695-704. https://doi.org/10.1016/S0032-9592(03)00152-3[54] D. M. Ruthven. Principles of adsorption and adsorption processes. John Wiley & Sons (1984).[55] C. H. Giles, T. H. MacEwan, S. N. Nakhwa, D. Smith, D. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society. (1960) 3973-3993. https://doi. org/10.1039/JR9600003973[56] F. Güzel, H. Sayg˘ılı, G.A. Sayg˘ılı, F. Koyuncu, New low-cost nanoporous carbonaceous adsorbent developed from carob (Ceratonia siliqua) processing industry waste for the adsorption of anionic textile dye: characterization, equilibrium and kinetic modeling, J. Mol. Liquids 206 (2015) 244–255, https:// doi.org/10.1016/j.molliq.2015.02.037.[57] S.K. Papageorgiou, F.K. Katsaros, E.P. Kouvelos, J.W. Nolan, H. Le Deit, N.K. Kanellopoulos, Heavy metal sorption by calcium alginate beads from Laminaria digitata, Journal of Hazardous Mater. 137 (3) (2006) 1765–1772, https://doi.org/10.1016/j.jhazmat.2006.05.017.[58] F. Marrakchi, B.H. Hameed, E.H. Hummadi, Mesoporous biohybrid epichlorohydrin crosslinked chitosan/carbon–clay adsorbent for effective cationic and anionic dyes adsorption, Int. J. Biolog. Macromol. 163 (2020) 1079–1086, https://doi.org/10.1016/j.ijbiomac.2020.07.032.[59] M.S. Netto, D.L. Rossatto, S.L. Jahn, E.S. Mallmann, G.L. Dotto, E.L. Foletto, Preparation of a novel magnetic geopolymer/zero–valent iron composite with remarkable adsorption performance towards aqueous Acid Red 97, Chem. Eng. Commun. 207 (8) (2020) 1048–1061, https://doi.org/10.1080/ 00986445.2019.1635467.[60] T.K. Saha, R.K. Bishwas, S. Karmaker, Z. Islam, Adsorption Characteristics of Allura Red AC onto Sawdust and Hexadecylpyridinium Bromide-Treated Sawdust in Aqueous Solution, ACS omega 5 (22) (2020) 13358–13374, https://doi.org/10.1021/acsomega.0c01493.[61] Mohamed A. Salem, Rehab G. Elsharkawy, Mohamed I. Ayad, Mahmoud Y. Elgendy, Silver nanoparticles deposition on silica, magnetite, and alumina surfaces for effective removal of Allura red from aqueous solutions, J. Sol-Gel Sci. Technol. 91 (3) (2019) 523–538, https://doi.org/10.1007/s10971-019- 05055-7.[62] G. Durán-Jiménez, V. Hernández-Montoya, M.A. Montes-Morán, A. BonillaPetriciolet, N.A. Rangel-Vázquez, Adsorption of dyes with different molecular properties on activated carbons prepared from lignocellulosic wastes by Taguchi method, Micropor. Mesopor. Mater. 199 (2014) 99–107, https://doi. org/10.1016/j.micromeso.2014.08.013.[63] S. A. Alkahtani, S. S. Abu-Alrub, A. M. Mahmoud. Adsorption of food coloring allura red dye (E129) from aqueous solutions using activated carbon. International Journal of Food and Allied Sciences. 3 (1) (2017) 10-19. http:// dx.doi.org/10.21620/ijfaas.2017110-26[64] Samira Benabid, Angélica F.M. Streit, Yacine Benguerba, Guilherme L. Dotto, Alessandro Erto, Barbara Ernst, Molecular modeling of anionic and cationic dyes adsorption on sludge derived activated carbon, J. Mol. Liquids. 289 (2019) 111119, https://doi.org/10.1016/j.molliq.2019.111119.118144349Luffa cylindricalChitosanAdsorptionDyePublicationORIGINAL1-s2.0-S0167732221028695-main.pdf1-s2.0-S0167732221028695-main.pdfapplication/pdf1781951https://repositorio.cuc.edu.co/bitstreams/fcba99e2-659f-4e30-885d-433e4c72648f/downloadd5441a2753fe2ca2daed26771d332e5dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8038a1a0-b89e-42c3-85eb-7d25dfb98c5a/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S0167732221028695-main.pdf.txt1-s2.0-S0167732221028695-main.pdf.txttext/plain46932https://repositorio.cuc.edu.co/bitstreams/ba5bdd88-d0eb-4e33-80cb-0f56c4c4cf7f/downloadab3635218ce337108152d8629e5b058fMD53THUMBNAIL1-s2.0-S0167732221028695-main.pdf.jpg1-s2.0-S0167732221028695-main.pdf.jpgimage/jpeg16729https://repositorio.cuc.edu.co/bitstreams/fb38ee84-e894-4cba-8df4-8732fbb7b402/downloadbc00b4ffe1edbc616260c2c2b87b518cMD5411323/9224oai:repositorio.cuc.edu.co:11323/92242024-09-16 16:40:36.943https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |