Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model

The use of smart packaging is a global trend, and several works are being reported in this sense. Special attention is given to biodegradable materials like chitosan and natural pigments like anthocyanins. For example, previous studies report that it is possible to produce smart packaging by extract...

Full description

Autores:
Carvalho, Valéria V.L.
Pinto, Diana
Salau, Nina P.G.
Pinto, Luiz A.A.
Cadaval, Tito R.S.
Silva, Luis F.O.
Lopes, Toni J.
Dotto, Guilherme L.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10882
Acceso en línea:
https://hdl.handle.net/11323/10882
https://repositorio.cuc.edu.co
Palabra clave:
Adsorption
Anthocyanins
Films
Mass transfer
Red cabbage
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
id RCUC2_d263653bebc93dee9776b80059547a2f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10882
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model
title Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model
spellingShingle Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model
Adsorption
Anthocyanins
Films
Mass transfer
Red cabbage
title_short Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model
title_full Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model
title_fullStr Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model
title_full_unstemmed Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model
title_sort Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model
dc.creator.fl_str_mv Carvalho, Valéria V.L.
Pinto, Diana
Salau, Nina P.G.
Pinto, Luiz A.A.
Cadaval, Tito R.S.
Silva, Luis F.O.
Lopes, Toni J.
Dotto, Guilherme L.
dc.contributor.author.none.fl_str_mv Carvalho, Valéria V.L.
Pinto, Diana
Salau, Nina P.G.
Pinto, Luiz A.A.
Cadaval, Tito R.S.
Silva, Luis F.O.
Lopes, Toni J.
Dotto, Guilherme L.
dc.subject.proposal.eng.fl_str_mv Adsorption
Anthocyanins
Films
Mass transfer
Red cabbage
topic Adsorption
Anthocyanins
Films
Mass transfer
Red cabbage
description The use of smart packaging is a global trend, and several works are being reported in this sense. Special attention is given to biodegradable materials like chitosan and natural pigments like anthocyanins. For example, previous studies report that it is possible to produce smart packaging by extracting anthocyanins from red cabbage and adsorbing it into chitosan films. This work elucidates for the first time the mass transfer aspects in the anthocyanins adsorption on chitosan films (CFS). Anthocyanins were extracted from red cabbage and subsequently adsorbed from the leach liquor using chitosan films. The Freundlich model well represented the adsorption isotherms of anthocyanins on CFS. In addition, the PVSDM (pore volume and surface diffusion model) model was implemented to represent the adsorption data and to elucidate the mass transfer. This model was suitable to represent the adsorption data, with a coefficient of determination (R2) higher than 0.95 and an average relative error (ARE) lower than 2.00%. The surface diffusion coefficient values (DS) ranged from 3.70 × 10−10 cm2 s−1 to 1.16 × 10−9 cm2 s−1. The external mass transfer coefficient (kF) was in the range of 10−2 cm s−1. Finally, the Biot number (Bi) revealed that mechanisms inside the particle controlled the anthocyanin's adsorption onto CFS.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2024-03-19T13:16:33Z
dc.date.available.none.fl_str_mv 2024-03-19T13:16:33Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Carvalho, V. V. L., Pinto, D., Salau, N. P. G., Pinto, L. A. A., Cadaval, T. R. S., Silva, L. F. O., Lopes, T. J., & Dotto, G. L. (2022). Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model. Separation and Purification Technology, 292, 121062. https://doi.org/10.1016/j.seppur.2022.121062
dc.identifier.issn.spa.fl_str_mv 1383-5866
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10882
dc.identifier.doi.none.fl_str_mv 10.1016/j.seppur.2022.121062
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co
identifier_str_mv Carvalho, V. V. L., Pinto, D., Salau, N. P. G., Pinto, L. A. A., Cadaval, T. R. S., Silva, L. F. O., Lopes, T. J., & Dotto, G. L. (2022). Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model. Separation and Purification Technology, 292, 121062. https://doi.org/10.1016/j.seppur.2022.121062
1383-5866
10.1016/j.seppur.2022.121062
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10882
https://repositorio.cuc.edu.co
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Separation and Purification Technology
dc.relation.references.spa.fl_str_mv [1] B. Yousuf, K. Gul, A.A. Wani, P. Singh, Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review, Crit. Rev. Food Sci. Nutr. 56 (13) (2016) 2223–2230, https://doi.org/10.1080/10408398.2013.805316.
[2] P. Mizgier, A.Z. Kucharska, A. Soko´ł-Łetowska, J. Kolniak-Ostek, M. Kidon, ´I. Fecka, Characterization of phenolic compounds and antioxidant and antiinflammatory properties of red cabbage and purple carrot extracts, J. Funct. Foods 21 (2016) 133–146, https://doi.org/10.1016/j.jff.2015.12.004.
[3] G.L. Dotto, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption, Chem. Eng. J. 214 (2013) 8–16, https://doi.org/10.1016/j.cej.2012.10.027.
[4] V.V.L. Carvalho, J.O. Gonçalves, A. Silva, T.R. Cadaval, L.A.A. Pinto, T.J. Lopes, Separation of anthocyanins extracted from red cabbage by adsorption onto chitosan films, Int. J. Biol. Macromol. 131 (2019) 905–911, https://doi.org/ 10.1016/j.ijbiomac.2019.03.145.
[5] X. Pang, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G. Luiz Dotto, M.K. Abu Shayeb, H. Belmabrouk, A. Bonilla-Petriciolet, Z. Li, Preparation and characterization of a novel mountain soursop seeds powder adsorbent and its application for the removal of crystal violet and methylene blue from aqueous solutions, Chem. Eng. J. 391 (2020) 123617, https://doi.org/10.1016/j. cej.2019.123617.
[6] L. Sellaoui, D. Franco, H. Ghalla, J. Georgin, M.S. Netto, G. Luiz Dotto, A. BonillaPetriciolet, H. Belmabrouk, A. Bajahzar, Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: experiments, phenomenological modelling and DFT calculations, Chem. Eng. J. 394 (2020) 125011, https://doi. org/10.1016/j.cej.2020.125011.
[7] P.V.S. Lins, D.C. Henrique, A.H. Ide, J.L.S. Duarte, G.L. Dotto, A. Yazidi, L. Sellaoui, A. Erto, C.L.P. Zanta, L. Meili, Adsorption of a non-steroidal anti-inflammatory drug onto MgAl/LDH-activated carbon composite – experimental investigation and statistical physics modeling, Colloids Surf. A: Phycochem. Eng. Aspects. 586 (2020) 124217, https://doi.org/10.1016/j.colsurfa.2019.124217.
[8] N.M. Mahmoodi, M.H. Saffar-Dastgerdi, Clean Laccase immobilized nanobiocatalysts (graphene oxide - zeolite nanocomposites): from production to detailed biocatalytic degradation of organic pollutant, Appl. Catal. B: Environ. 268 (2020) 118443, https://doi.org/10.1016/j.apcatb.2019.118443.
[9] N. Nasrollahi, S. Aber, V. Vatanpour, N.M. Mahmoodi, The effect of amine functionalization of CuO and ZnO nanoparticles used as additives on the morphology and the permeation properties of polyethersulfone ultrafiltration nanocomposite membranes, Comp. Part B: Eng. 154 (2018) 388–409, https://doi. org/10.1016/j.compositesb.2018.09.027.
[10] N.M. Mahmoodi, B. Hayati, H. Bahrami, M. Arami, Dye adsorption and desorption properties of Mentha pulegium in single and binary systems, J. Appl. Polym. Sci. 122 (2011) 1489–1499, https://doi.org/10.1002/app.34235.
[11] N.M. Mahmoodi, Synthesis of magnetic carbon nanotube and photocatalytic dye degradation ability, Environ. Monit. Assessm. 186 (9) (2014) 5595–5604, https:// doi.org/10.1007/s10661-014-3805-7.
[12] B. Hayati, N.M. Mahmoodi, A. Maleki, Dendrimer–titania nanocomposite: synthesis and dye-removal capacity, Res. Chem. Intermed. 41 (2015) (2015) 3743–3757, https://doi.org/10.1007/s11164-013-1486-4.
[13] B. Hayati, N.M. Mahmoodi, M. Arami, F. Mazaheri, Dye removal from colored textile wastewater by poly(propylene imine) dendrimer: operational parameters and isotherm studies, Clean: Soil Air, Water 39 (7) (2011) 673–679, https://doi. org/10.1002/clen.201000182.
[14] M. Oveisi, M.A. Asli, N.M. Mahmoodi, Carbon nanotube based metal-organic framework nanocomposites: Synthesis and their photocatalytic activity for decolorization of colored wastewater, Inorg. Chim. Acta 487 (2019) 169–176, https://doi.org/10.1016/j.ica.2018.12.021.
[15] A. Almasian, M.E. Olya, N.M. Mahmoodi, Preparation and adsorption behavior of diethylenetriamine/polyacrylonitrile composite nanofibers for a direct dye removal, Fibers Polym. 16 (9) (2015) 1925–1934, https://doi.org/10.1007/ s12221-015-4624-3.
[16] N.M. Mahmoodi, M. Bashiri, S.J. Moeen, Synthesis of nickel–zinc ferrite magnetic nanoparticle and dye degradation using photocatalytic ozonation, Mater. Res. Bull. 47 (12) (2012) 4403–4408, https://doi.org/10.1016/j.materresbull.2012.09.036.
[17] N.M. Mahmoodi, F. Najafi, A. Neshat, Poly (amidoamine-co-acrylic acid) copolymer: synthesis, characterization and dye removal ability, Ind. Crpo. Prod. 42 (2013) 119–125, https://doi.org/10.1016/j.indcrop.2012.05.025.
[18] N.M. Mahmoodi, M. Oveisi, M. Bakhtiari, B. Hayati, A.A. Shekarchi, A. Bagheri, S. Rahimi, Environmentally friendly ultrasound-assisted synthesis of magnetic zeolitic imidazolate framework - graphene oxide nanocomposites and pollutant removal from water, J. Mol. Liq. 282 (2019) 115–130, https://doi.org/10.1016/j. molliq.2019.02.139.
[19] N.M. Mahmoodi, A. Taghizadeh, M. Taghizadeh, M. AZimi Shahali Baglou, Surface modified montmorillonite with cationic surfactants: preparation, characterization, and dye adsorption from aqueous solution, J. Environ. Chem. Eng. 7 (4) (2019) 103243, https://doi.org/10.1016/j.jece.2019.103243.
[20] X. Zhao, X. Zhang, S. Tie, S. Hou, H. Wang, Y. Song, R. Rai, M. Tan, Facile synthesis of nano-nanocarriers from chitosan and pectin with improved stability and biocompatibility for anthocyanins delivery: an in vitro and in vivo study, Food Hydrocoll. 109 (2020) 106114, https://doi.org/10.1016/j.foodhyd.2020.106114.
[21] Y. Qin, Y. Liu, L. Yuan, H. Yong, J. Liu, Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract, Food Hydrocoll. 96 (2019) 102–111, https://doi.org/10.1016/j.foodhyd.2019.05.017.
[22] B. He, J. Ge, P. Yue, X.Y. Yue, R. Fu, J. Liang, X. Gao, Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage, Food Chem. 221 (2017) 1671–1677, https://doi. org/10.1016/j.foodchem.2016.10.120.
[23] C.P. Pinheiro, L.M.K. Moreira, S.S. Alves, T.R.S. Cadaval Jr, L.A.A. Pinto, Anthocyanins concentration by adsorption onto chitosan and alginate beads: Isotherms, kinetics and thermodynamics parameters, Int. J. Biol. Macromol. 166 (2021) 934–939, https://doi.org/10.1016/j.ijbiomac.2020.10.250.
[24] G. Coelho Leandro, C. Capello, B. Luiza Koop, J. Garcez, A. Rodrigues Monteiro, G. Ayala Valencia, Adsorption-desorption of anthocyanins from jambolan (Syzygium cumini) fruit in laponite® platelets: kinetic models, physicochemical characterization, and functional properties of biohybrids, Food Res. Int. 140 (2021) 109903, https://doi.org/10.1016/j.foodres.2020.109903.
[25] R. Ocampo-Perez, R. Leyva-Ramos, J. Mendoza-Barron, R.M. Guerrero-Coronado, Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models, J. Colloids Interface Sci. 364 (1) (2011) 195–204, https://doi.org/10.1016/j.jcis.2011.08.032.
[26] D.S.P. Franco, J. Vieillard, N.P.G. Salau, G.L. Dotto, Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: a mass transfer model approach, J. Mol. Liq. 304 (2020) 112758, https://doi.org/10.1016/j. molliq.2020.112758.
[27] R. Leyva-Ramos, R. Ocampo-Perez, J. Mendoza-Barron, External mass transfer and hindered diffusion of organic compounds in the adsorption on activated carbon cloth, Chem. Eng. J. 183 (2012) 141–151, https://doi.org/10.1016/j. cej.2011.12.046.
[28] R. Leyva-Ramos, C.J. Geankoplis, Model simulation and analysis of surface diffusion of liquids in porous solids, Chem. Eng. Sci. 40 (5) (1985) 799–807, https://doi.org/10.1016/0009-2509(85)85032-6.
[29] J. Moreno-P´erez, P.S. Pauletto, A.M. Cunha, A. ´ Bonilla-Petriciolet, N.P.G. Salau, G. L. Dotto, Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite, Colloids Surf. A: Physicochem. Eng. Aspects 614 (2021) 126170, https://doi.org/10.1016/j.colsurfa.2021.126170.
[30] V. Díaz-Blancas, R. Ocampo-P´erez, R. Leyva-Ramos, P.A. Alonso-D´ avila, A.I. MoralRodríguez, 3D modeling of the overall adsorption rate of metronidazole on granular activated carbon at low and high concentrations in aqueous solution, Chem. Eng. J. 349 (2018) 82–91, https://doi.org/10.1016/j.cej.2018.05.076.
[31] A.C. Frohlich, ¨ R. Ocampo-P´erez, V. Díaz-Blancas, N.P.G. Salau, G.L. Dotto, Threedimensional mass transfer modeling of ibuprofen adsorption on activated carbon prepared by sonication, Chem. Eng. J. 341 (2018) 65–74, https://doi.org/ 10.1016/j.cej.2018.02.020.
[32] G.L. Dotto, V.C. Souza, L.A.A. Pinto, Drying of chitosan in a spouted bed: the influences of temperature and equipment geometry in powder quality, LWT Food Sci. Technol. 44 (8) (2011) 1786–1792, https://doi.org/10.1016/j. lwt.2011.03.019.
[33] J.M. Moura, B.S. Farias, D.A.S. Rodrigues, C.M. Moura, G.L. Dotto, L.A.A. Pinto, Preparation of chitosan with different characteristics and its application for biofilms production, J. Polym. Environ. 23 (4) (2015) 470–477, https://doi.org/ 10.1007/s10924-015-0730-y.
[34] H. Freundlich, Über die adsorption in losungen, ¨ Zeitschrift Für Phys. Chemie. 57U (1) (1907) 385–470, https://doi.org/10.1515/zpch-1907-5723.
[35] R. Sips, On the structure of a catalyst surface, J. Chem. Phys. 16 (5) (1948) 490–495, https://doi.org/10.1063/1.1746922.
[36] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (4) (2020) 103988, https://doi.org/10.1016/j. jece.2020.103988.
[37] G.L. Dotto, R. Ocampo-P´erez, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Adsorption rate of Reactive Black 5 on chitosan-based materials: geometry and swelling effects, Adsorption 22 (7) (2016) 973–983, https://doi.org/10.1007/s10450-016- 9804-y.
[38] P.S. Souza, G.L. Dotto, N.P.G. Salau, Detailed numerical solution of pore volume and surface diffusion model in adsorption systems, Chem. Eng. Res. Des. 122 (2017) 298–307, https://doi.org/10.1016/j.cherd.2017.04.021.
[39] P.S. Pauletto, J. Moreno-P´erez, L.E. Hernandez-Hern ´ andez, ´ A. Bonilla-Petriciolet, G.L. Dotto, N.P.G. Salau, Novel biochar and hydrochar for the adsorption of 2- nitrophenol from aqueous solutions: An approach using the PVSDM model, Chemosphere 269 (2021) 128748, https://doi.org/10.1016/j. chemosphere.2020.128748.
[40] P.R. Souza, G.L. Dotto, N.P.G. Salau, Statistical evaluation of pore volume and surface diffusion model in adsorption systems, J. Environ. Chem. Eng. 5 (6) (2017) 5293–5297, https://doi.org/10.1016/j.jece.2017.10.012.
[41] P.S. Pauletto, G.L. Dotto, N.P.G. Salau, Diffusion mechanisms and effect of adsorbent geometry on heavy metal adsorption, Chem. Eng. Res. Des. 157 (2020) 182–194, https://doi.org/10.1016/j.cherd.2020.02.031.
[42] G.L. Dotto, L.A.A. Pinto, Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: stirring rate effect in kinetics and mechanism, J. Hazard. Mater. 187 (1-3) (2011) 164–170, https://doi.org/10.1016/j.jhazmat.2011.01.016.
[43] Fogler, H.S., 2004. Elements of Chemical Reaction Engineering. Prentice-Hall of India.
[44] J.P. Lima, G. Alvarenga, A.C.F. Goszczynski, G.R. Rosa, T.J. Lopes, Batch adsorption of methylene blue dye using Enterolobium contortisiliquum as bioadsorbent: experimental, mathematical modeling and simulation, J. Ind. Eng. Chem. 91 (2020) 362–371, https://doi.org/10.1016/j.jiec.2020.08.029.
[45] G.L. Dotto, C. Buriol, L.A.A. Pinto, Diffusional mass transfer model for the adsorption of food dyes on chitosan films, Chem. Eng. Res. Des. 92 (11) (2014) 2324–2332, https://doi.org/10.1016/j.cherd.2014.03.013.
[46] D.O. Cooney, Comparison of simple adsorber breakthrough curve method with exact solution, AIChE J. 39 (2) (1993) 355–358, https://doi.org/10.1002/
dc.relation.citationendpage.spa.fl_str_mv 5
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 292
dc.rights.eng.fl_str_mv Copyright 2022 Elsevier B.V., All rights reserved.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
Copyright 2022 Elsevier B.V., All rights reserved.
https://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 5 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Netherlands
dc.source.spa.fl_str_mv https://www.scopus.com/record/display.uri?eid=2-s2.0-85128171908&doi=10.1016%2fj.seppur.2022.121062&origin=inward&txGid=0c29c27706bf8801e216c3fdbef693de
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/10882/1/Modeling%20of%20anthocyanins%20adsorption%20onto%20chitosan%20films_%20An%20approach%20using%20the%20pore%20volume%20and%20surface%20diffusion%20model.pdf
https://repositorio.cuc.edu.co/bitstream/11323/10882/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/10882/3/Modeling%20of%20anthocyanins%20adsorption%20onto%20chitosan%20films_%20An%20approach%20using%20the%20pore%20volume%20and%20surface%20diffusion%20model.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/10882/4/Modeling%20of%20anthocyanins%20adsorption%20onto%20chitosan%20films_%20An%20approach%20using%20the%20pore%20volume%20and%20surface%20diffusion%20model.pdf.jpg
bitstream.checksum.fl_str_mv b0117efbbb8664d5b1e9878992cdd65b
2f9959eaf5b71fae44bbf9ec84150c7a
e6843f615416ebc671a0d3268e759291
d173a8b5edb468e7ae154d31867fb34c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1808400112101097472
spelling Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)Copyright 2022 Elsevier B.V., All rights reserved.https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Carvalho, Valéria V.L.3c10eba1ab96dd02b72e549f48e39ae1Pinto, Dianaa479960920eb3541c1ab5253a34dd8abSalau, Nina P.G.bb364dd1c9d955da771952b5ad8915c8Pinto, Luiz A.A.701650365d56847eea2194a9ef7ce3f7Cadaval, Tito R.S.579070dad90bb0801c850b92263bbfbaSilva, Luis F.O.8859d8def09b06a41e4d7807d6a70603Lopes, Toni J.8ccfc0a65178ef3e0b7ec35b89af318eDotto, Guilherme L.c0e5bf3f141757792fd1a91aaeb9fc0c2024-03-19T13:16:33Z2024-03-19T13:16:33Z2022Carvalho, V. V. L., Pinto, D., Salau, N. P. G., Pinto, L. A. A., Cadaval, T. R. S., Silva, L. F. O., Lopes, T. J., & Dotto, G. L. (2022). Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model. Separation and Purification Technology, 292, 121062. https://doi.org/10.1016/j.seppur.2022.1210621383-5866https://hdl.handle.net/11323/1088210.1016/j.seppur.2022.121062Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.coThe use of smart packaging is a global trend, and several works are being reported in this sense. Special attention is given to biodegradable materials like chitosan and natural pigments like anthocyanins. For example, previous studies report that it is possible to produce smart packaging by extracting anthocyanins from red cabbage and adsorbing it into chitosan films. This work elucidates for the first time the mass transfer aspects in the anthocyanins adsorption on chitosan films (CFS). Anthocyanins were extracted from red cabbage and subsequently adsorbed from the leach liquor using chitosan films. The Freundlich model well represented the adsorption isotherms of anthocyanins on CFS. In addition, the PVSDM (pore volume and surface diffusion model) model was implemented to represent the adsorption data and to elucidate the mass transfer. This model was suitable to represent the adsorption data, with a coefficient of determination (R2) higher than 0.95 and an average relative error (ARE) lower than 2.00%. The surface diffusion coefficient values (DS) ranged from 3.70 × 10−10 cm2 s−1 to 1.16 × 10−9 cm2 s−1. The external mass transfer coefficient (kF) was in the range of 10−2 cm s−1. Finally, the Biot number (Bi) revealed that mechanisms inside the particle controlled the anthocyanin's adsorption onto CFS.5 páginasapplication/pdfengElsevierNetherlandshttps://www.scopus.com/record/display.uri?eid=2-s2.0-85128171908&doi=10.1016%2fj.seppur.2022.121062&origin=inward&txGid=0c29c27706bf8801e216c3fdbef693deModeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion modelArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Separation and Purification Technology[1] B. Yousuf, K. Gul, A.A. Wani, P. Singh, Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review, Crit. Rev. Food Sci. Nutr. 56 (13) (2016) 2223–2230, https://doi.org/10.1080/10408398.2013.805316.[2] P. Mizgier, A.Z. Kucharska, A. Soko´ł-Łetowska, J. Kolniak-Ostek, M. Kidon, ´I. Fecka, Characterization of phenolic compounds and antioxidant and antiinflammatory properties of red cabbage and purple carrot extracts, J. Funct. Foods 21 (2016) 133–146, https://doi.org/10.1016/j.jff.2015.12.004.[3] G.L. Dotto, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption, Chem. Eng. J. 214 (2013) 8–16, https://doi.org/10.1016/j.cej.2012.10.027.[4] V.V.L. Carvalho, J.O. Gonçalves, A. Silva, T.R. Cadaval, L.A.A. Pinto, T.J. Lopes, Separation of anthocyanins extracted from red cabbage by adsorption onto chitosan films, Int. J. Biol. Macromol. 131 (2019) 905–911, https://doi.org/ 10.1016/j.ijbiomac.2019.03.145.[5] X. Pang, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G. Luiz Dotto, M.K. Abu Shayeb, H. Belmabrouk, A. Bonilla-Petriciolet, Z. Li, Preparation and characterization of a novel mountain soursop seeds powder adsorbent and its application for the removal of crystal violet and methylene blue from aqueous solutions, Chem. Eng. J. 391 (2020) 123617, https://doi.org/10.1016/j. cej.2019.123617.[6] L. Sellaoui, D. Franco, H. Ghalla, J. Georgin, M.S. Netto, G. Luiz Dotto, A. BonillaPetriciolet, H. Belmabrouk, A. Bajahzar, Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: experiments, phenomenological modelling and DFT calculations, Chem. Eng. J. 394 (2020) 125011, https://doi. org/10.1016/j.cej.2020.125011.[7] P.V.S. Lins, D.C. Henrique, A.H. Ide, J.L.S. Duarte, G.L. Dotto, A. Yazidi, L. Sellaoui, A. Erto, C.L.P. Zanta, L. Meili, Adsorption of a non-steroidal anti-inflammatory drug onto MgAl/LDH-activated carbon composite – experimental investigation and statistical physics modeling, Colloids Surf. A: Phycochem. Eng. Aspects. 586 (2020) 124217, https://doi.org/10.1016/j.colsurfa.2019.124217.[8] N.M. Mahmoodi, M.H. Saffar-Dastgerdi, Clean Laccase immobilized nanobiocatalysts (graphene oxide - zeolite nanocomposites): from production to detailed biocatalytic degradation of organic pollutant, Appl. Catal. B: Environ. 268 (2020) 118443, https://doi.org/10.1016/j.apcatb.2019.118443.[9] N. Nasrollahi, S. Aber, V. Vatanpour, N.M. Mahmoodi, The effect of amine functionalization of CuO and ZnO nanoparticles used as additives on the morphology and the permeation properties of polyethersulfone ultrafiltration nanocomposite membranes, Comp. Part B: Eng. 154 (2018) 388–409, https://doi. org/10.1016/j.compositesb.2018.09.027.[10] N.M. Mahmoodi, B. Hayati, H. Bahrami, M. Arami, Dye adsorption and desorption properties of Mentha pulegium in single and binary systems, J. Appl. Polym. Sci. 122 (2011) 1489–1499, https://doi.org/10.1002/app.34235.[11] N.M. Mahmoodi, Synthesis of magnetic carbon nanotube and photocatalytic dye degradation ability, Environ. Monit. Assessm. 186 (9) (2014) 5595–5604, https:// doi.org/10.1007/s10661-014-3805-7.[12] B. Hayati, N.M. Mahmoodi, A. Maleki, Dendrimer–titania nanocomposite: synthesis and dye-removal capacity, Res. Chem. Intermed. 41 (2015) (2015) 3743–3757, https://doi.org/10.1007/s11164-013-1486-4.[13] B. Hayati, N.M. Mahmoodi, M. Arami, F. Mazaheri, Dye removal from colored textile wastewater by poly(propylene imine) dendrimer: operational parameters and isotherm studies, Clean: Soil Air, Water 39 (7) (2011) 673–679, https://doi. org/10.1002/clen.201000182.[14] M. Oveisi, M.A. Asli, N.M. Mahmoodi, Carbon nanotube based metal-organic framework nanocomposites: Synthesis and their photocatalytic activity for decolorization of colored wastewater, Inorg. Chim. Acta 487 (2019) 169–176, https://doi.org/10.1016/j.ica.2018.12.021.[15] A. Almasian, M.E. Olya, N.M. Mahmoodi, Preparation and adsorption behavior of diethylenetriamine/polyacrylonitrile composite nanofibers for a direct dye removal, Fibers Polym. 16 (9) (2015) 1925–1934, https://doi.org/10.1007/ s12221-015-4624-3.[16] N.M. Mahmoodi, M. Bashiri, S.J. Moeen, Synthesis of nickel–zinc ferrite magnetic nanoparticle and dye degradation using photocatalytic ozonation, Mater. Res. Bull. 47 (12) (2012) 4403–4408, https://doi.org/10.1016/j.materresbull.2012.09.036.[17] N.M. Mahmoodi, F. Najafi, A. Neshat, Poly (amidoamine-co-acrylic acid) copolymer: synthesis, characterization and dye removal ability, Ind. Crpo. Prod. 42 (2013) 119–125, https://doi.org/10.1016/j.indcrop.2012.05.025.[18] N.M. Mahmoodi, M. Oveisi, M. Bakhtiari, B. Hayati, A.A. Shekarchi, A. Bagheri, S. Rahimi, Environmentally friendly ultrasound-assisted synthesis of magnetic zeolitic imidazolate framework - graphene oxide nanocomposites and pollutant removal from water, J. Mol. Liq. 282 (2019) 115–130, https://doi.org/10.1016/j. molliq.2019.02.139.[19] N.M. Mahmoodi, A. Taghizadeh, M. Taghizadeh, M. AZimi Shahali Baglou, Surface modified montmorillonite with cationic surfactants: preparation, characterization, and dye adsorption from aqueous solution, J. Environ. Chem. Eng. 7 (4) (2019) 103243, https://doi.org/10.1016/j.jece.2019.103243.[20] X. Zhao, X. Zhang, S. Tie, S. Hou, H. Wang, Y. Song, R. Rai, M. Tan, Facile synthesis of nano-nanocarriers from chitosan and pectin with improved stability and biocompatibility for anthocyanins delivery: an in vitro and in vivo study, Food Hydrocoll. 109 (2020) 106114, https://doi.org/10.1016/j.foodhyd.2020.106114.[21] Y. Qin, Y. Liu, L. Yuan, H. Yong, J. Liu, Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract, Food Hydrocoll. 96 (2019) 102–111, https://doi.org/10.1016/j.foodhyd.2019.05.017.[22] B. He, J. Ge, P. Yue, X.Y. Yue, R. Fu, J. Liang, X. Gao, Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage, Food Chem. 221 (2017) 1671–1677, https://doi. org/10.1016/j.foodchem.2016.10.120.[23] C.P. Pinheiro, L.M.K. Moreira, S.S. Alves, T.R.S. Cadaval Jr, L.A.A. Pinto, Anthocyanins concentration by adsorption onto chitosan and alginate beads: Isotherms, kinetics and thermodynamics parameters, Int. J. Biol. Macromol. 166 (2021) 934–939, https://doi.org/10.1016/j.ijbiomac.2020.10.250.[24] G. Coelho Leandro, C. Capello, B. Luiza Koop, J. Garcez, A. Rodrigues Monteiro, G. Ayala Valencia, Adsorption-desorption of anthocyanins from jambolan (Syzygium cumini) fruit in laponite® platelets: kinetic models, physicochemical characterization, and functional properties of biohybrids, Food Res. Int. 140 (2021) 109903, https://doi.org/10.1016/j.foodres.2020.109903.[25] R. Ocampo-Perez, R. Leyva-Ramos, J. Mendoza-Barron, R.M. Guerrero-Coronado, Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models, J. Colloids Interface Sci. 364 (1) (2011) 195–204, https://doi.org/10.1016/j.jcis.2011.08.032.[26] D.S.P. Franco, J. Vieillard, N.P.G. Salau, G.L. Dotto, Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: a mass transfer model approach, J. Mol. Liq. 304 (2020) 112758, https://doi.org/10.1016/j. molliq.2020.112758.[27] R. Leyva-Ramos, R. Ocampo-Perez, J. Mendoza-Barron, External mass transfer and hindered diffusion of organic compounds in the adsorption on activated carbon cloth, Chem. Eng. J. 183 (2012) 141–151, https://doi.org/10.1016/j. cej.2011.12.046.[28] R. Leyva-Ramos, C.J. Geankoplis, Model simulation and analysis of surface diffusion of liquids in porous solids, Chem. Eng. Sci. 40 (5) (1985) 799–807, https://doi.org/10.1016/0009-2509(85)85032-6.[29] J. Moreno-P´erez, P.S. Pauletto, A.M. Cunha, A. ´ Bonilla-Petriciolet, N.P.G. Salau, G. L. Dotto, Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite, Colloids Surf. A: Physicochem. Eng. Aspects 614 (2021) 126170, https://doi.org/10.1016/j.colsurfa.2021.126170.[30] V. Díaz-Blancas, R. Ocampo-P´erez, R. Leyva-Ramos, P.A. Alonso-D´ avila, A.I. MoralRodríguez, 3D modeling of the overall adsorption rate of metronidazole on granular activated carbon at low and high concentrations in aqueous solution, Chem. Eng. J. 349 (2018) 82–91, https://doi.org/10.1016/j.cej.2018.05.076.[31] A.C. Frohlich, ¨ R. Ocampo-P´erez, V. Díaz-Blancas, N.P.G. Salau, G.L. Dotto, Threedimensional mass transfer modeling of ibuprofen adsorption on activated carbon prepared by sonication, Chem. Eng. J. 341 (2018) 65–74, https://doi.org/ 10.1016/j.cej.2018.02.020.[32] G.L. Dotto, V.C. Souza, L.A.A. Pinto, Drying of chitosan in a spouted bed: the influences of temperature and equipment geometry in powder quality, LWT Food Sci. Technol. 44 (8) (2011) 1786–1792, https://doi.org/10.1016/j. lwt.2011.03.019.[33] J.M. Moura, B.S. Farias, D.A.S. Rodrigues, C.M. Moura, G.L. Dotto, L.A.A. Pinto, Preparation of chitosan with different characteristics and its application for biofilms production, J. Polym. Environ. 23 (4) (2015) 470–477, https://doi.org/ 10.1007/s10924-015-0730-y.[34] H. Freundlich, Über die adsorption in losungen, ¨ Zeitschrift Für Phys. Chemie. 57U (1) (1907) 385–470, https://doi.org/10.1515/zpch-1907-5723.[35] R. Sips, On the structure of a catalyst surface, J. Chem. Phys. 16 (5) (1948) 490–495, https://doi.org/10.1063/1.1746922.[36] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (4) (2020) 103988, https://doi.org/10.1016/j. jece.2020.103988.[37] G.L. Dotto, R. Ocampo-P´erez, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Adsorption rate of Reactive Black 5 on chitosan-based materials: geometry and swelling effects, Adsorption 22 (7) (2016) 973–983, https://doi.org/10.1007/s10450-016- 9804-y.[38] P.S. Souza, G.L. Dotto, N.P.G. Salau, Detailed numerical solution of pore volume and surface diffusion model in adsorption systems, Chem. Eng. Res. Des. 122 (2017) 298–307, https://doi.org/10.1016/j.cherd.2017.04.021.[39] P.S. Pauletto, J. Moreno-P´erez, L.E. Hernandez-Hern ´ andez, ´ A. Bonilla-Petriciolet, G.L. Dotto, N.P.G. Salau, Novel biochar and hydrochar for the adsorption of 2- nitrophenol from aqueous solutions: An approach using the PVSDM model, Chemosphere 269 (2021) 128748, https://doi.org/10.1016/j. chemosphere.2020.128748.[40] P.R. Souza, G.L. Dotto, N.P.G. Salau, Statistical evaluation of pore volume and surface diffusion model in adsorption systems, J. Environ. Chem. Eng. 5 (6) (2017) 5293–5297, https://doi.org/10.1016/j.jece.2017.10.012.[41] P.S. Pauletto, G.L. Dotto, N.P.G. Salau, Diffusion mechanisms and effect of adsorbent geometry on heavy metal adsorption, Chem. Eng. Res. Des. 157 (2020) 182–194, https://doi.org/10.1016/j.cherd.2020.02.031.[42] G.L. Dotto, L.A.A. Pinto, Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: stirring rate effect in kinetics and mechanism, J. Hazard. Mater. 187 (1-3) (2011) 164–170, https://doi.org/10.1016/j.jhazmat.2011.01.016.[43] Fogler, H.S., 2004. Elements of Chemical Reaction Engineering. Prentice-Hall of India.[44] J.P. Lima, G. Alvarenga, A.C.F. Goszczynski, G.R. Rosa, T.J. Lopes, Batch adsorption of methylene blue dye using Enterolobium contortisiliquum as bioadsorbent: experimental, mathematical modeling and simulation, J. Ind. Eng. Chem. 91 (2020) 362–371, https://doi.org/10.1016/j.jiec.2020.08.029.[45] G.L. Dotto, C. Buriol, L.A.A. Pinto, Diffusional mass transfer model for the adsorption of food dyes on chitosan films, Chem. Eng. Res. Des. 92 (11) (2014) 2324–2332, https://doi.org/10.1016/j.cherd.2014.03.013.[46] D.O. Cooney, Comparison of simple adsorber breakthrough curve method with exact solution, AIChE J. 39 (2) (1993) 355–358, https://doi.org/10.1002/51292AdsorptionAnthocyaninsFilmsMass transferRed cabbageORIGINALModeling of anthocyanins adsorption onto chitosan films_ An approach using the pore volume and surface diffusion model.pdfModeling of anthocyanins adsorption onto chitosan films_ An approach using the pore volume and surface diffusion model.pdfArtículoapplication/pdf1144379https://repositorio.cuc.edu.co/bitstream/11323/10882/1/Modeling%20of%20anthocyanins%20adsorption%20onto%20chitosan%20films_%20An%20approach%20using%20the%20pore%20volume%20and%20surface%20diffusion%20model.pdfb0117efbbb8664d5b1e9878992cdd65bMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstream/11323/10882/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTEXTModeling of anthocyanins adsorption onto chitosan films_ An approach using the pore volume and surface diffusion model.pdf.txtModeling of anthocyanins adsorption onto chitosan films_ An approach using the pore volume and surface diffusion model.pdf.txtExtracted texttext/plain32303https://repositorio.cuc.edu.co/bitstream/11323/10882/3/Modeling%20of%20anthocyanins%20adsorption%20onto%20chitosan%20films_%20An%20approach%20using%20the%20pore%20volume%20and%20surface%20diffusion%20model.pdf.txte6843f615416ebc671a0d3268e759291MD53open accessTHUMBNAILModeling of anthocyanins adsorption onto chitosan films_ An approach using the pore volume and surface diffusion model.pdf.jpgModeling of anthocyanins adsorption onto chitosan films_ An approach using the pore volume and surface diffusion model.pdf.jpgGenerated Thumbnailimage/jpeg14935https://repositorio.cuc.edu.co/bitstream/11323/10882/4/Modeling%20of%20anthocyanins%20adsorption%20onto%20chitosan%20films_%20An%20approach%20using%20the%20pore%20volume%20and%20surface%20diffusion%20model.pdf.jpgd173a8b5edb468e7ae154d31867fb34cMD54open access11323/10882oai:repositorio.cuc.edu.co:11323/108822024-03-20 03:02:27.108An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc/4.0/open accessRepositorio Universidad de La Costarepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=