Oxidative chemical beneficiation of low-quality coals under low-energy ultrasonic and microwave irradiation: an environmental-friendly approach
The present environmentally-friendly coal processing technology discussed herewith focuses on the combined effect of ultrasonic and microwave energy in the extent of mineral matter (ash yield) removal from high-sulfur, low-quality coals for their clean utilization. The novelty of this study is that...
- Autores:
-
Saikia, Monikankana
Das, Tonkeswar
Hower, James C.
O. Silva, Luis F.
Fan, Xing
K. Saikia, Binoy
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7883
- Acceso en línea:
- https://hdl.handle.net/11323/7883
https://doi.org/10.1016/j.jece.2020.104830
https://repositorio.cuc.edu.co/
- Palabra clave:
- Coal
Coal processing
Ultrasonic energy
Microwave energy
Coal characterization
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_d39a4c4a2ec95d44899d678484274a3c |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7883 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Oxidative chemical beneficiation of low-quality coals under low-energy ultrasonic and microwave irradiation: an environmental-friendly approach |
title |
Oxidative chemical beneficiation of low-quality coals under low-energy ultrasonic and microwave irradiation: an environmental-friendly approach |
spellingShingle |
Oxidative chemical beneficiation of low-quality coals under low-energy ultrasonic and microwave irradiation: an environmental-friendly approach Coal Coal processing Ultrasonic energy Microwave energy Coal characterization |
title_short |
Oxidative chemical beneficiation of low-quality coals under low-energy ultrasonic and microwave irradiation: an environmental-friendly approach |
title_full |
Oxidative chemical beneficiation of low-quality coals under low-energy ultrasonic and microwave irradiation: an environmental-friendly approach |
title_fullStr |
Oxidative chemical beneficiation of low-quality coals under low-energy ultrasonic and microwave irradiation: an environmental-friendly approach |
title_full_unstemmed |
Oxidative chemical beneficiation of low-quality coals under low-energy ultrasonic and microwave irradiation: an environmental-friendly approach |
title_sort |
Oxidative chemical beneficiation of low-quality coals under low-energy ultrasonic and microwave irradiation: an environmental-friendly approach |
dc.creator.fl_str_mv |
Saikia, Monikankana Das, Tonkeswar Hower, James C. O. Silva, Luis F. Fan, Xing K. Saikia, Binoy |
dc.contributor.author.spa.fl_str_mv |
Saikia, Monikankana Das, Tonkeswar Hower, James C. O. Silva, Luis F. Fan, Xing K. Saikia, Binoy |
dc.subject.spa.fl_str_mv |
Coal Coal processing Ultrasonic energy Microwave energy Coal characterization |
topic |
Coal Coal processing Ultrasonic energy Microwave energy Coal characterization |
description |
The present environmentally-friendly coal processing technology discussed herewith focuses on the combined effect of ultrasonic and microwave energy in the extent of mineral matter (ash yield) removal from high-sulfur, low-quality coals for their clean utilization. The novelty of this study is that the technique is very efficient instead of using drastic chemicals with less treatment time, less amount of reagent in comparison to the conventional method, and has the potential to adopt in large-scale commercial production of cleaner coals. The quality of the cleaner coal products was examined by using chemical analysis and advanced analytical techniques (electron beam analysis). The combined irradiation process of ultrasonic and microwave energy is observed to be the most effective for the beneficiation of high-sulfur coal than the single process. The result showed a maximum of 51.28% and 66.34% ash (mineral matter) removal from the coal samples by microwave followed by an ultrasonic process. The X-ray photoelectron spectroscopy (XPS) analysis revealed that both inorganic and organic sulfur is present in these Cenozoic low-rank, high-sulfur Indian coals. The high resolution-transmission electron microscopy (HR-TEM) image analysis of the treated coal samples showed nearly agglomerated collections of nanomaterials; carbon spheres/flacks with an irregular shape; and the elements such as oxygen, iron, silicon, sulfur, and aluminum in the beneficiated coal samples. The major mineral phases, including quartz, kaolinite, and gypsum, are found to be removed during the beneficiation process. The thermal analysis (TGA-DTG) also showed the suitability of the beneficiated coals for the power plant application. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-11-26 |
dc.date.accessioned.none.fl_str_mv |
2021-02-19T16:53:23Z |
dc.date.available.none.fl_str_mv |
2021-02-19T16:53:23Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7883 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.jece.2020.104830 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7883 https://doi.org/10.1016/j.jece.2020.104830 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
N. Dong, Utilisation of Low Rank Coals (IEA Clean Coal Centre, 2011). S.J. Mills, Global Perspective on the Use of Low Quality Coals (IEA Clean Coal Centre, 2011) CCC 180. P.S. Das, R.K. Lingam, S.K. Sriramoju, A. Suresh, P.K. Banerjee, S. Ganguly Effect of elevated temperature and pressure on the leaching characteristics of Indian coals Fuel, 140 (2015), pp. 302-308 A. Suresh, R.K. Lingam, S.K. Sriramoju, A. Bodewar, T. Ray, P.S. Dash Pilot scale demineralization study on coal flotation tailings and optimization of the operational parameters with modeling Int. J. Miner. Process., 145 (2015), pp. 23-31 A. Nabeel, T.A. Khan, D.K. Sharma Studies on production of ultra clean coal by alkali acid leaching of low grade coal Energy Sources, 31 (7) (2009), pp. 594-601 V.K. Chandaliya, P.K. Banerjee, P.P. Biswas Optimization of solvent extraction process parameters of Indian coal Miner. Process. Extr. Metall. Rev., 33 (2012), pp. 246-259 V.K. Chandaliya, P.P. Biswas, P.S. Dash Organo-refining of high-ash Indian coals at bench scale Fuel, 165 (2016), pp. 425-431 K. Masaki, N. Kashimura, T. Takanohashi, S. Sato, A. Matsumura, I. Saito Effect of pretreatment with carbonic acid on “hypercoal” (ash-free coal) production from low-rank coals Energy Fuels, 19 (2005), pp. 2021-2025 P. Meshram, B.K. Purohit, M.K. Sinha, S.K. Sahu, B.D. Pande Demineralization of low grade coal – a review Renew. Sustain. Energy Rev., 41 (2015), pp. 745-761 B.S. Ken, B.K. Nandi Desulfurization of high sulfur Indian coal by oil agglomeration using linseed oil Powder Technol., 342 (2019), pp. 690-697 X. Yu, Z. Luo, D. Gan Desulfurization of high sulfur fine coal using a novel combined beneficiation process Fuel, 254 (2019), Article 115603 L. Wang, G. Jin, Y. Xu Desulfurization of coal using four ionic liquids with [HSO4]− Fuel, 236 (2019), pp. 1181-1190 V.K. Kuppusamy, A. Kumar, M. Holuszko Simultaneous extraction of clean coal and rare earth elements from coal tailings using alkali-acid leaching process J. Energy Resour. Technol., 141 (2019), Article 070708 Y. Xia, Z. Yang, R. Zhang, Y. Xing, X. Gui Performance of used lubricating oil as flotation collector for the recovery of clean low-rank coal Fuel, 239 (2019), pp. 717-725 F. Anwara, R. Nasir, K. Maqsood, H. Suleman, F. Rehman, A. Ali, A. Abdulrahman, A. Ahmad, A.B. Mahfouz Desulfurization and optimization of low-grade local coal by sequential KOH and HCl treatment J. Sulfur Chem., 41 (2020), pp. 44-56 V.K. Chandaliya, P.P. Biswas, P.S. Dash, D.K. Sharma Producing low-ash coal by microwave and ultrasonication pretreatment followed by solvent extraction of coal Fuel, 212 (2018), pp. 422-430 B.K. Saikia, A.M. Dutta, L. Saikia, S. Ahmed, B.P. Baruah Ultrasonic assisted cleaning of high sulfur Indian coals in water and mixed alkali Fuel Process. Technol., 123 (2014), pp. 107-113 B.K. Saikia, A.M. Dutta, B.P. Baruah Feasibility studies of desulfurization and de-ashing of low grade medium to high sulfur coals by low energy ultrasonication Fuel, 123 (2014), pp. 12-18 B.K. Saikia, A.C. Dalmora, R. Choudhury, T. Das, S.R. Taffarel, L.F.O. Silva Effective removal of sulfur components from Brazilian power-coals by ultrasonication (40kHz) in presence of H2O2 Ultrason. Sonochem., 32 (2016), pp. 147-157 S.D. Barma, R. Sathish, P.K. Baskey Ultrasonic-assisted cleaning of Indian low-grade coal for clean and sustainable energy J. Clean. Prod., 195 (2018), pp. 1203-1213 S.D. Barma, R. Sathish, P.K. Baskey, S.K. Biswal Chemical beneficiation of high-ash indian noncoking coal by alkali leaching under low-frequency ultrasonication Energy Fuels, 32 (2018), pp. 1309-1319 B. Ambedkar, T.N. Chintala, R. Nagarajan, S. Jayanti Feasibility of using ultrasound-assisted process for sulfur and ash removal from coal Chem. Eng. Process., 50 (2011), pp. 236-246 B. Ambedkar, R. Nagarajan, S. Jayanti Investigation of high-frequency, high-intensity ultrasonics for size reduction and washing of coal in aqueous medium Ind. Eng. Chem. Res., 50 (2011), pp. 13210-13219 M. Rahman, D. Pudasainee, R. Gupta Review on chemical upgrading of coal: production processes, potential applications and recent developments Fuel Process. Technol., 158 (2017), pp. 35-56 G.F. Yannolis, Ultra clean coal: an option for greenhouse friendly coal fired power generation, in: Proceedings of the ACPS Meeting, Cessnock, NSW; ACPS: NSW, Australia, 2008. N. Wijaya, L. Zhang A critical review of coal demineralization and its implication on understanding the speciation of organically bound metals and submicrometer mineral grains in coal Energy Fuels, 25 (2011), pp. 1-16 Y.X. Li, B.Q. Li Study on the ultrasonic irradiation of coal water slurry Fuel, 79 (2000), pp. 235-241 M.M. Royaei, E. Jorjani, S.C. Chelgani Combination of microwave and ultrasonic irradiations as a pretreatment method to produce ultraclean coal Int. J. Coal Prep. Util., 32 (2012), pp. 143-155 Y. Shen, T. Sun, X. Liub, J. Jiaa Rapid desulfurization of CWS via ultrasonic enhanced metal boron hydrides reduction under ambient conditions RSC Adv., 2 (2012), pp. 4189-4197 P.A. Mello, F.A. Duarte, M.A. Nunes, M.S. Alencar, E.M. Moreira, M. Korn Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock Ultrason. Sonochem., 16 (2009), pp. 732-736 E. Binner, E. Lester, S. Kingman, C. Dodds, J. Robinson, T. Wu A review of microwave coal processing J. Microw. Power Electromagn. Energy, 48 (1) (2014), pp. 35-60 S.S. Srikant, R.B. Rao Prospects of microwave energy for coal processing J Microw. Eng. Technol., 2 (1) (2015), pp. 37-42 E. Laster, S. Kingman The effect of microwave pre-heating on five different coals Fuel, 83 (2014), pp. 1941-1947 X. Tao, N. Xu, M. Xie, L. Tang Progress of the technique of coal microwave desulfurization Int. J. Coal Sci. Technol., 1 (1) (2014), pp. 113-128 A. Deb, M. Kanmani, A. Debnath, K.L. Bhowmik, B. Saha Ultrasonic assisted enhanced adsorption of methyl orange dye onto polyaniline impregnated zinc oxide nanoparticles: kinetic, isotherm and optimization of process parameters Ultrason. Sonochem., 54 (2019), pp. 290-301 M. Bhowmik, M. Kanmani, A. Debnath, B. Saha Sono-assisted rapid adsorption of anionic dye onto magnetic CaFe2O4/MnFe2O4 nanocomposite from aqua matrix Powder Technol., 354 (2019), pp. 496-504 J. Mi, J. Kang Desulfurization of Lu,an coal by ultrasonic and microwave Adv. Mater. Res., 512−515 (2012), pp. 2494-2499 R. Nagarjan, Investigation of High-Frequency, High Intensity Ultrasonic for Size Reduction and Washing of Coal, BHEL RBIC Project Final Report, 2008. T.J. Mason, A. Colling, A. Sumel Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale Ultrason. Sonochem., 11 (2004), pp. 205-210 S.A.H. Zaidi Application of sonic energy to caustic cleaning of coals Fuel Process. Technol., 53 (1997), pp. 31-39 C.O. Kappe, A. Stadler, D. Dallinger Microwaves in Organic and Medicinal Chemistry Wiley-VCH, Weinheim (2005) S. Rajarathnam, D. Chandra, G.K. Handique An overview of chemical properties of marine-influenced Oligocene coal from the northeastern part of the Assam-Arakan basin, India Int. J. Coal Geol., 29 (1996), pp. 337-361 D. Chandra, K. Mazumdar, S. Basumallick Distribution of sulfur in the tertiary coals of Meghalaya, India Int. J. Coal Geol., 3 (1983), pp. 63-75 M.P. Singh, A.K. Singh Petrographic characteristics and depositional conditions of Eocene coals of platform basins, Meghalaya, India Int. J. Coal Geol., 42 (2000), pp. 315-356 B.P. Baruah, P. Khare Pyrolysis of high sulphur Indian coals Energy Fuels, 21 (2007), pp. 3346-3352 ASTM Standard Practice for Preparing Coal Samples for Analysis ASTM International, West Conshohocken, PA (2018) ASTM, Annual Book of ASTM Standards; Coal and Coke, Standard Practice for Proximate Analysis of Coal and Coke, vol. 05.05, 1991(a). ASTM, Annual Book of ASTM Standards; Coal and Coke, Standard Practice for Ultimate Analysis of Coal and Coke, vol. 05.05, 1991(b). ASTM, Annual Book of ASTM Standards; Gaseous Fuels; Coal and Coke; Bioenergy Industrial Chemicals from Biomass. Standard Test Method for Gross Calorific Value of Coal and Coke, 05.06, 2013. C.L. Christman, A.J. Carmichael, M.M. Mossoba, P. Riesz Evidence for free radicals produced in aqueous solutions by diagnostic ultrasound Ultrasonics, 25 (1987), pp. 31-34 K. Makino, M.M. Mossoba, P. Riesz Chemical effects of ultrasound on aqueous solutions evidence for OH- and H+ by spin trapping J. Am. Chem. Soc., 104 (1982), pp. 3537-3539 S.P. Nayak, B.K. Sing Instrumental characterization of clay by XRD, XRF, and XRF Indian Acad. Sci., 30 (2007), pp. 235-238 R.S. Winburn, S.L. Lerach, B.R. Jarabek, M.A. Wisdom, D.G. Grier, G.J. McCarthy Quantitative XRD analysis of coal combustion by-products by the Rietveld method testing with standard mixtures, International Centre for Diffraction Data Adv. X-ray Anal., 42 (2000), pp. 387-391 B.K. Saikia, R.K. Boruah, P.K. Gogoi X-ray (radial distribution function, RDF) and FT-IR analysis of high sulfur Tirap (India) coal J. Energy Inst., 82 (2009), pp. 106-108 B.K. Saikia, R.K. Boruah, P.K. Gogoi XRD and FT-IR investigations of sub-bituminous Assam coals Bull. Mater. Sci., 30 (4) (2007), pp. 421-426 B.K. Saikia, A.M. Dutta, L. Saikia, S. Ahmed, B.P. Baruah Ultrasonic assisted cleaning of high sulfur Indian coals in water and mixed alkali Fuel Process. Technol., 123 (2013) 107-103 B.K. Saikia, A.M. Dutta, B.P. Baruah Fesibility studies of de-sulfurization and de-ashing of low grade medium to high sulfur coals by low energy ultrasonification Fuel, 123 (2014), pp. 12-18 P.D. Green, C.A. Johnson, K.M. Thomas Applications of laser Raman microprobe spectroscopy to the characterization of coal and cokes Fuel, 62 (1983), pp. 1013-1023 S.A. Akinyemi, W.M. Gitari, A. Akinlua, L.F. Petrik Mineralogy and geochemistry of sub-bituminous coal and its combustion products from Mpumalanga Province, South Africa Ira S. Krull (Ed.), Analytical Chemistry (2012), 10.5772/50692 L.F.O. Silva, T. Moreno, X. Querol An introductory TEM study of Fe-nanominerals within coal fly ash Sci. Total Environ., 407 (2009), pp. 4972-4974 J.G. Speight Application of spectroscopic techniques to the structural analysis of coal Appl. Spectrosc. Rev., 29 (1994), pp. 117-169 Z. Pu, J. Mi, J. Kang Removal of organic sulphur in two coals in microwave and ultrasonic co-enhanced oxidative process Adv. Mater. Res., 781–784 (2013), pp. 923-926 H.G. Alam, A.Z. Moghaddam, M.R. Omidkhan The influence of process para-meters on desulfurization of Mezino coal by HNO3/HCl leaching Fuel Process. Technol., 90 (2009), pp. 1-7 S. Ratanakandilok, S. Ngamprasersith, P. Prasassarakich Coal desulfurization with methanol/water and methanol/KOH Fuel, 80 (2001), pp. 937-942 M. Yavuz, T. Uslu Desulphurization and deashıng of fine coal by selective oil agglomeration using waste motor oil Energy Sources Part A Recovery Util. Environ. Eff., 37 (2015), pp. 1996-2003 J. Akhtar, S. Rehman, N. Sheikh, S. Munir Agglomeration of Pakistani coal (Lakhra) using diesel oil Energy Sources Part A Recovery Util. Environ. Eff., 38 (2016), pp. 3144-3149 P.E. Araya, R.B. Ohlbaum, S.E. Droguett Study of the treatment of sub-bituminous coals by NaOH solutions Fuel, 60 (1981), pp. 1127-1130 A.A. Adeleke, S.A. Ibitoye, A.A. Afonja, M.M. Chagga Multi stage caustic leaching de-ashing of Nigerian Lafia-Obi coal Pet. Coal, 53 (4) (2011), pp. 259-265 S. Mukherjee, P.C. Borthakur Chemical demineralization/ desulfurization of high sulfur coal using sodium hydroxide and acid solutions Fuel, 80 (2001), pp. 2037-2040 S. Mukherjee, P.C. Borthakur Effect of leaching high sulfur sub-bituminous coal by potassium hydroxide and acid on removal of mineral matter and sulfur Fuel, 82 (2003), pp. 783-788 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Journal of Environmental Chemical Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
http://sciencedirect.com/science/article/pii/S2213343720311799 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/5fbd02e5-b2ee-4472-af94-d48493ae5482/download https://repositorio.cuc.edu.co/bitstreams/9c1e2153-b692-4e46-82a3-b78add189f30/download https://repositorio.cuc.edu.co/bitstreams/afbf09e7-2ee7-4612-827b-fd84a0675058/download https://repositorio.cuc.edu.co/bitstreams/f84a9066-76f3-4a56-8784-1ed47cda3530/download https://repositorio.cuc.edu.co/bitstreams/cfb7211f-591e-4cd3-9fbe-a07f0953479f/download |
bitstream.checksum.fl_str_mv |
e30e9215131d99561d40d6b0abbe9bad db40d515a8de6b408dd511a4b55c9ad4 4460e5956bc1d1639be9ae6146a50347 2377755ddea536da9e7691a24f0bb17b 8b3ae56ba3d1f9fecd47db55b998cb97 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760848404742144 |
spelling |
Saikia, MonikankanaDas, TonkeswarHower, James C.O. Silva, Luis F.Fan, XingK. Saikia, Binoy2021-02-19T16:53:23Z2021-02-19T16:53:23Z2020-11-26https://hdl.handle.net/11323/7883https://doi.org/10.1016/j.jece.2020.104830Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present environmentally-friendly coal processing technology discussed herewith focuses on the combined effect of ultrasonic and microwave energy in the extent of mineral matter (ash yield) removal from high-sulfur, low-quality coals for their clean utilization. The novelty of this study is that the technique is very efficient instead of using drastic chemicals with less treatment time, less amount of reagent in comparison to the conventional method, and has the potential to adopt in large-scale commercial production of cleaner coals. The quality of the cleaner coal products was examined by using chemical analysis and advanced analytical techniques (electron beam analysis). The combined irradiation process of ultrasonic and microwave energy is observed to be the most effective for the beneficiation of high-sulfur coal than the single process. The result showed a maximum of 51.28% and 66.34% ash (mineral matter) removal from the coal samples by microwave followed by an ultrasonic process. The X-ray photoelectron spectroscopy (XPS) analysis revealed that both inorganic and organic sulfur is present in these Cenozoic low-rank, high-sulfur Indian coals. The high resolution-transmission electron microscopy (HR-TEM) image analysis of the treated coal samples showed nearly agglomerated collections of nanomaterials; carbon spheres/flacks with an irregular shape; and the elements such as oxygen, iron, silicon, sulfur, and aluminum in the beneficiated coal samples. The major mineral phases, including quartz, kaolinite, and gypsum, are found to be removed during the beneficiation process. The thermal analysis (TGA-DTG) also showed the suitability of the beneficiated coals for the power plant application.Saikia, MonikankanaDas, TonkeswarHower, James C.O. Silva, Luis F.Fan, XingK. Saikia, Binoyapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Environmental Chemical Engineeringhttp://sciencedirect.com/science/article/pii/S2213343720311799CoalCoal processingUltrasonic energyMicrowave energyCoal characterizationOxidative chemical beneficiation of low-quality coals under low-energy ultrasonic and microwave irradiation: an environmental-friendly approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionN. Dong, Utilisation of Low Rank Coals (IEA Clean Coal Centre, 2011).S.J. Mills, Global Perspective on the Use of Low Quality Coals (IEA Clean Coal Centre, 2011) CCC 180.P.S. Das, R.K. Lingam, S.K. Sriramoju, A. Suresh, P.K. Banerjee, S. Ganguly Effect of elevated temperature and pressure on the leaching characteristics of Indian coals Fuel, 140 (2015), pp. 302-308A. Suresh, R.K. Lingam, S.K. Sriramoju, A. Bodewar, T. Ray, P.S. Dash Pilot scale demineralization study on coal flotation tailings and optimization of the operational parameters with modeling Int. J. Miner. Process., 145 (2015), pp. 23-31A. Nabeel, T.A. Khan, D.K. Sharma Studies on production of ultra clean coal by alkali acid leaching of low grade coal Energy Sources, 31 (7) (2009), pp. 594-601V.K. Chandaliya, P.K. Banerjee, P.P. Biswas Optimization of solvent extraction process parameters of Indian coal Miner. Process. Extr. Metall. Rev., 33 (2012), pp. 246-259V.K. Chandaliya, P.P. Biswas, P.S. Dash Organo-refining of high-ash Indian coals at bench scale Fuel, 165 (2016), pp. 425-431K. Masaki, N. Kashimura, T. Takanohashi, S. Sato, A. Matsumura, I. Saito Effect of pretreatment with carbonic acid on “hypercoal” (ash-free coal) production from low-rank coals Energy Fuels, 19 (2005), pp. 2021-2025P. Meshram, B.K. Purohit, M.K. Sinha, S.K. Sahu, B.D. Pande Demineralization of low grade coal – a review Renew. Sustain. Energy Rev., 41 (2015), pp. 745-761B.S. Ken, B.K. Nandi Desulfurization of high sulfur Indian coal by oil agglomeration using linseed oil Powder Technol., 342 (2019), pp. 690-697X. Yu, Z. Luo, D. Gan Desulfurization of high sulfur fine coal using a novel combined beneficiation process Fuel, 254 (2019), Article 115603L. Wang, G. Jin, Y. Xu Desulfurization of coal using four ionic liquids with [HSO4]− Fuel, 236 (2019), pp. 1181-1190V.K. Kuppusamy, A. Kumar, M. Holuszko Simultaneous extraction of clean coal and rare earth elements from coal tailings using alkali-acid leaching process J. Energy Resour. Technol., 141 (2019), Article 070708Y. Xia, Z. Yang, R. Zhang, Y. Xing, X. Gui Performance of used lubricating oil as flotation collector for the recovery of clean low-rank coal Fuel, 239 (2019), pp. 717-725F. Anwara, R. Nasir, K. Maqsood, H. Suleman, F. Rehman, A. Ali, A. Abdulrahman, A. Ahmad, A.B. Mahfouz Desulfurization and optimization of low-grade local coal by sequential KOH and HCl treatment J. Sulfur Chem., 41 (2020), pp. 44-56V.K. Chandaliya, P.P. Biswas, P.S. Dash, D.K. Sharma Producing low-ash coal by microwave and ultrasonication pretreatment followed by solvent extraction of coal Fuel, 212 (2018), pp. 422-430B.K. Saikia, A.M. Dutta, L. Saikia, S. Ahmed, B.P. Baruah Ultrasonic assisted cleaning of high sulfur Indian coals in water and mixed alkali Fuel Process. Technol., 123 (2014), pp. 107-113B.K. Saikia, A.M. Dutta, B.P. Baruah Feasibility studies of desulfurization and de-ashing of low grade medium to high sulfur coals by low energy ultrasonication Fuel, 123 (2014), pp. 12-18B.K. Saikia, A.C. Dalmora, R. Choudhury, T. Das, S.R. Taffarel, L.F.O. Silva Effective removal of sulfur components from Brazilian power-coals by ultrasonication (40kHz) in presence of H2O2 Ultrason. Sonochem., 32 (2016), pp. 147-157S.D. Barma, R. Sathish, P.K. Baskey Ultrasonic-assisted cleaning of Indian low-grade coal for clean and sustainable energy J. Clean. Prod., 195 (2018), pp. 1203-1213S.D. Barma, R. Sathish, P.K. Baskey, S.K. Biswal Chemical beneficiation of high-ash indian noncoking coal by alkali leaching under low-frequency ultrasonication Energy Fuels, 32 (2018), pp. 1309-1319B. Ambedkar, T.N. Chintala, R. Nagarajan, S. Jayanti Feasibility of using ultrasound-assisted process for sulfur and ash removal from coal Chem. Eng. Process., 50 (2011), pp. 236-246B. Ambedkar, R. Nagarajan, S. Jayanti Investigation of high-frequency, high-intensity ultrasonics for size reduction and washing of coal in aqueous medium Ind. Eng. Chem. Res., 50 (2011), pp. 13210-13219M. Rahman, D. Pudasainee, R. Gupta Review on chemical upgrading of coal: production processes, potential applications and recent developments Fuel Process. Technol., 158 (2017), pp. 35-56G.F. Yannolis, Ultra clean coal: an option for greenhouse friendly coal fired power generation, in: Proceedings of the ACPS Meeting, Cessnock, NSW; ACPS: NSW, Australia, 2008.N. Wijaya, L. Zhang A critical review of coal demineralization and its implication on understanding the speciation of organically bound metals and submicrometer mineral grains in coal Energy Fuels, 25 (2011), pp. 1-16Y.X. Li, B.Q. Li Study on the ultrasonic irradiation of coal water slurry Fuel, 79 (2000), pp. 235-241M.M. Royaei, E. Jorjani, S.C. Chelgani Combination of microwave and ultrasonic irradiations as a pretreatment method to produce ultraclean coal Int. J. Coal Prep. Util., 32 (2012), pp. 143-155Y. Shen, T. Sun, X. Liub, J. Jiaa Rapid desulfurization of CWS via ultrasonic enhanced metal boron hydrides reduction under ambient conditions RSC Adv., 2 (2012), pp. 4189-4197P.A. Mello, F.A. Duarte, M.A. Nunes, M.S. Alencar, E.M. Moreira, M. Korn Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock Ultrason. Sonochem., 16 (2009), pp. 732-736E. Binner, E. Lester, S. Kingman, C. Dodds, J. Robinson, T. Wu A review of microwave coal processing J. Microw. Power Electromagn. Energy, 48 (1) (2014), pp. 35-60S.S. Srikant, R.B. Rao Prospects of microwave energy for coal processing J Microw. Eng. Technol., 2 (1) (2015), pp. 37-42E. Laster, S. Kingman The effect of microwave pre-heating on five different coals Fuel, 83 (2014), pp. 1941-1947X. Tao, N. Xu, M. Xie, L. Tang Progress of the technique of coal microwave desulfurization Int. J. Coal Sci. Technol., 1 (1) (2014), pp. 113-128A. Deb, M. Kanmani, A. Debnath, K.L. Bhowmik, B. Saha Ultrasonic assisted enhanced adsorption of methyl orange dye onto polyaniline impregnated zinc oxide nanoparticles: kinetic, isotherm and optimization of process parameters Ultrason. Sonochem., 54 (2019), pp. 290-301M. Bhowmik, M. Kanmani, A. Debnath, B. Saha Sono-assisted rapid adsorption of anionic dye onto magnetic CaFe2O4/MnFe2O4 nanocomposite from aqua matrix Powder Technol., 354 (2019), pp. 496-504J. Mi, J. Kang Desulfurization of Lu,an coal by ultrasonic and microwave Adv. Mater. Res., 512−515 (2012), pp. 2494-2499R. Nagarjan, Investigation of High-Frequency, High Intensity Ultrasonic for Size Reduction and Washing of Coal, BHEL RBIC Project Final Report, 2008.T.J. Mason, A. Colling, A. Sumel Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale Ultrason. Sonochem., 11 (2004), pp. 205-210S.A.H. Zaidi Application of sonic energy to caustic cleaning of coals Fuel Process. Technol., 53 (1997), pp. 31-39C.O. Kappe, A. Stadler, D. Dallinger Microwaves in Organic and Medicinal Chemistry Wiley-VCH, Weinheim (2005)S. Rajarathnam, D. Chandra, G.K. Handique An overview of chemical properties of marine-influenced Oligocene coal from the northeastern part of the Assam-Arakan basin, India Int. J. Coal Geol., 29 (1996), pp. 337-361D. Chandra, K. Mazumdar, S. Basumallick Distribution of sulfur in the tertiary coals of Meghalaya, India Int. J. Coal Geol., 3 (1983), pp. 63-75M.P. Singh, A.K. Singh Petrographic characteristics and depositional conditions of Eocene coals of platform basins, Meghalaya, India Int. J. Coal Geol., 42 (2000), pp. 315-356B.P. Baruah, P. Khare Pyrolysis of high sulphur Indian coals Energy Fuels, 21 (2007), pp. 3346-3352ASTM Standard Practice for Preparing Coal Samples for Analysis ASTM International, West Conshohocken, PA (2018)ASTM, Annual Book of ASTM Standards; Coal and Coke, Standard Practice for Proximate Analysis of Coal and Coke, vol. 05.05, 1991(a).ASTM, Annual Book of ASTM Standards; Coal and Coke, Standard Practice for Ultimate Analysis of Coal and Coke, vol. 05.05, 1991(b).ASTM, Annual Book of ASTM Standards; Gaseous Fuels; Coal and Coke; Bioenergy Industrial Chemicals from Biomass. Standard Test Method for Gross Calorific Value of Coal and Coke, 05.06, 2013.C.L. Christman, A.J. Carmichael, M.M. Mossoba, P. Riesz Evidence for free radicals produced in aqueous solutions by diagnostic ultrasound Ultrasonics, 25 (1987), pp. 31-34K. Makino, M.M. Mossoba, P. Riesz Chemical effects of ultrasound on aqueous solutions evidence for OH- and H+ by spin trapping J. Am. Chem. Soc., 104 (1982), pp. 3537-3539S.P. Nayak, B.K. Sing Instrumental characterization of clay by XRD, XRF, and XRF Indian Acad. Sci., 30 (2007), pp. 235-238R.S. Winburn, S.L. Lerach, B.R. Jarabek, M.A. Wisdom, D.G. Grier, G.J. McCarthy Quantitative XRD analysis of coal combustion by-products by the Rietveld method testing with standard mixtures, International Centre for Diffraction Data Adv. X-ray Anal., 42 (2000), pp. 387-391B.K. Saikia, R.K. Boruah, P.K. Gogoi X-ray (radial distribution function, RDF) and FT-IR analysis of high sulfur Tirap (India) coal J. Energy Inst., 82 (2009), pp. 106-108B.K. Saikia, R.K. Boruah, P.K. Gogoi XRD and FT-IR investigations of sub-bituminous Assam coals Bull. Mater. Sci., 30 (4) (2007), pp. 421-426B.K. Saikia, A.M. Dutta, L. Saikia, S. Ahmed, B.P. Baruah Ultrasonic assisted cleaning of high sulfur Indian coals in water and mixed alkali Fuel Process. Technol., 123 (2013) 107-103B.K. Saikia, A.M. Dutta, B.P. Baruah Fesibility studies of de-sulfurization and de-ashing of low grade medium to high sulfur coals by low energy ultrasonification Fuel, 123 (2014), pp. 12-18P.D. Green, C.A. Johnson, K.M. Thomas Applications of laser Raman microprobe spectroscopy to the characterization of coal and cokes Fuel, 62 (1983), pp. 1013-1023S.A. Akinyemi, W.M. Gitari, A. Akinlua, L.F. Petrik Mineralogy and geochemistry of sub-bituminous coal and its combustion products from Mpumalanga Province, South Africa Ira S. Krull (Ed.), Analytical Chemistry (2012), 10.5772/50692L.F.O. Silva, T. Moreno, X. Querol An introductory TEM study of Fe-nanominerals within coal fly ash Sci. Total Environ., 407 (2009), pp. 4972-4974J.G. Speight Application of spectroscopic techniques to the structural analysis of coal Appl. Spectrosc. Rev., 29 (1994), pp. 117-169Z. Pu, J. Mi, J. Kang Removal of organic sulphur in two coals in microwave and ultrasonic co-enhanced oxidative process Adv. Mater. Res., 781–784 (2013), pp. 923-926H.G. Alam, A.Z. Moghaddam, M.R. Omidkhan The influence of process para-meters on desulfurization of Mezino coal by HNO3/HCl leaching Fuel Process. Technol., 90 (2009), pp. 1-7S. Ratanakandilok, S. Ngamprasersith, P. Prasassarakich Coal desulfurization with methanol/water and methanol/KOH Fuel, 80 (2001), pp. 937-942M. Yavuz, T. Uslu Desulphurization and deashıng of fine coal by selective oil agglomeration using waste motor oil Energy Sources Part A Recovery Util. Environ. Eff., 37 (2015), pp. 1996-2003J. Akhtar, S. Rehman, N. Sheikh, S. Munir Agglomeration of Pakistani coal (Lakhra) using diesel oil Energy Sources Part A Recovery Util. Environ. Eff., 38 (2016), pp. 3144-3149P.E. Araya, R.B. Ohlbaum, S.E. Droguett Study of the treatment of sub-bituminous coals by NaOH solutions Fuel, 60 (1981), pp. 1127-1130A.A. Adeleke, S.A. Ibitoye, A.A. Afonja, M.M. Chagga Multi stage caustic leaching de-ashing of Nigerian Lafia-Obi coal Pet. Coal, 53 (4) (2011), pp. 259-265S. Mukherjee, P.C. Borthakur Chemical demineralization/ desulfurization of high sulfur coal using sodium hydroxide and acid solutions Fuel, 80 (2001), pp. 2037-2040S. Mukherjee, P.C. Borthakur Effect of leaching high sulfur sub-bituminous coal by potassium hydroxide and acid on removal of mineral matter and sulfur Fuel, 82 (2003), pp. 783-788PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/5fbd02e5-b2ee-4472-af94-d48493ae5482/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALOxidative chemical beneficiation of low.pdfOxidative chemical beneficiation of low.pdfapplication/pdf11832https://repositorio.cuc.edu.co/bitstreams/9c1e2153-b692-4e46-82a3-b78add189f30/downloaddb40d515a8de6b408dd511a4b55c9ad4MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/afbf09e7-2ee7-4612-827b-fd84a0675058/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILOxidative chemical beneficiation of low.pdf.jpgOxidative chemical beneficiation of low.pdf.jpgimage/jpeg53178https://repositorio.cuc.edu.co/bitstreams/f84a9066-76f3-4a56-8784-1ed47cda3530/download2377755ddea536da9e7691a24f0bb17bMD54TEXTOxidative chemical beneficiation of low.pdf.txtOxidative chemical beneficiation of low.pdf.txttext/plain2173https://repositorio.cuc.edu.co/bitstreams/cfb7211f-591e-4cd3-9fbe-a07f0953479f/download8b3ae56ba3d1f9fecd47db55b998cb97MD5511323/7883oai:repositorio.cuc.edu.co:11323/78832024-09-17 14:10:32.45http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |