Smart manufacturing applications for inspection and quality assurance processes

Smart manufacturing had a high impact in recent years within the inspection and quality assurance processes, providing innovative technologies in machine learning. Consequently, the article presents a systematic review of the applications of automation to statistical quality control in companies in...

Full description

Autores:
Galindo Salcedo, Maremys
Pertúz Montero, Altagracia
Guzmán Castillo, Stefania
Gómez Charris, Yulineth
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9360
Acceso en línea:
https://hdl.handle.net/11323/9360
https://doi.org/10.1016/j.procs.2021.12.282
https://repositorio.cuc.edu.co/
Palabra clave:
Quality
Automation
Smart manufacturing
Machine learning
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_d2c392ae8c64c0866b73e8c00e2dda97
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9360
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Smart manufacturing applications for inspection and quality assurance processes
title Smart manufacturing applications for inspection and quality assurance processes
spellingShingle Smart manufacturing applications for inspection and quality assurance processes
Quality
Automation
Smart manufacturing
Machine learning
title_short Smart manufacturing applications for inspection and quality assurance processes
title_full Smart manufacturing applications for inspection and quality assurance processes
title_fullStr Smart manufacturing applications for inspection and quality assurance processes
title_full_unstemmed Smart manufacturing applications for inspection and quality assurance processes
title_sort Smart manufacturing applications for inspection and quality assurance processes
dc.creator.fl_str_mv Galindo Salcedo, Maremys
Pertúz Montero, Altagracia
Guzmán Castillo, Stefania
Gómez Charris, Yulineth
dc.contributor.author.spa.fl_str_mv Galindo Salcedo, Maremys
Pertúz Montero, Altagracia
Guzmán Castillo, Stefania
Gómez Charris, Yulineth
dc.subject.proposal.eng.fl_str_mv Quality
Automation
Smart manufacturing
Machine learning
topic Quality
Automation
Smart manufacturing
Machine learning
description Smart manufacturing had a high impact in recent years within the inspection and quality assurance processes, providing innovative technologies in machine learning. Consequently, the article presents a systematic review of the applications of automation to statistical quality control in companies in the industrial sector, deriving subtopics such as artificial vision, intelligent manufacturing, inspection in the different production processes, neural networks, automation through statistical process control techniques and finally quality assurance, in addition, a general analysis of them is shown. Additionally, it is shown that these technologies improve automated manufacturing processes, making them more efficient, with better performance and productivity, also contributing to the optimization of time, cost reduction, strengthening of inspection, and quality assurance. Finally, future research opportunities for industrial applications are identified.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-12T14:26:27Z
dc.date.available.none.fl_str_mv 2022-07-12T14:26:27Z
dc.date.issued.none.fl_str_mv 2022-01-26
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Maremys Galindo-Salcedo, Altagracia Pertúz-Moreno, Stefania Guzmán-Castillo, Yulineth Gómez-Charris, Alfonso R. Romero-Conrado, Smart manufacturing applications for inspection and quality assurance processes, Procedia Computer Science, Volume 198, 2022, Pages 536-541,ISSN 1877-0509,
dc.identifier.issn.spa.fl_str_mv 18770509
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9360
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1016/j.procs.2021.12.282
dc.identifier.doi.spa.fl_str_mv 10.1016/j.procs.2021.12.282
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Maremys Galindo-Salcedo, Altagracia Pertúz-Moreno, Stefania Guzmán-Castillo, Yulineth Gómez-Charris, Alfonso R. Romero-Conrado, Smart manufacturing applications for inspection and quality assurance processes, Procedia Computer Science, Volume 198, 2022, Pages 536-541,ISSN 1877-0509,
18770509
10.1016/j.procs.2021.12.282
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9360
https://doi.org/10.1016/j.procs.2021.12.282
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Procedia Computer Science
dc.relation.references.spa.fl_str_mv 1] Sarivan IM, Greiner JN, Díez Álvarez D, Euteneuer F, Reichenbach M, Madsen O, et al. Enabling real-time quality inspection in smart manufacturing through wearable smart devices and deep learning. Procedia Manuf., vol. 51, Elsevier; 2020, p. 373–80. https://doi.org/10.1016/j.promfg.2020.10.053.
[2] Galvis Leal L, Orozco De Alba L, Romero-Conrado AR. Desarrollo, tendencias, aplicaciones y herramientas de la industria 4.0 en el sector textil. Boletín Innovación, Logística y Operaciones - BILO 2020;2:2–5. https://doi.org/10.17981/bilo.02.01.2020.15.
[3] Romero-Conrado AR, Coronado-Hernandez JR, Rius-Sorolla G, García-Sabater JP. A Tabu list-based algorithm for capacitated multilevel lot-sizing with alternate bills of materials and co-production environments. Appl Sci 2019;9:6–9. https://doi.org/10.3390/app9071464.
[4] Lin YJ, Wei SH, Huang CY. Intelligent Manufacturing Control Systems: The Core of Smart Factory. Procedia Manuf 2019;39:389–97. https://doi.org/10.1016/J.PROMFG.2020.01.382.
[5] Javaid M, Abid Haleem, Pratap Singh R, Suman R. Significance of Quality 4.0 towards comprehensive enhancement in manufacturing sector. Sensors Int 2021;2:100109. https://doi.org/10.1016/j.sintl.2021.100109.
[6] Fahle S, Prinz C, Kuhlenkötter B. Systematic review on machine learning (ML) methods for manufacturing processes - Identifying artificial intelligence (AI) methods for field application. Procedia CIRP 2020;93:413–8. https://doi.org/10.1016/j.procir.2020.04.109.
[7] Goldman C V., Baltaxe M, Chakraborty D, Arinez J. Explaining Learning Models in Manufacturing Processes. Procedia Comput. Sci., vol. 180, Elsevier; 2021, p. 259–68. https://doi.org/10.1016/j.procs.2021.01.163.
[8] Schmitt J, Bönig J, Borggräfe T, Beitinger G, Deuse J. Predictive model-based quality inspection using Machine Learning and Edge
[9] Fernández-Robles L, Azzopardi G, Alegre E, Petkov N. Machine-vision-based identification of broken inserts in edge profile milling heads. Robot Comput Integr Manuf 2017;44:276–83. https://doi.org/10.1016/J.RCIM.2016.10.004.
[10] Stavropoulos P, Papacharalampopoulos A, Petridis D. A vision-based system for real-time defect detection: a rubber compound part case study. Procedia CIRP 2020;93:1230–5. https://doi.org/10.1016/J.PROCIR.2020.04.159.
[11] Deshpande AM, Minai AA, Kumar M. One-Shot Recognition of Manufacturing Defects in Steel Surfaces. Procedia Manuf 2020;48:1064–71. https://doi.org/10.1016/J.PROMFG.2020.05.146.
[12] Domański PD, Golonka S, Marusak PM, Moszowski B. Robust and Asymmetric Assessment of the Benefits from Improved Control – Industrial Validation. IFAC-PapersOnLine 2018;51:815–20. https://doi.org/10.1016/j.ifacol.2018.09.260.
[13] Brito T, Queiroz J, Piardi L, Fernandes LA, Lima J, Leitão P. A machine learning approach for collaborative robot smart manufacturing inspection for quality control systems. Procedia Manuf 2020;51:11–8. https://doi.org/10.1016/j.promfg.2020.10.003.
[14] Popper J, Harms C, Ruskowski M. Enabling reliable visual quality control in smart factories through TSN. Procedia CIRP 2020;88:549–53. https://doi.org/10.1016/j.procir.2020.05.095.
[15] Susto GA, Terzi M, Beghi A. Anomaly Detection Approaches for Semiconductor Manufacturing. Procedia Manuf 2017;11:2018–24. https://doi.org/10.1016/J.PROMFG.2017.07.353.
[16] Struchtrup AS, Kvaktun D, Schiffers R. Adaptive quality prediction in injection molding based on ensemble learning. Procedia CIRP 2021;99:301–6. https://doi.org/10.1016/J.PROCIR.2021.03.045.
[17] Kolosowski M, Duda J, Tomasiak J. Statistical process control in conditions of piece and small lot production. Ann DAAAM Proc Int DAAAM Symp 2015;2015-Janua:147–55. https://doi.org/10.2507/26th.daaam.proceedings.021.
[18] Bottani E, Montanari R, Volpi A, Tebaldi L, Maria G Di. Statistical Process Control of assembly lines in a manufacturing plant: Process Capability assessment. Procedia Comput Sci 2021;180:1024–33. https://doi.org/10.1016/j.procs.2021.01.353.
[19] Harris K, Triantafyllopoulos K, Stillman E, McLeay T. A Multivariate Control Chart for Autocorrelated Tool Wear Processes. Qual Reliab Eng Int 2016;32:2093–106. https://doi.org/10.1002/QRE.2032.
[20] Schumacher A, Sihn W. Development of a monitoring system for implementation of industrial digitalization and automation using 143 key performance indicators. Procedia CIRP 2020;93:1310–5. https://doi.org/10.1016/j.procir.2020.03.012.
[21] Venkatasubramanian V. Process Fault Detection and Diagnosis: Past, Present and Future. IFAC Proc Vol 2001;34:1–13. https://doi.org/10.1016/s1474-6670(17)33563-2.
[22] Bici M, Broggiato GB, Campana F, Dughiero A. Computer Aided Inspection Procedures to Support Smart Manufacturing of Injection Moulded Components. Procedia Manuf 2017;11:1184–92. https://doi.org/10.1016/J.PROMFG.2017.07.243.
[23] Xia Q, Jiang C, Yang C, Zheng X, Pan X, Shuai Y, et al. A method towards smart manufacturing capabilities and performance measurement. Procedia Manuf 2019;39:851–8. https://doi.org/10.1016/j.promfg.2020.01.415.
[24] Crawford B, Sourki R, Khayyam H, S. Milani A. A machine learning framework with dataset-knowledgeability pre-assessment and a local decision-boundary crispness score: An industry 4.0-based case study on composite autoclave manufacturing. Comput Ind 2021;132:103510. https://doi.org/10.1016/j.compind.2021.103510.
[25] Date K, Tanaka Y. Quality-Oriented Statistical Process Control Utilizing Bayesian Modeling. IEEE Trans Semicond Manuf 2021;34:307–11. https://doi.org/10.1109/TSM.2021.3073954.
[26] Batabyal A, Sagar S, Zhang J, Dube T, Yang X, Zhang J. Gaussian Process-Based Model to Optimize Additively Manufactured Powder Microstructures From Phase Field Modeling. ASCE-ASME J Risk Uncertain Eng Syst 2022;8. https://doi.org/https://doi.org/10.1115/1.4051745.
[27] Schippers WAJ. An integrated approach to process control. Int J Prod Econ 2001;69:93–105. https://doi.org/10.1016/S0925- 5273(98)00243-6.
dc.relation.citationendpage.spa.fl_str_mv 541
dc.relation.citationstartpage.spa.fl_str_mv 536
dc.relation.citationvolume.spa.fl_str_mv 198
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2021 The Authors. Published by Elsevier B.V.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2021 The Authors. Published by Elsevier B.V.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier BV
dc.publisher.place.spa.fl_str_mv Netherlands
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050921025217?via%3Dihub
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/52ee77fb-a372-4560-a500-4ec4f988abaf/download
https://repositorio.cuc.edu.co/bitstreams/51fde536-0c91-4ead-b68a-accf17c86e52/download
https://repositorio.cuc.edu.co/bitstreams/d7bb1f93-2394-4f60-8a5b-09b62ca2bd42/download
https://repositorio.cuc.edu.co/bitstreams/4d3a620f-56a4-4688-9b0c-ecc807dedae7/download
bitstream.checksum.fl_str_mv 512231e23a863e5183978fe5ab4777bf
e30e9215131d99561d40d6b0abbe9bad
0c9bf675251f7325a842d1dcadae1e10
615ac5d5d0c77b5012e26b0caefdfafc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760771507421184
spelling Galindo Salcedo, Maremys Pertúz Montero, Altagracia Guzmán Castillo, StefaniaGómez Charris, Yulineth2022-07-12T14:26:27Z2022-07-12T14:26:27Z2022-01-26Maremys Galindo-Salcedo, Altagracia Pertúz-Moreno, Stefania Guzmán-Castillo, Yulineth Gómez-Charris, Alfonso R. Romero-Conrado, Smart manufacturing applications for inspection and quality assurance processes, Procedia Computer Science, Volume 198, 2022, Pages 536-541,ISSN 1877-0509,18770509https://hdl.handle.net/11323/9360https://doi.org/10.1016/j.procs.2021.12.28210.1016/j.procs.2021.12.282Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Smart manufacturing had a high impact in recent years within the inspection and quality assurance processes, providing innovative technologies in machine learning. Consequently, the article presents a systematic review of the applications of automation to statistical quality control in companies in the industrial sector, deriving subtopics such as artificial vision, intelligent manufacturing, inspection in the different production processes, neural networks, automation through statistical process control techniques and finally quality assurance, in addition, a general analysis of them is shown. Additionally, it is shown that these technologies improve automated manufacturing processes, making them more efficient, with better performance and productivity, also contributing to the optimization of time, cost reduction, strengthening of inspection, and quality assurance. Finally, future research opportunities for industrial applications are identified.6 páginasapplication/pdfengElsevier BVNetherlandsAtribución 4.0 Internacional (CC BY 4.0)© 2021 The Authors. Published by Elsevier B.V.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Smart manufacturing applications for inspection and quality assurance processesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S1877050921025217?via%3DihubProcedia Computer Science1] Sarivan IM, Greiner JN, Díez Álvarez D, Euteneuer F, Reichenbach M, Madsen O, et al. Enabling real-time quality inspection in smart manufacturing through wearable smart devices and deep learning. Procedia Manuf., vol. 51, Elsevier; 2020, p. 373–80. https://doi.org/10.1016/j.promfg.2020.10.053.[2] Galvis Leal L, Orozco De Alba L, Romero-Conrado AR. Desarrollo, tendencias, aplicaciones y herramientas de la industria 4.0 en el sector textil. Boletín Innovación, Logística y Operaciones - BILO 2020;2:2–5. https://doi.org/10.17981/bilo.02.01.2020.15.[3] Romero-Conrado AR, Coronado-Hernandez JR, Rius-Sorolla G, García-Sabater JP. A Tabu list-based algorithm for capacitated multilevel lot-sizing with alternate bills of materials and co-production environments. Appl Sci 2019;9:6–9. https://doi.org/10.3390/app9071464.[4] Lin YJ, Wei SH, Huang CY. Intelligent Manufacturing Control Systems: The Core of Smart Factory. Procedia Manuf 2019;39:389–97. https://doi.org/10.1016/J.PROMFG.2020.01.382.[5] Javaid M, Abid Haleem, Pratap Singh R, Suman R. Significance of Quality 4.0 towards comprehensive enhancement in manufacturing sector. Sensors Int 2021;2:100109. https://doi.org/10.1016/j.sintl.2021.100109.[6] Fahle S, Prinz C, Kuhlenkötter B. Systematic review on machine learning (ML) methods for manufacturing processes - Identifying artificial intelligence (AI) methods for field application. Procedia CIRP 2020;93:413–8. https://doi.org/10.1016/j.procir.2020.04.109.[7] Goldman C V., Baltaxe M, Chakraborty D, Arinez J. Explaining Learning Models in Manufacturing Processes. Procedia Comput. Sci., vol. 180, Elsevier; 2021, p. 259–68. https://doi.org/10.1016/j.procs.2021.01.163.[8] Schmitt J, Bönig J, Borggräfe T, Beitinger G, Deuse J. Predictive model-based quality inspection using Machine Learning and Edge[9] Fernández-Robles L, Azzopardi G, Alegre E, Petkov N. Machine-vision-based identification of broken inserts in edge profile milling heads. Robot Comput Integr Manuf 2017;44:276–83. https://doi.org/10.1016/J.RCIM.2016.10.004.[10] Stavropoulos P, Papacharalampopoulos A, Petridis D. A vision-based system for real-time defect detection: a rubber compound part case study. Procedia CIRP 2020;93:1230–5. https://doi.org/10.1016/J.PROCIR.2020.04.159.[11] Deshpande AM, Minai AA, Kumar M. One-Shot Recognition of Manufacturing Defects in Steel Surfaces. Procedia Manuf 2020;48:1064–71. https://doi.org/10.1016/J.PROMFG.2020.05.146.[12] Domański PD, Golonka S, Marusak PM, Moszowski B. Robust and Asymmetric Assessment of the Benefits from Improved Control – Industrial Validation. IFAC-PapersOnLine 2018;51:815–20. https://doi.org/10.1016/j.ifacol.2018.09.260.[13] Brito T, Queiroz J, Piardi L, Fernandes LA, Lima J, Leitão P. A machine learning approach for collaborative robot smart manufacturing inspection for quality control systems. Procedia Manuf 2020;51:11–8. https://doi.org/10.1016/j.promfg.2020.10.003.[14] Popper J, Harms C, Ruskowski M. Enabling reliable visual quality control in smart factories through TSN. Procedia CIRP 2020;88:549–53. https://doi.org/10.1016/j.procir.2020.05.095.[15] Susto GA, Terzi M, Beghi A. Anomaly Detection Approaches for Semiconductor Manufacturing. Procedia Manuf 2017;11:2018–24. https://doi.org/10.1016/J.PROMFG.2017.07.353.[16] Struchtrup AS, Kvaktun D, Schiffers R. Adaptive quality prediction in injection molding based on ensemble learning. Procedia CIRP 2021;99:301–6. https://doi.org/10.1016/J.PROCIR.2021.03.045.[17] Kolosowski M, Duda J, Tomasiak J. Statistical process control in conditions of piece and small lot production. Ann DAAAM Proc Int DAAAM Symp 2015;2015-Janua:147–55. https://doi.org/10.2507/26th.daaam.proceedings.021.[18] Bottani E, Montanari R, Volpi A, Tebaldi L, Maria G Di. Statistical Process Control of assembly lines in a manufacturing plant: Process Capability assessment. Procedia Comput Sci 2021;180:1024–33. https://doi.org/10.1016/j.procs.2021.01.353.[19] Harris K, Triantafyllopoulos K, Stillman E, McLeay T. A Multivariate Control Chart for Autocorrelated Tool Wear Processes. Qual Reliab Eng Int 2016;32:2093–106. https://doi.org/10.1002/QRE.2032.[20] Schumacher A, Sihn W. Development of a monitoring system for implementation of industrial digitalization and automation using 143 key performance indicators. Procedia CIRP 2020;93:1310–5. https://doi.org/10.1016/j.procir.2020.03.012.[21] Venkatasubramanian V. Process Fault Detection and Diagnosis: Past, Present and Future. IFAC Proc Vol 2001;34:1–13. https://doi.org/10.1016/s1474-6670(17)33563-2.[22] Bici M, Broggiato GB, Campana F, Dughiero A. Computer Aided Inspection Procedures to Support Smart Manufacturing of Injection Moulded Components. Procedia Manuf 2017;11:1184–92. https://doi.org/10.1016/J.PROMFG.2017.07.243.[23] Xia Q, Jiang C, Yang C, Zheng X, Pan X, Shuai Y, et al. A method towards smart manufacturing capabilities and performance measurement. Procedia Manuf 2019;39:851–8. https://doi.org/10.1016/j.promfg.2020.01.415.[24] Crawford B, Sourki R, Khayyam H, S. Milani A. A machine learning framework with dataset-knowledgeability pre-assessment and a local decision-boundary crispness score: An industry 4.0-based case study on composite autoclave manufacturing. Comput Ind 2021;132:103510. https://doi.org/10.1016/j.compind.2021.103510.[25] Date K, Tanaka Y. Quality-Oriented Statistical Process Control Utilizing Bayesian Modeling. IEEE Trans Semicond Manuf 2021;34:307–11. https://doi.org/10.1109/TSM.2021.3073954.[26] Batabyal A, Sagar S, Zhang J, Dube T, Yang X, Zhang J. Gaussian Process-Based Model to Optimize Additively Manufactured Powder Microstructures From Phase Field Modeling. ASCE-ASME J Risk Uncertain Eng Syst 2022;8. https://doi.org/https://doi.org/10.1115/1.4051745.[27] Schippers WAJ. An integrated approach to process control. Int J Prod Econ 2001;69:93–105. https://doi.org/10.1016/S0925- 5273(98)00243-6.541536198QualityAutomationSmart manufacturingMachine learningPublicationORIGINAL1-s2.0-S1877050921025217-main.pdf1-s2.0-S1877050921025217-main.pdfapplication/pdf463042https://repositorio.cuc.edu.co/bitstreams/52ee77fb-a372-4560-a500-4ec4f988abaf/download512231e23a863e5183978fe5ab4777bfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/51fde536-0c91-4ead-b68a-accf17c86e52/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S1877050921025217-main.pdf.txt1-s2.0-S1877050921025217-main.pdf.txttext/plain30079https://repositorio.cuc.edu.co/bitstreams/d7bb1f93-2394-4f60-8a5b-09b62ca2bd42/download0c9bf675251f7325a842d1dcadae1e10MD53THUMBNAIL1-s2.0-S1877050921025217-main.pdf.jpg1-s2.0-S1877050921025217-main.pdf.jpgimage/jpeg12935https://repositorio.cuc.edu.co/bitstreams/4d3a620f-56a4-4688-9b0c-ecc807dedae7/download615ac5d5d0c77b5012e26b0caefdfafcMD5411323/9360oai:repositorio.cuc.edu.co:11323/93602024-09-17 11:04:41.385https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==