Oral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation

Carvacrol (CARV) presents valuable biological properties such as anti-inflammatory and antioxidant activities. However, pharmacological uses of CARV are largely limited due to disadvantages related to solubility, bioavailability, preparation and storage processes. The complexation of monoterpenes wi...

Full description

Autores:
Tiefensee Ribeiro, Camila
Gasparotto, Juciano
Lintzmaier Petiz, Lyvia
Ozorio Brum, Pedro
Oppermann Peixoto, Daniel
Kunzler, Alice
Tais da Rosa Silva, Helen
Calixto Bortolin, Rafael
Farina Almeida, Roberto
Quintans-Junior, Lucindo José
Antunes Araújo, Adriano
Fonseca Moreira, José Claudio
Pens Gelain, Daniel
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2993
Acceso en línea:
https://hdl.handle.net/11323/2993
https://repositorio.cuc.edu.co/
Palabra clave:
Carvacrol
β-cyclodextrin
6-hydroxydopamine
Parkinson’s disease
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_d462f3f16166e1a2f99dfaf8b742d249
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2993
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Oral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation
title Oral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation
spellingShingle Oral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation
Carvacrol
β-cyclodextrin
6-hydroxydopamine
Parkinson’s disease
title_short Oral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation
title_full Oral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation
title_fullStr Oral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation
title_full_unstemmed Oral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation
title_sort Oral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation
dc.creator.fl_str_mv Tiefensee Ribeiro, Camila
Gasparotto, Juciano
Lintzmaier Petiz, Lyvia
Ozorio Brum, Pedro
Oppermann Peixoto, Daniel
Kunzler, Alice
Tais da Rosa Silva, Helen
Calixto Bortolin, Rafael
Farina Almeida, Roberto
Quintans-Junior, Lucindo José
Antunes Araújo, Adriano
Fonseca Moreira, José Claudio
Pens Gelain, Daniel
dc.contributor.author.spa.fl_str_mv Tiefensee Ribeiro, Camila
Gasparotto, Juciano
Lintzmaier Petiz, Lyvia
Ozorio Brum, Pedro
Oppermann Peixoto, Daniel
Kunzler, Alice
Tais da Rosa Silva, Helen
Calixto Bortolin, Rafael
Farina Almeida, Roberto
Quintans-Junior, Lucindo José
Antunes Araújo, Adriano
Fonseca Moreira, José Claudio
Pens Gelain, Daniel
dc.subject.spa.fl_str_mv Carvacrol
β-cyclodextrin
6-hydroxydopamine
Parkinson’s disease
topic Carvacrol
β-cyclodextrin
6-hydroxydopamine
Parkinson’s disease
description Carvacrol (CARV) presents valuable biological properties such as anti-inflammatory and antioxidant activities. However, pharmacological uses of CARV are largely limited due to disadvantages related to solubility, bioavailability, preparation and storage processes. The complexation of monoterpenes with β-cyclodextrin (β-CD) increases their stability, solubility and oral bioavailability. Here, the protective effect of oral treatment with CARV/β-CD complex (25 μg/kg/day) against dopaminergic (DA) denervation induced by unilateral intranigral injection of 6-hydroxydopamine (6-OHDA - 10 μg per rat) was analyzed, in order to evaluate a putative application in the development of neuroprotective therapies for Parkinson's disease (PD). Pretreatment with CARV/β-CD for 15 days prevented the loss of DA neurons induced by 6-OHDA in adult Wistar rats. This effect may occur through CARV anti-inflammatory and antioxidant properties, as the pretreatment with CARV/β-CD inhibited the release of IL-1β and TNF-α; besides, CARV prevented the increase of mitochondrial superoxide production induced by 6-OHDA in cultured SH-SY5Y cells. Importantly, hepatotoxicity or alterations in blood cell profile were not observed with oral administration of CARV/β-CD. Therefore, this study showed a potential pharmacological application of CARV/β-CD in PD using a non-invasive route of drug delivery, i.e., oral administration.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-04-03T22:22:32Z
dc.date.available.none.fl_str_mv 2019-04-03T22:22:32Z
dc.date.issued.none.fl_str_mv 2019-02-28
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/2993
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/2993
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0197018618307162?via%3Dihub
dc.relation.references.spa.fl_str_mv Baluchnejadmojarad, t., Hassanshahi, J., Roghani, M., mansouri, M., Raoufi, S., 2014. Protective Effect of Carvacrol in 6-hydroxydopamine Hemi-parkinsonian Rat Model. Shahed University. Belarbi, K., Cuvelier, E., Destee, A., Gressier, B., Chartier-Harlin, M.C., 2017. NADPH oxidases in Parkinson's disease: a systematic review. Mol Neurodegener 12, 84. Block, M.L., Hong, J.S., 2007. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 35, 1127-1132. Bordt, E.A., Polster, B.M., 2014. NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair? Free Radic Biol Med 76, 34-46. Bowie, A., O'Neill, L.A., 2000. Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59, 13-23. Carvey, P.M., Zhao, C.H., Hendey, B., Lum, H., Trachtenberg, J., Desai, B.S., Snyder, J., Zhu, Y.G., Ling, Z.D., 2005. 6-Hydroxydopamine-induced alterations in blood-brain barrier permeability. Eur J Neurosci 22, 1158-1168. Costantini, E., D'Angelo, C., Reale, M., 2018. The Role of Immunosenescence in Neurodegenerative Diseases. Mediators Inflamm 2018, 6039171. Cui, Z., Xie, Z., Wang, B., Zhong, Z., Chen, X., Sun, Y., Sun, Q., Yang, G., Bian, L., 2015. Carvacrol protects neuroblastoma SH-SY5Y cells against Fe2+- induced apoptosis by suppressing activation of MAPK/JNK-NF-κB signaling pathway, Acta Pharmacol Sin. Vol. 36, pp. 1426-1436. Dati, L.M., Ulrich, H., Real, C.C., Feng, Z.P., Sun, H.S., Britto, L.R., 2017. Carvacrol promotes neuroprotection in the mouse hemiparkinsonian model. Neuroscience 356, 176-181. Dauer, W., Przedborski, S., 2003. Parkinson's disease: mechanisms and models. Neuron 39, 889-909. Deng, W., Lu, H., Teng, J., 2013. Carvacrol attenuates diabetes-associated cognitive deficits in rats. J Mol Neurosci 51, 813-819. Drechsel, D.A., Patel, M., 2008. Role of Reactive Oxygen Species in the Neurotoxicity of Environmental Agents Implicated in Parkinson’s disease. Free Radic Biol Med 44, 1873-1886. Gasparotto, J., Ribeiro, C.T., Bortolin, R.C., Somensi, N., Rabelo, T.K., Kunzler, A., Souza, N.C., Pasquali, M.A.B., Moreira, J.C.F., Gelain, D.P., 2017. Targeted inhibition of RAGE in substantia nigra of rats blocks 6-OHDA-induced dopaminergic denervation. Sci Rep 7, 8795. Gholijani, N., Gharagozloo, M., Farjadian, S., Amirghofran, Z., 2016. Modulatory effects of thymol and carvacrol on inflammatory transcription factors in lipopolysaccharide-treated macrophages. J Immunotoxicol 13, 157-164. Glinka, Y., Tipton, K.F., Youdim, M.B., 1996. Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine. J Neurochem 66, 2004-2010. Guimaraes, A.G., Oliveira, G.F., Melo, M.S., Cavalcanti, S.C., Antoniolli, A.R., Bonjardim, L.R., Silva, F.A., Santos, J.P., Rocha, R.F., Moreira, J.C., Araujo, A.A., Gelain, D.P., Quintans-Junior, L.J., 2010. Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic Clin Pharmacol Toxicol 107, 949-957. Guimaraes, A.G., Oliveira, M.A., Alves Rdos, S., Menezes Pdos, P., Serafini, M.R., Araujo, A.A., Bezerra, D.P., Quintans Junior, L.J., 2015. Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with betacyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chem Biol Interact 227, 69-76. Guimaraes, A.G., Xavier, M.A., de Santana, M.T., Camargo, E.A., Santos, C.A., Brito, F.A., Barreto, E.O., Cavalcanti, S.C., Antoniolli, A.R., Oliveira, R.C., Quintans-Junior, L.J., 2012. Carvacrol attenuates mechanical hypernociception and inflammatory response. Naunyn Schmiedebergs Arch Pharmacol 385, 253- 263. Huang, X.J., Choi, Y.K., Im, H.S., Yarimaga, O., Yoon, E., Kim, H.S., 2006. Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques, Sensors (Basel). Vol. 6, pp. 756-782. Jitendra, Sharma, P.K., Bansal, S., Banik, A., 2011. Noninvasive Routes of Proteins and Peptides Drug Delivery, Indian J Pharm Sci. Vol. 73, pp. 367-375. Jordan A. McKenzie, L.J.S., Caitlin B. Pointer, Jessica R. Lowry, Ekta Bajwa, Carolyn W. Lee and Andis Klegeris*, 2018. Neuroinflammation as a Common Mechanism Associated with the Modifiable Risk Factors for Alzheimer’s and Parkinson’s Diseases. Curr Aging Sci 10, 158-176. Kurkov, S.V., Loftsson, T., 2013. Cyclodextrins. Int J Pharm 453, 167-180. Li, Z., Hua, C., Pan, X., Fu, X., Wu, W., 2016. Carvacrol Exerts Neuroprotective Effects Via Suppression of the Inflammatory Response in Middle Cerebral Artery Occlusion Rats. Inflammation 39, 1566-1572. Lima Mda, S., Quintans-Junior, L.J., de Santana, W.A., Martins Kaneto, C., Pereira Soares, M.B., Villarreal, C.F., 2013. Anti-inflammatory effects of carvacrol: evidence for a key role of interleukin-10. Eur J Pharmacol 699, 112- 117. Lima, M.M., Martins, E.F., Delattre, A.M., Proenca, M.B., Mori, M.A., Carabelli, B., Ferraz, A.C., 2012. Motor and non-motor features of Parkinson's disease - a review of clinical and experimental studies. CNS Neurol Disord Drug Targets 11, 439-449. Lins, L., Souza, M.F., Bispo, J.M.M., Gois, A.M., Melo, T.C.S., Andrade, R.A.S., Quintans-Junior, L.J., Ribeiro, A.M., Silva, R.H., Santos, J.R., Marchioro, M., 2018. Carvacrol prevents impairments in motor and neurochemical parameters in a model of progressive parkinsonism induced by reserpine. Brain Res Bull 139, 9-15. Marques, H.M.C., 2010. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour and Fragrance Journal 25, 313-326. Mechan, A.O., Fowler, A., Seifert, N., Rieger, H., Wohrle, T., Etheve, S., Wyss, A., Schuler, G., Colletto, B., Kilpert, C., Aston, J., Elliott, J.M., Goralczyk, R., Mohajeri, M.H., 2011. Monoamine reuptake inhibition and mood-enhancing potential of a specified oregano extract. Br J Nutr 105, 1150-1163. Melo, F.H., Moura, B.A., de Sousa, D.P., de Vasconcelos, S.M., Macedo, D.S., Fonteles, M.M., Viana, G.S., de Sousa, F.C., 2011. Antidepressant-like effect of carvacrol (5-Isopropyl-2-methylphenol) in mice: involvement of dopaminergic system. Fundam Clin Pharmacol 25, 362-367. Melo, F.H., Venancio, E.T., de Sousa, D.P., de Franca Fonteles, M.M., de Vasconcelos, S.M., Viana, G.S., de Sousa, F.C., 2010. Anxiolytic-like effect of Carvacrol (5-isopropyl-2-methylphenol) in mice: involvement with GABAergic transmission. Fundam Clin Pharmacol 24, 437-443. National Research Council Committee for the Update of the Guide for the Care and Use of Laboratory, A., 2011. The National Academies Collection: Reports funded by National Institutes of Health, Guide for the Care and Use of Laboratory Animals,National Academies Press (US)National Academy of Sciences., Washington (DC). Olmedo-Diaz, S., Estevez-Silva, H., Oradd, G., Af Bjerken, S., Marcellino, D., Virel, A., 2017. An altered blood-brain barrier contributes to brain iron accumulation and neuroinflammation in the 6-OHDA rat model of Parkinson's disease. Neuroscience 362, 141-151. Oz, M., Lozon, Y., Sultan, A., Yang, K.H., Galadari, S., 2015. Effects of monoterpenes on ion channels of excitable cells. Pharmacol Ther 152, 83-97. Paxinos, G., Watson, C., 2005. The rat brain in stereotaxic coordinates, 5 ed. Boston: Elsevier Academic Press Amsterdam Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.-E., Lang, A.E., 2017. Parkinson disease. Nature Reviews Disease Primers 3, 17013. Qin, X.Y., Zhang, S.P., Cao, C., Loh, Y.P., Cheng, Y., 2016. Aberrations in Peripheral Inflammatory Cytokine Levels in Parkinson Disease: A Systematic Review and Meta-analysis. JAMA Neurol 73, 1316-1324. Rodriguez-Pallares, J., Parga, J.A., Munoz, A., Rey, P., Guerra, M.J., Labandeira-Garcia, J.L., 2007. Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamineinduced degeneration of dopaminergic neurons. J Neurochem 103, 145-156. Santos, E.H., Kamimura, J.A., Hill, L.E., Gomes, C.L., 2015. Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT - Food Science and Technology 60, 583-592. Silva, J.C., Almeida, J., Quintans, J.S.S., Gopalsamy, R.G., Shanmugam, S., Serafini, M.R., Oliveira, M.R.C., Silva, B.A.F., Martins, A., Castro, F.F., Menezes, I.R.A., Coutinho, H.D.M., Oliveira, R.C.M., Thangaraj, P., Araujo, A.A.S., Quintans-Junior, L.J., 2016. Enhancement of orofacial antinociceptive effect of carvacrol, a monoterpene present in oregano and thyme oils, by betacyclodextrin inclusion complex in mice. Biomed Pharmacother 84, 454-461. Soto-Otero, R., Mendez-Alvarez, E., Hermida-Ameijeiras, A., Munoz-Patino, A.M., Labandeira-Garcia, J.L., 2000. Autoxidation and neurotoxicity of 6- hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson's disease. J Neurochem 74, 1605- 1612. Stott, S.R., Barker, R.A., 2014. Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of Parkinson's disease. Eur J Neurosci 39, 1042-1056. Suntres, Z.E., Coccimiglio, J., Alipour, M., 2015. The bioactivity and toxicological actions of carvacrol. Crit Rev Food Sci Nutr 55, 304-318. Tieu, K., 2011. A guide to neurotoxic animal models of Parkinson's disease. Cold Spring Harb Perspect Med 1, a009316. Tobon-Velasco, J.C., Cuevas, E., Torres-Ramos, M.A., 2014. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol Disord Drug Targets 13, 1615-1626. Trabace, L., Zotti, M., Morgese, M.G., Tucci, P., Colaianna, M., Schiavone, S., Avato, P., Cuomo, V., 2011. Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats. Toxicology and Applied Pharmacology 255, 169-175. Vairetti, M., Ferrigno, A., Rizzo, V., Ambrosi, G., Bianchi, A., Richelmi, P., Blandini, F., Armentero, M.T., 2012. Impaired hepatic function and central dopaminergic denervation in a rodent model of Parkinson's disease: a selfperpetuating crosstalk? Biochim Biophys Acta 1822, 176-184. Walsh, S., Finn, D.P., Dowd, E., 2011. Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson's disease in the rat. Neuroscience 175, 251-261. Wang, P., Luo, Q., Qiao, H., Ding, H., Cao, Y., Yu, J., Liu, R., Zhang, Q., Zhu, H., Qu, L., 2017. The Neuroprotective Effects of Carvacrol on Ethanol-Induced Hippocampal Neurons Impairment via the Antioxidative and Antiapoptotic Pathways. Oxid Med Cell Longev 2017, 4079425. Wang, Q., Liu, Y., Zhou, J., 2015. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target, Transl Neurodegener. Vol. 4. Xiao, Y., Joint Department, T.H., Tianjin 300211, P.R. China, Li, B., Joint Department, T.H., Tianjin 300211, P.R. China, Liu, J., Joint Department, T.H., Tianjin 300211, P.R. China, Ma, X., Joint Department, T.H., Tianjin 300211, P.R. China, 2019. Carvacrol ameliorates inflammatory response in interleukin1β-stimulated human chondrocytes. Molecular Medicine Reports 17, 3987- 3992. Yu, H., Zhang, Z.L., Chen, J., Pei, A., Hua, F., Qian, X., He, J., Liu, C.F., Xu, X., 2012. Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice. PLoS One 7, e33584. Zotti, M., Colaianna, M., Morgese, M., Tucci, P., Schiavone, S., Avato, P., Trabace, L., 2013. Carvacrol: From Ancient Flavoring to Neuromodulatory Agent. Molecules 18, 6161-6172.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/202530df-8cf6-4e7f-ba03-9e4156e7ded3/download
https://repositorio.cuc.edu.co/bitstreams/f63d83da-df69-4328-9afe-07c0aa480377/download
https://repositorio.cuc.edu.co/bitstreams/88449cb4-9f36-4fc6-af64-3033061718a6/download
https://repositorio.cuc.edu.co/bitstreams/4e2685ca-0e9b-4bb7-b354-ad852fc9b176/download
bitstream.checksum.fl_str_mv 255bf855c1297ec6f4a8da43de737867
8a4605be74aa9ea9d79846c1fba20a33
bfca049f5422ac5e712527be89aa22f1
b7d9f2facbb27b68dac6a8651398c131
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760694162358272
spelling Tiefensee Ribeiro, CamilaGasparotto, JucianoLintzmaier Petiz, LyviaOzorio Brum, PedroOppermann Peixoto, DanielKunzler, AliceTais da Rosa Silva, HelenCalixto Bortolin, RafaelFarina Almeida, RobertoQuintans-Junior, Lucindo JoséAntunes Araújo, AdrianoFonseca Moreira, José ClaudioPens Gelain, Daniel2019-04-03T22:22:32Z2019-04-03T22:22:32Z2019-02-28https://hdl.handle.net/11323/2993Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Carvacrol (CARV) presents valuable biological properties such as anti-inflammatory and antioxidant activities. However, pharmacological uses of CARV are largely limited due to disadvantages related to solubility, bioavailability, preparation and storage processes. The complexation of monoterpenes with β-cyclodextrin (β-CD) increases their stability, solubility and oral bioavailability. Here, the protective effect of oral treatment with CARV/β-CD complex (25 μg/kg/day) against dopaminergic (DA) denervation induced by unilateral intranigral injection of 6-hydroxydopamine (6-OHDA - 10 μg per rat) was analyzed, in order to evaluate a putative application in the development of neuroprotective therapies for Parkinson's disease (PD). Pretreatment with CARV/β-CD for 15 days prevented the loss of DA neurons induced by 6-OHDA in adult Wistar rats. This effect may occur through CARV anti-inflammatory and antioxidant properties, as the pretreatment with CARV/β-CD inhibited the release of IL-1β and TNF-α; besides, CARV prevented the increase of mitochondrial superoxide production induced by 6-OHDA in cultured SH-SY5Y cells. Importantly, hepatotoxicity or alterations in blood cell profile were not observed with oral administration of CARV/β-CD. Therefore, this study showed a potential pharmacological application of CARV/β-CD in PD using a non-invasive route of drug delivery, i.e., oral administration.Tiefensee Ribeiro, Camila-8320967c-6582-4295-b6a5-d095b090c073-0Gasparotto, Juciano-a7ba2163-3c88-45e4-b4f0-627833f8b03f-0Lintzmaier Petiz, Lyvia-cac3be05-7b50-4d20-b637-81f75d5833aa-0Ozorio Brum, Pedro-15ee21b8-f7ef-4e97-be65-7c18cbbe54dc-0Oppermann Peixoto, Daniel-47360226-39f4-4ee1-a281-46f79575505d-0Kunzler, Alice-4b32d83a-06bf-4dd0-b9c2-00dda027fc8b-0Tais da Rosa Silva, Helen-3c00563b-3416-4f69-ad4f-368ea9f40f33-0Calixto Bortolin, Rafael-0000-0003-4780-8499-600Farina Almeida, Roberto-65f3b41b-8f91-4b33-a6e3-a5c662ea3350-0Quintans-Junior, Lucindo José-085f9174-fa12-4c72-87b9-6c4522dd15b7-0Antunes Araújo, Adriano-664e5d85-a7fa-467f-b60a-e7928b1df688-0Fonseca Moreira, José Claudio-04daa778-cf3b-4620-896e-18294cc37c54-0Pens Gelain, Daniel-2ff9f9fc-72b9-42eb-ab4a-4c9be42216fb-0engUniversidad de la Costahttps://www.sciencedirect.com/science/article/abs/pii/S0197018618307162?via%3DihubBaluchnejadmojarad, t., Hassanshahi, J., Roghani, M., mansouri, M., Raoufi, S., 2014. Protective Effect of Carvacrol in 6-hydroxydopamine Hemi-parkinsonian Rat Model. Shahed University. Belarbi, K., Cuvelier, E., Destee, A., Gressier, B., Chartier-Harlin, M.C., 2017. NADPH oxidases in Parkinson's disease: a systematic review. Mol Neurodegener 12, 84. Block, M.L., Hong, J.S., 2007. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 35, 1127-1132. Bordt, E.A., Polster, B.M., 2014. NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair? Free Radic Biol Med 76, 34-46. Bowie, A., O'Neill, L.A., 2000. Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59, 13-23. Carvey, P.M., Zhao, C.H., Hendey, B., Lum, H., Trachtenberg, J., Desai, B.S., Snyder, J., Zhu, Y.G., Ling, Z.D., 2005. 6-Hydroxydopamine-induced alterations in blood-brain barrier permeability. Eur J Neurosci 22, 1158-1168. Costantini, E., D'Angelo, C., Reale, M., 2018. The Role of Immunosenescence in Neurodegenerative Diseases. Mediators Inflamm 2018, 6039171. Cui, Z., Xie, Z., Wang, B., Zhong, Z., Chen, X., Sun, Y., Sun, Q., Yang, G., Bian, L., 2015. Carvacrol protects neuroblastoma SH-SY5Y cells against Fe2+- induced apoptosis by suppressing activation of MAPK/JNK-NF-κB signaling pathway, Acta Pharmacol Sin. Vol. 36, pp. 1426-1436. Dati, L.M., Ulrich, H., Real, C.C., Feng, Z.P., Sun, H.S., Britto, L.R., 2017. Carvacrol promotes neuroprotection in the mouse hemiparkinsonian model. Neuroscience 356, 176-181. Dauer, W., Przedborski, S., 2003. Parkinson's disease: mechanisms and models. Neuron 39, 889-909. Deng, W., Lu, H., Teng, J., 2013. Carvacrol attenuates diabetes-associated cognitive deficits in rats. J Mol Neurosci 51, 813-819. Drechsel, D.A., Patel, M., 2008. Role of Reactive Oxygen Species in the Neurotoxicity of Environmental Agents Implicated in Parkinson’s disease. Free Radic Biol Med 44, 1873-1886. Gasparotto, J., Ribeiro, C.T., Bortolin, R.C., Somensi, N., Rabelo, T.K., Kunzler, A., Souza, N.C., Pasquali, M.A.B., Moreira, J.C.F., Gelain, D.P., 2017. Targeted inhibition of RAGE in substantia nigra of rats blocks 6-OHDA-induced dopaminergic denervation. Sci Rep 7, 8795. Gholijani, N., Gharagozloo, M., Farjadian, S., Amirghofran, Z., 2016. Modulatory effects of thymol and carvacrol on inflammatory transcription factors in lipopolysaccharide-treated macrophages. J Immunotoxicol 13, 157-164. Glinka, Y., Tipton, K.F., Youdim, M.B., 1996. Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine. J Neurochem 66, 2004-2010. Guimaraes, A.G., Oliveira, G.F., Melo, M.S., Cavalcanti, S.C., Antoniolli, A.R., Bonjardim, L.R., Silva, F.A., Santos, J.P., Rocha, R.F., Moreira, J.C., Araujo, A.A., Gelain, D.P., Quintans-Junior, L.J., 2010. Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic Clin Pharmacol Toxicol 107, 949-957. Guimaraes, A.G., Oliveira, M.A., Alves Rdos, S., Menezes Pdos, P., Serafini, M.R., Araujo, A.A., Bezerra, D.P., Quintans Junior, L.J., 2015. Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with betacyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chem Biol Interact 227, 69-76. Guimaraes, A.G., Xavier, M.A., de Santana, M.T., Camargo, E.A., Santos, C.A., Brito, F.A., Barreto, E.O., Cavalcanti, S.C., Antoniolli, A.R., Oliveira, R.C., Quintans-Junior, L.J., 2012. Carvacrol attenuates mechanical hypernociception and inflammatory response. Naunyn Schmiedebergs Arch Pharmacol 385, 253- 263. Huang, X.J., Choi, Y.K., Im, H.S., Yarimaga, O., Yoon, E., Kim, H.S., 2006. Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques, Sensors (Basel). Vol. 6, pp. 756-782. Jitendra, Sharma, P.K., Bansal, S., Banik, A., 2011. Noninvasive Routes of Proteins and Peptides Drug Delivery, Indian J Pharm Sci. Vol. 73, pp. 367-375. Jordan A. McKenzie, L.J.S., Caitlin B. Pointer, Jessica R. Lowry, Ekta Bajwa, Carolyn W. Lee and Andis Klegeris*, 2018. Neuroinflammation as a Common Mechanism Associated with the Modifiable Risk Factors for Alzheimer’s and Parkinson’s Diseases. Curr Aging Sci 10, 158-176. Kurkov, S.V., Loftsson, T., 2013. Cyclodextrins. Int J Pharm 453, 167-180. Li, Z., Hua, C., Pan, X., Fu, X., Wu, W., 2016. Carvacrol Exerts Neuroprotective Effects Via Suppression of the Inflammatory Response in Middle Cerebral Artery Occlusion Rats. Inflammation 39, 1566-1572. Lima Mda, S., Quintans-Junior, L.J., de Santana, W.A., Martins Kaneto, C., Pereira Soares, M.B., Villarreal, C.F., 2013. Anti-inflammatory effects of carvacrol: evidence for a key role of interleukin-10. Eur J Pharmacol 699, 112- 117. Lima, M.M., Martins, E.F., Delattre, A.M., Proenca, M.B., Mori, M.A., Carabelli, B., Ferraz, A.C., 2012. Motor and non-motor features of Parkinson's disease - a review of clinical and experimental studies. CNS Neurol Disord Drug Targets 11, 439-449. Lins, L., Souza, M.F., Bispo, J.M.M., Gois, A.M., Melo, T.C.S., Andrade, R.A.S., Quintans-Junior, L.J., Ribeiro, A.M., Silva, R.H., Santos, J.R., Marchioro, M., 2018. Carvacrol prevents impairments in motor and neurochemical parameters in a model of progressive parkinsonism induced by reserpine. Brain Res Bull 139, 9-15. Marques, H.M.C., 2010. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour and Fragrance Journal 25, 313-326. Mechan, A.O., Fowler, A., Seifert, N., Rieger, H., Wohrle, T., Etheve, S., Wyss, A., Schuler, G., Colletto, B., Kilpert, C., Aston, J., Elliott, J.M., Goralczyk, R., Mohajeri, M.H., 2011. Monoamine reuptake inhibition and mood-enhancing potential of a specified oregano extract. Br J Nutr 105, 1150-1163. Melo, F.H., Moura, B.A., de Sousa, D.P., de Vasconcelos, S.M., Macedo, D.S., Fonteles, M.M., Viana, G.S., de Sousa, F.C., 2011. Antidepressant-like effect of carvacrol (5-Isopropyl-2-methylphenol) in mice: involvement of dopaminergic system. Fundam Clin Pharmacol 25, 362-367. Melo, F.H., Venancio, E.T., de Sousa, D.P., de Franca Fonteles, M.M., de Vasconcelos, S.M., Viana, G.S., de Sousa, F.C., 2010. Anxiolytic-like effect of Carvacrol (5-isopropyl-2-methylphenol) in mice: involvement with GABAergic transmission. Fundam Clin Pharmacol 24, 437-443. National Research Council Committee for the Update of the Guide for the Care and Use of Laboratory, A., 2011. The National Academies Collection: Reports funded by National Institutes of Health, Guide for the Care and Use of Laboratory Animals,National Academies Press (US)National Academy of Sciences., Washington (DC). Olmedo-Diaz, S., Estevez-Silva, H., Oradd, G., Af Bjerken, S., Marcellino, D., Virel, A., 2017. An altered blood-brain barrier contributes to brain iron accumulation and neuroinflammation in the 6-OHDA rat model of Parkinson's disease. Neuroscience 362, 141-151. Oz, M., Lozon, Y., Sultan, A., Yang, K.H., Galadari, S., 2015. Effects of monoterpenes on ion channels of excitable cells. Pharmacol Ther 152, 83-97. Paxinos, G., Watson, C., 2005. The rat brain in stereotaxic coordinates, 5 ed. Boston: Elsevier Academic Press Amsterdam Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.-E., Lang, A.E., 2017. Parkinson disease. Nature Reviews Disease Primers 3, 17013. Qin, X.Y., Zhang, S.P., Cao, C., Loh, Y.P., Cheng, Y., 2016. Aberrations in Peripheral Inflammatory Cytokine Levels in Parkinson Disease: A Systematic Review and Meta-analysis. JAMA Neurol 73, 1316-1324. Rodriguez-Pallares, J., Parga, J.A., Munoz, A., Rey, P., Guerra, M.J., Labandeira-Garcia, J.L., 2007. Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamineinduced degeneration of dopaminergic neurons. J Neurochem 103, 145-156. Santos, E.H., Kamimura, J.A., Hill, L.E., Gomes, C.L., 2015. Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT - Food Science and Technology 60, 583-592. Silva, J.C., Almeida, J., Quintans, J.S.S., Gopalsamy, R.G., Shanmugam, S., Serafini, M.R., Oliveira, M.R.C., Silva, B.A.F., Martins, A., Castro, F.F., Menezes, I.R.A., Coutinho, H.D.M., Oliveira, R.C.M., Thangaraj, P., Araujo, A.A.S., Quintans-Junior, L.J., 2016. Enhancement of orofacial antinociceptive effect of carvacrol, a monoterpene present in oregano and thyme oils, by betacyclodextrin inclusion complex in mice. Biomed Pharmacother 84, 454-461. Soto-Otero, R., Mendez-Alvarez, E., Hermida-Ameijeiras, A., Munoz-Patino, A.M., Labandeira-Garcia, J.L., 2000. Autoxidation and neurotoxicity of 6- hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson's disease. J Neurochem 74, 1605- 1612. Stott, S.R., Barker, R.A., 2014. Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of Parkinson's disease. Eur J Neurosci 39, 1042-1056. Suntres, Z.E., Coccimiglio, J., Alipour, M., 2015. The bioactivity and toxicological actions of carvacrol. Crit Rev Food Sci Nutr 55, 304-318. Tieu, K., 2011. A guide to neurotoxic animal models of Parkinson's disease. Cold Spring Harb Perspect Med 1, a009316. Tobon-Velasco, J.C., Cuevas, E., Torres-Ramos, M.A., 2014. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol Disord Drug Targets 13, 1615-1626. Trabace, L., Zotti, M., Morgese, M.G., Tucci, P., Colaianna, M., Schiavone, S., Avato, P., Cuomo, V., 2011. Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats. Toxicology and Applied Pharmacology 255, 169-175. Vairetti, M., Ferrigno, A., Rizzo, V., Ambrosi, G., Bianchi, A., Richelmi, P., Blandini, F., Armentero, M.T., 2012. Impaired hepatic function and central dopaminergic denervation in a rodent model of Parkinson's disease: a selfperpetuating crosstalk? Biochim Biophys Acta 1822, 176-184. Walsh, S., Finn, D.P., Dowd, E., 2011. Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson's disease in the rat. Neuroscience 175, 251-261. Wang, P., Luo, Q., Qiao, H., Ding, H., Cao, Y., Yu, J., Liu, R., Zhang, Q., Zhu, H., Qu, L., 2017. The Neuroprotective Effects of Carvacrol on Ethanol-Induced Hippocampal Neurons Impairment via the Antioxidative and Antiapoptotic Pathways. Oxid Med Cell Longev 2017, 4079425. Wang, Q., Liu, Y., Zhou, J., 2015. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target, Transl Neurodegener. Vol. 4. Xiao, Y., Joint Department, T.H., Tianjin 300211, P.R. China, Li, B., Joint Department, T.H., Tianjin 300211, P.R. China, Liu, J., Joint Department, T.H., Tianjin 300211, P.R. China, Ma, X., Joint Department, T.H., Tianjin 300211, P.R. China, 2019. Carvacrol ameliorates inflammatory response in interleukin1β-stimulated human chondrocytes. Molecular Medicine Reports 17, 3987- 3992. Yu, H., Zhang, Z.L., Chen, J., Pei, A., Hua, F., Qian, X., He, J., Liu, C.F., Xu, X., 2012. Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice. PLoS One 7, e33584. Zotti, M., Colaianna, M., Morgese, M., Tucci, P., Schiavone, S., Avato, P., Trabace, L., 2013. Carvacrol: From Ancient Flavoring to Neuromodulatory Agent. Molecules 18, 6161-6172.Atribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Carvacrolβ-cyclodextrin6-hydroxydopamineParkinson’s diseaseOral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervationPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALOral administration of carvacrol-β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation.pdfOral administration of carvacrol-β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation.pdfapplication/pdf187497https://repositorio.cuc.edu.co/bitstreams/202530df-8cf6-4e7f-ba03-9e4156e7ded3/download255bf855c1297ec6f4a8da43de737867MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/f63d83da-df69-4328-9afe-07c0aa480377/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILOral administration of carvacrol-β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation.pdf.jpgOral administration of carvacrol-β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation.pdf.jpgimage/jpeg49148https://repositorio.cuc.edu.co/bitstreams/88449cb4-9f36-4fc6-af64-3033061718a6/downloadbfca049f5422ac5e712527be89aa22f1MD54TEXTOral administration of carvacrol-β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation.pdf.txtOral administration of carvacrol-β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation.pdf.txttext/plain1978https://repositorio.cuc.edu.co/bitstreams/4e2685ca-0e9b-4bb7-b354-ad852fc9b176/downloadb7d9f2facbb27b68dac6a8651398c131MD5511323/2993oai:repositorio.cuc.edu.co:11323/29932024-09-17 10:14:44.274open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=