Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model
The use of smart packaging is a global trend, and several works are being reported in this sense. Special attention is given to biodegradable materials like chitosan and natural pigments like anthocyanins. For example, previous studies report that it is possible to produce smart packaging by extract...
- Autores:
-
Carvalho, Valéria V.L.
Pinto, Diana
Salau, Nina P.G.
Pinto, Luiz A.A.
Cadaval, Tito R.S.
Silva, Luis F.O.
Lopes, Toni J.
Dotto, Guilherme L.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10882
- Acceso en línea:
- https://hdl.handle.net/11323/10882
https://repositorio.cuc.edu.co
- Palabra clave:
- Adsorption
Anthocyanins
Films
Mass transfer
Red cabbage
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
id |
RCUC2_d263653bebc93dee9776b80059547a2f |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10882 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model |
title |
Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model |
spellingShingle |
Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model Adsorption Anthocyanins Films Mass transfer Red cabbage |
title_short |
Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model |
title_full |
Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model |
title_fullStr |
Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model |
title_full_unstemmed |
Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model |
title_sort |
Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model |
dc.creator.fl_str_mv |
Carvalho, Valéria V.L. Pinto, Diana Salau, Nina P.G. Pinto, Luiz A.A. Cadaval, Tito R.S. Silva, Luis F.O. Lopes, Toni J. Dotto, Guilherme L. |
dc.contributor.author.none.fl_str_mv |
Carvalho, Valéria V.L. Pinto, Diana Salau, Nina P.G. Pinto, Luiz A.A. Cadaval, Tito R.S. Silva, Luis F.O. Lopes, Toni J. Dotto, Guilherme L. |
dc.subject.proposal.eng.fl_str_mv |
Adsorption Anthocyanins Films Mass transfer Red cabbage |
topic |
Adsorption Anthocyanins Films Mass transfer Red cabbage |
description |
The use of smart packaging is a global trend, and several works are being reported in this sense. Special attention is given to biodegradable materials like chitosan and natural pigments like anthocyanins. For example, previous studies report that it is possible to produce smart packaging by extracting anthocyanins from red cabbage and adsorbing it into chitosan films. This work elucidates for the first time the mass transfer aspects in the anthocyanins adsorption on chitosan films (CFS). Anthocyanins were extracted from red cabbage and subsequently adsorbed from the leach liquor using chitosan films. The Freundlich model well represented the adsorption isotherms of anthocyanins on CFS. In addition, the PVSDM (pore volume and surface diffusion model) model was implemented to represent the adsorption data and to elucidate the mass transfer. This model was suitable to represent the adsorption data, with a coefficient of determination (R2) higher than 0.95 and an average relative error (ARE) lower than 2.00%. The surface diffusion coefficient values (DS) ranged from 3.70 × 10−10 cm2 s−1 to 1.16 × 10−9 cm2 s−1. The external mass transfer coefficient (kF) was in the range of 10−2 cm s−1. Finally, the Biot number (Bi) revealed that mechanisms inside the particle controlled the anthocyanin's adsorption onto CFS. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2024-03-19T13:16:33Z |
dc.date.available.none.fl_str_mv |
2024-03-19T13:16:33Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Carvalho, V. V. L., Pinto, D., Salau, N. P. G., Pinto, L. A. A., Cadaval, T. R. S., Silva, L. F. O., Lopes, T. J., & Dotto, G. L. (2022). Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model. Separation and Purification Technology, 292, 121062. https://doi.org/10.1016/j.seppur.2022.121062 |
dc.identifier.issn.spa.fl_str_mv |
1383-5866 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10882 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.seppur.2022.121062 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co |
identifier_str_mv |
Carvalho, V. V. L., Pinto, D., Salau, N. P. G., Pinto, L. A. A., Cadaval, T. R. S., Silva, L. F. O., Lopes, T. J., & Dotto, G. L. (2022). Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model. Separation and Purification Technology, 292, 121062. https://doi.org/10.1016/j.seppur.2022.121062 1383-5866 10.1016/j.seppur.2022.121062 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/10882 https://repositorio.cuc.edu.co |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Separation and Purification Technology |
dc.relation.references.spa.fl_str_mv |
[1] B. Yousuf, K. Gul, A.A. Wani, P. Singh, Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review, Crit. Rev. Food Sci. Nutr. 56 (13) (2016) 2223–2230, https://doi.org/10.1080/10408398.2013.805316. [2] P. Mizgier, A.Z. Kucharska, A. Soko´ł-Łetowska, J. Kolniak-Ostek, M. Kidon, ´I. Fecka, Characterization of phenolic compounds and antioxidant and antiinflammatory properties of red cabbage and purple carrot extracts, J. Funct. Foods 21 (2016) 133–146, https://doi.org/10.1016/j.jff.2015.12.004. [3] G.L. Dotto, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption, Chem. Eng. J. 214 (2013) 8–16, https://doi.org/10.1016/j.cej.2012.10.027. [4] V.V.L. Carvalho, J.O. Gonçalves, A. Silva, T.R. Cadaval, L.A.A. Pinto, T.J. Lopes, Separation of anthocyanins extracted from red cabbage by adsorption onto chitosan films, Int. J. Biol. Macromol. 131 (2019) 905–911, https://doi.org/ 10.1016/j.ijbiomac.2019.03.145. [5] X. Pang, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G. Luiz Dotto, M.K. Abu Shayeb, H. Belmabrouk, A. Bonilla-Petriciolet, Z. Li, Preparation and characterization of a novel mountain soursop seeds powder adsorbent and its application for the removal of crystal violet and methylene blue from aqueous solutions, Chem. Eng. J. 391 (2020) 123617, https://doi.org/10.1016/j. cej.2019.123617. [6] L. Sellaoui, D. Franco, H. Ghalla, J. Georgin, M.S. Netto, G. Luiz Dotto, A. BonillaPetriciolet, H. Belmabrouk, A. Bajahzar, Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: experiments, phenomenological modelling and DFT calculations, Chem. Eng. J. 394 (2020) 125011, https://doi. org/10.1016/j.cej.2020.125011. [7] P.V.S. Lins, D.C. Henrique, A.H. Ide, J.L.S. Duarte, G.L. Dotto, A. Yazidi, L. Sellaoui, A. Erto, C.L.P. Zanta, L. Meili, Adsorption of a non-steroidal anti-inflammatory drug onto MgAl/LDH-activated carbon composite – experimental investigation and statistical physics modeling, Colloids Surf. A: Phycochem. Eng. Aspects. 586 (2020) 124217, https://doi.org/10.1016/j.colsurfa.2019.124217. [8] N.M. Mahmoodi, M.H. Saffar-Dastgerdi, Clean Laccase immobilized nanobiocatalysts (graphene oxide - zeolite nanocomposites): from production to detailed biocatalytic degradation of organic pollutant, Appl. Catal. B: Environ. 268 (2020) 118443, https://doi.org/10.1016/j.apcatb.2019.118443. [9] N. Nasrollahi, S. Aber, V. Vatanpour, N.M. Mahmoodi, The effect of amine functionalization of CuO and ZnO nanoparticles used as additives on the morphology and the permeation properties of polyethersulfone ultrafiltration nanocomposite membranes, Comp. Part B: Eng. 154 (2018) 388–409, https://doi. org/10.1016/j.compositesb.2018.09.027. [10] N.M. Mahmoodi, B. Hayati, H. Bahrami, M. Arami, Dye adsorption and desorption properties of Mentha pulegium in single and binary systems, J. Appl. Polym. Sci. 122 (2011) 1489–1499, https://doi.org/10.1002/app.34235. [11] N.M. Mahmoodi, Synthesis of magnetic carbon nanotube and photocatalytic dye degradation ability, Environ. Monit. Assessm. 186 (9) (2014) 5595–5604, https:// doi.org/10.1007/s10661-014-3805-7. [12] B. Hayati, N.M. Mahmoodi, A. Maleki, Dendrimer–titania nanocomposite: synthesis and dye-removal capacity, Res. Chem. Intermed. 41 (2015) (2015) 3743–3757, https://doi.org/10.1007/s11164-013-1486-4. [13] B. Hayati, N.M. Mahmoodi, M. Arami, F. Mazaheri, Dye removal from colored textile wastewater by poly(propylene imine) dendrimer: operational parameters and isotherm studies, Clean: Soil Air, Water 39 (7) (2011) 673–679, https://doi. org/10.1002/clen.201000182. [14] M. Oveisi, M.A. Asli, N.M. Mahmoodi, Carbon nanotube based metal-organic framework nanocomposites: Synthesis and their photocatalytic activity for decolorization of colored wastewater, Inorg. Chim. Acta 487 (2019) 169–176, https://doi.org/10.1016/j.ica.2018.12.021. [15] A. Almasian, M.E. Olya, N.M. Mahmoodi, Preparation and adsorption behavior of diethylenetriamine/polyacrylonitrile composite nanofibers for a direct dye removal, Fibers Polym. 16 (9) (2015) 1925–1934, https://doi.org/10.1007/ s12221-015-4624-3. [16] N.M. Mahmoodi, M. Bashiri, S.J. Moeen, Synthesis of nickel–zinc ferrite magnetic nanoparticle and dye degradation using photocatalytic ozonation, Mater. Res. Bull. 47 (12) (2012) 4403–4408, https://doi.org/10.1016/j.materresbull.2012.09.036. [17] N.M. Mahmoodi, F. Najafi, A. Neshat, Poly (amidoamine-co-acrylic acid) copolymer: synthesis, characterization and dye removal ability, Ind. Crpo. Prod. 42 (2013) 119–125, https://doi.org/10.1016/j.indcrop.2012.05.025. [18] N.M. Mahmoodi, M. Oveisi, M. Bakhtiari, B. Hayati, A.A. Shekarchi, A. Bagheri, S. Rahimi, Environmentally friendly ultrasound-assisted synthesis of magnetic zeolitic imidazolate framework - graphene oxide nanocomposites and pollutant removal from water, J. Mol. Liq. 282 (2019) 115–130, https://doi.org/10.1016/j. molliq.2019.02.139. [19] N.M. Mahmoodi, A. Taghizadeh, M. Taghizadeh, M. AZimi Shahali Baglou, Surface modified montmorillonite with cationic surfactants: preparation, characterization, and dye adsorption from aqueous solution, J. Environ. Chem. Eng. 7 (4) (2019) 103243, https://doi.org/10.1016/j.jece.2019.103243. [20] X. Zhao, X. Zhang, S. Tie, S. Hou, H. Wang, Y. Song, R. Rai, M. Tan, Facile synthesis of nano-nanocarriers from chitosan and pectin with improved stability and biocompatibility for anthocyanins delivery: an in vitro and in vivo study, Food Hydrocoll. 109 (2020) 106114, https://doi.org/10.1016/j.foodhyd.2020.106114. [21] Y. Qin, Y. Liu, L. Yuan, H. Yong, J. Liu, Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract, Food Hydrocoll. 96 (2019) 102–111, https://doi.org/10.1016/j.foodhyd.2019.05.017. [22] B. He, J. Ge, P. Yue, X.Y. Yue, R. Fu, J. Liang, X. Gao, Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage, Food Chem. 221 (2017) 1671–1677, https://doi. org/10.1016/j.foodchem.2016.10.120. [23] C.P. Pinheiro, L.M.K. Moreira, S.S. Alves, T.R.S. Cadaval Jr, L.A.A. Pinto, Anthocyanins concentration by adsorption onto chitosan and alginate beads: Isotherms, kinetics and thermodynamics parameters, Int. J. Biol. Macromol. 166 (2021) 934–939, https://doi.org/10.1016/j.ijbiomac.2020.10.250. [24] G. Coelho Leandro, C. Capello, B. Luiza Koop, J. Garcez, A. Rodrigues Monteiro, G. Ayala Valencia, Adsorption-desorption of anthocyanins from jambolan (Syzygium cumini) fruit in laponite® platelets: kinetic models, physicochemical characterization, and functional properties of biohybrids, Food Res. Int. 140 (2021) 109903, https://doi.org/10.1016/j.foodres.2020.109903. [25] R. Ocampo-Perez, R. Leyva-Ramos, J. Mendoza-Barron, R.M. Guerrero-Coronado, Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models, J. Colloids Interface Sci. 364 (1) (2011) 195–204, https://doi.org/10.1016/j.jcis.2011.08.032. [26] D.S.P. Franco, J. Vieillard, N.P.G. Salau, G.L. Dotto, Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: a mass transfer model approach, J. Mol. Liq. 304 (2020) 112758, https://doi.org/10.1016/j. molliq.2020.112758. [27] R. Leyva-Ramos, R. Ocampo-Perez, J. Mendoza-Barron, External mass transfer and hindered diffusion of organic compounds in the adsorption on activated carbon cloth, Chem. Eng. J. 183 (2012) 141–151, https://doi.org/10.1016/j. cej.2011.12.046. [28] R. Leyva-Ramos, C.J. Geankoplis, Model simulation and analysis of surface diffusion of liquids in porous solids, Chem. Eng. Sci. 40 (5) (1985) 799–807, https://doi.org/10.1016/0009-2509(85)85032-6. [29] J. Moreno-P´erez, P.S. Pauletto, A.M. Cunha, A. ´ Bonilla-Petriciolet, N.P.G. Salau, G. L. Dotto, Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite, Colloids Surf. A: Physicochem. Eng. Aspects 614 (2021) 126170, https://doi.org/10.1016/j.colsurfa.2021.126170. [30] V. Díaz-Blancas, R. Ocampo-P´erez, R. Leyva-Ramos, P.A. Alonso-D´ avila, A.I. MoralRodríguez, 3D modeling of the overall adsorption rate of metronidazole on granular activated carbon at low and high concentrations in aqueous solution, Chem. Eng. J. 349 (2018) 82–91, https://doi.org/10.1016/j.cej.2018.05.076. [31] A.C. Frohlich, ¨ R. Ocampo-P´erez, V. Díaz-Blancas, N.P.G. Salau, G.L. Dotto, Threedimensional mass transfer modeling of ibuprofen adsorption on activated carbon prepared by sonication, Chem. Eng. J. 341 (2018) 65–74, https://doi.org/ 10.1016/j.cej.2018.02.020. [32] G.L. Dotto, V.C. Souza, L.A.A. Pinto, Drying of chitosan in a spouted bed: the influences of temperature and equipment geometry in powder quality, LWT Food Sci. Technol. 44 (8) (2011) 1786–1792, https://doi.org/10.1016/j. lwt.2011.03.019. [33] J.M. Moura, B.S. Farias, D.A.S. Rodrigues, C.M. Moura, G.L. Dotto, L.A.A. Pinto, Preparation of chitosan with different characteristics and its application for biofilms production, J. Polym. Environ. 23 (4) (2015) 470–477, https://doi.org/ 10.1007/s10924-015-0730-y. [34] H. Freundlich, Über die adsorption in losungen, ¨ Zeitschrift Für Phys. Chemie. 57U (1) (1907) 385–470, https://doi.org/10.1515/zpch-1907-5723. [35] R. Sips, On the structure of a catalyst surface, J. Chem. Phys. 16 (5) (1948) 490–495, https://doi.org/10.1063/1.1746922. [36] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (4) (2020) 103988, https://doi.org/10.1016/j. jece.2020.103988. [37] G.L. Dotto, R. Ocampo-P´erez, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Adsorption rate of Reactive Black 5 on chitosan-based materials: geometry and swelling effects, Adsorption 22 (7) (2016) 973–983, https://doi.org/10.1007/s10450-016- 9804-y. [38] P.S. Souza, G.L. Dotto, N.P.G. Salau, Detailed numerical solution of pore volume and surface diffusion model in adsorption systems, Chem. Eng. Res. Des. 122 (2017) 298–307, https://doi.org/10.1016/j.cherd.2017.04.021. [39] P.S. Pauletto, J. Moreno-P´erez, L.E. Hernandez-Hern ´ andez, ´ A. Bonilla-Petriciolet, G.L. Dotto, N.P.G. Salau, Novel biochar and hydrochar for the adsorption of 2- nitrophenol from aqueous solutions: An approach using the PVSDM model, Chemosphere 269 (2021) 128748, https://doi.org/10.1016/j. chemosphere.2020.128748. [40] P.R. Souza, G.L. Dotto, N.P.G. Salau, Statistical evaluation of pore volume and surface diffusion model in adsorption systems, J. Environ. Chem. Eng. 5 (6) (2017) 5293–5297, https://doi.org/10.1016/j.jece.2017.10.012. [41] P.S. Pauletto, G.L. Dotto, N.P.G. Salau, Diffusion mechanisms and effect of adsorbent geometry on heavy metal adsorption, Chem. Eng. Res. Des. 157 (2020) 182–194, https://doi.org/10.1016/j.cherd.2020.02.031. [42] G.L. Dotto, L.A.A. Pinto, Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: stirring rate effect in kinetics and mechanism, J. Hazard. Mater. 187 (1-3) (2011) 164–170, https://doi.org/10.1016/j.jhazmat.2011.01.016. [43] Fogler, H.S., 2004. Elements of Chemical Reaction Engineering. Prentice-Hall of India. [44] J.P. Lima, G. Alvarenga, A.C.F. Goszczynski, G.R. Rosa, T.J. Lopes, Batch adsorption of methylene blue dye using Enterolobium contortisiliquum as bioadsorbent: experimental, mathematical modeling and simulation, J. Ind. Eng. Chem. 91 (2020) 362–371, https://doi.org/10.1016/j.jiec.2020.08.029. [45] G.L. Dotto, C. Buriol, L.A.A. Pinto, Diffusional mass transfer model for the adsorption of food dyes on chitosan films, Chem. Eng. Res. Des. 92 (11) (2014) 2324–2332, https://doi.org/10.1016/j.cherd.2014.03.013. [46] D.O. Cooney, Comparison of simple adsorber breakthrough curve method with exact solution, AIChE J. 39 (2) (1993) 355–358, https://doi.org/10.1002/ |
dc.relation.citationendpage.spa.fl_str_mv |
5 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
292 |
dc.rights.eng.fl_str_mv |
Copyright 2022 Elsevier B.V., All rights reserved. |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) Copyright 2022 Elsevier B.V., All rights reserved. https://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
5 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
dc.source.spa.fl_str_mv |
https://www.scopus.com/record/display.uri?eid=2-s2.0-85128171908&doi=10.1016%2fj.seppur.2022.121062&origin=inward&txGid=0c29c27706bf8801e216c3fdbef693de |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c14068b5-b617-4629-a714-0a1676518f7b/download https://repositorio.cuc.edu.co/bitstreams/abe090a1-f472-4918-a7f3-664ed5631886/download https://repositorio.cuc.edu.co/bitstreams/4e3e1b58-a7f4-407c-8c0a-3876942344fa/download https://repositorio.cuc.edu.co/bitstreams/4838a10f-d54b-48ed-8182-f1ed9e9fa96c/download |
bitstream.checksum.fl_str_mv |
b0117efbbb8664d5b1e9878992cdd65b 2f9959eaf5b71fae44bbf9ec84150c7a e6843f615416ebc671a0d3268e759291 d173a8b5edb468e7ae154d31867fb34c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760781526564864 |
spelling |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)Copyright 2022 Elsevier B.V., All rights reserved.https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Carvalho, Valéria V.L.Pinto, DianaSalau, Nina P.G.Pinto, Luiz A.A.Cadaval, Tito R.S.Silva, Luis F.O.Lopes, Toni J.Dotto, Guilherme L.2024-03-19T13:16:33Z2024-03-19T13:16:33Z2022Carvalho, V. V. L., Pinto, D., Salau, N. P. G., Pinto, L. A. A., Cadaval, T. R. S., Silva, L. F. O., Lopes, T. J., & Dotto, G. L. (2022). Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model. Separation and Purification Technology, 292, 121062. https://doi.org/10.1016/j.seppur.2022.1210621383-5866https://hdl.handle.net/11323/1088210.1016/j.seppur.2022.121062Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.coThe use of smart packaging is a global trend, and several works are being reported in this sense. Special attention is given to biodegradable materials like chitosan and natural pigments like anthocyanins. For example, previous studies report that it is possible to produce smart packaging by extracting anthocyanins from red cabbage and adsorbing it into chitosan films. This work elucidates for the first time the mass transfer aspects in the anthocyanins adsorption on chitosan films (CFS). Anthocyanins were extracted from red cabbage and subsequently adsorbed from the leach liquor using chitosan films. The Freundlich model well represented the adsorption isotherms of anthocyanins on CFS. In addition, the PVSDM (pore volume and surface diffusion model) model was implemented to represent the adsorption data and to elucidate the mass transfer. This model was suitable to represent the adsorption data, with a coefficient of determination (R2) higher than 0.95 and an average relative error (ARE) lower than 2.00%. The surface diffusion coefficient values (DS) ranged from 3.70 × 10−10 cm2 s−1 to 1.16 × 10−9 cm2 s−1. The external mass transfer coefficient (kF) was in the range of 10−2 cm s−1. Finally, the Biot number (Bi) revealed that mechanisms inside the particle controlled the anthocyanin's adsorption onto CFS.5 páginasapplication/pdfengElsevierNetherlandshttps://www.scopus.com/record/display.uri?eid=2-s2.0-85128171908&doi=10.1016%2fj.seppur.2022.121062&origin=inward&txGid=0c29c27706bf8801e216c3fdbef693deModeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion modelArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Separation and Purification Technology[1] B. Yousuf, K. Gul, A.A. Wani, P. Singh, Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review, Crit. Rev. Food Sci. Nutr. 56 (13) (2016) 2223–2230, https://doi.org/10.1080/10408398.2013.805316.[2] P. Mizgier, A.Z. Kucharska, A. Soko´ł-Łetowska, J. Kolniak-Ostek, M. Kidon, ´I. Fecka, Characterization of phenolic compounds and antioxidant and antiinflammatory properties of red cabbage and purple carrot extracts, J. Funct. Foods 21 (2016) 133–146, https://doi.org/10.1016/j.jff.2015.12.004.[3] G.L. Dotto, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption, Chem. Eng. J. 214 (2013) 8–16, https://doi.org/10.1016/j.cej.2012.10.027.[4] V.V.L. Carvalho, J.O. Gonçalves, A. Silva, T.R. Cadaval, L.A.A. Pinto, T.J. Lopes, Separation of anthocyanins extracted from red cabbage by adsorption onto chitosan films, Int. J. Biol. Macromol. 131 (2019) 905–911, https://doi.org/ 10.1016/j.ijbiomac.2019.03.145.[5] X. Pang, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G. Luiz Dotto, M.K. Abu Shayeb, H. Belmabrouk, A. Bonilla-Petriciolet, Z. Li, Preparation and characterization of a novel mountain soursop seeds powder adsorbent and its application for the removal of crystal violet and methylene blue from aqueous solutions, Chem. Eng. J. 391 (2020) 123617, https://doi.org/10.1016/j. cej.2019.123617.[6] L. Sellaoui, D. Franco, H. Ghalla, J. Georgin, M.S. Netto, G. Luiz Dotto, A. BonillaPetriciolet, H. Belmabrouk, A. Bajahzar, Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: experiments, phenomenological modelling and DFT calculations, Chem. Eng. J. 394 (2020) 125011, https://doi. org/10.1016/j.cej.2020.125011.[7] P.V.S. Lins, D.C. Henrique, A.H. Ide, J.L.S. Duarte, G.L. Dotto, A. Yazidi, L. Sellaoui, A. Erto, C.L.P. Zanta, L. Meili, Adsorption of a non-steroidal anti-inflammatory drug onto MgAl/LDH-activated carbon composite – experimental investigation and statistical physics modeling, Colloids Surf. A: Phycochem. Eng. Aspects. 586 (2020) 124217, https://doi.org/10.1016/j.colsurfa.2019.124217.[8] N.M. Mahmoodi, M.H. Saffar-Dastgerdi, Clean Laccase immobilized nanobiocatalysts (graphene oxide - zeolite nanocomposites): from production to detailed biocatalytic degradation of organic pollutant, Appl. Catal. B: Environ. 268 (2020) 118443, https://doi.org/10.1016/j.apcatb.2019.118443.[9] N. Nasrollahi, S. Aber, V. Vatanpour, N.M. Mahmoodi, The effect of amine functionalization of CuO and ZnO nanoparticles used as additives on the morphology and the permeation properties of polyethersulfone ultrafiltration nanocomposite membranes, Comp. Part B: Eng. 154 (2018) 388–409, https://doi. org/10.1016/j.compositesb.2018.09.027.[10] N.M. Mahmoodi, B. Hayati, H. Bahrami, M. Arami, Dye adsorption and desorption properties of Mentha pulegium in single and binary systems, J. Appl. Polym. Sci. 122 (2011) 1489–1499, https://doi.org/10.1002/app.34235.[11] N.M. Mahmoodi, Synthesis of magnetic carbon nanotube and photocatalytic dye degradation ability, Environ. Monit. Assessm. 186 (9) (2014) 5595–5604, https:// doi.org/10.1007/s10661-014-3805-7.[12] B. Hayati, N.M. Mahmoodi, A. Maleki, Dendrimer–titania nanocomposite: synthesis and dye-removal capacity, Res. Chem. Intermed. 41 (2015) (2015) 3743–3757, https://doi.org/10.1007/s11164-013-1486-4.[13] B. Hayati, N.M. Mahmoodi, M. Arami, F. Mazaheri, Dye removal from colored textile wastewater by poly(propylene imine) dendrimer: operational parameters and isotherm studies, Clean: Soil Air, Water 39 (7) (2011) 673–679, https://doi. org/10.1002/clen.201000182.[14] M. Oveisi, M.A. Asli, N.M. Mahmoodi, Carbon nanotube based metal-organic framework nanocomposites: Synthesis and their photocatalytic activity for decolorization of colored wastewater, Inorg. Chim. Acta 487 (2019) 169–176, https://doi.org/10.1016/j.ica.2018.12.021.[15] A. Almasian, M.E. Olya, N.M. Mahmoodi, Preparation and adsorption behavior of diethylenetriamine/polyacrylonitrile composite nanofibers for a direct dye removal, Fibers Polym. 16 (9) (2015) 1925–1934, https://doi.org/10.1007/ s12221-015-4624-3.[16] N.M. Mahmoodi, M. Bashiri, S.J. Moeen, Synthesis of nickel–zinc ferrite magnetic nanoparticle and dye degradation using photocatalytic ozonation, Mater. Res. Bull. 47 (12) (2012) 4403–4408, https://doi.org/10.1016/j.materresbull.2012.09.036.[17] N.M. Mahmoodi, F. Najafi, A. Neshat, Poly (amidoamine-co-acrylic acid) copolymer: synthesis, characterization and dye removal ability, Ind. Crpo. Prod. 42 (2013) 119–125, https://doi.org/10.1016/j.indcrop.2012.05.025.[18] N.M. Mahmoodi, M. Oveisi, M. Bakhtiari, B. Hayati, A.A. Shekarchi, A. Bagheri, S. Rahimi, Environmentally friendly ultrasound-assisted synthesis of magnetic zeolitic imidazolate framework - graphene oxide nanocomposites and pollutant removal from water, J. Mol. Liq. 282 (2019) 115–130, https://doi.org/10.1016/j. molliq.2019.02.139.[19] N.M. Mahmoodi, A. Taghizadeh, M. Taghizadeh, M. AZimi Shahali Baglou, Surface modified montmorillonite with cationic surfactants: preparation, characterization, and dye adsorption from aqueous solution, J. Environ. Chem. Eng. 7 (4) (2019) 103243, https://doi.org/10.1016/j.jece.2019.103243.[20] X. Zhao, X. Zhang, S. Tie, S. Hou, H. Wang, Y. Song, R. Rai, M. Tan, Facile synthesis of nano-nanocarriers from chitosan and pectin with improved stability and biocompatibility for anthocyanins delivery: an in vitro and in vivo study, Food Hydrocoll. 109 (2020) 106114, https://doi.org/10.1016/j.foodhyd.2020.106114.[21] Y. Qin, Y. Liu, L. Yuan, H. Yong, J. Liu, Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract, Food Hydrocoll. 96 (2019) 102–111, https://doi.org/10.1016/j.foodhyd.2019.05.017.[22] B. He, J. Ge, P. Yue, X.Y. Yue, R. Fu, J. Liang, X. Gao, Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage, Food Chem. 221 (2017) 1671–1677, https://doi. org/10.1016/j.foodchem.2016.10.120.[23] C.P. Pinheiro, L.M.K. Moreira, S.S. Alves, T.R.S. Cadaval Jr, L.A.A. Pinto, Anthocyanins concentration by adsorption onto chitosan and alginate beads: Isotherms, kinetics and thermodynamics parameters, Int. J. Biol. Macromol. 166 (2021) 934–939, https://doi.org/10.1016/j.ijbiomac.2020.10.250.[24] G. Coelho Leandro, C. Capello, B. Luiza Koop, J. Garcez, A. Rodrigues Monteiro, G. Ayala Valencia, Adsorption-desorption of anthocyanins from jambolan (Syzygium cumini) fruit in laponite® platelets: kinetic models, physicochemical characterization, and functional properties of biohybrids, Food Res. Int. 140 (2021) 109903, https://doi.org/10.1016/j.foodres.2020.109903.[25] R. Ocampo-Perez, R. Leyva-Ramos, J. Mendoza-Barron, R.M. Guerrero-Coronado, Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models, J. Colloids Interface Sci. 364 (1) (2011) 195–204, https://doi.org/10.1016/j.jcis.2011.08.032.[26] D.S.P. Franco, J. Vieillard, N.P.G. Salau, G.L. Dotto, Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: a mass transfer model approach, J. Mol. Liq. 304 (2020) 112758, https://doi.org/10.1016/j. molliq.2020.112758.[27] R. Leyva-Ramos, R. Ocampo-Perez, J. Mendoza-Barron, External mass transfer and hindered diffusion of organic compounds in the adsorption on activated carbon cloth, Chem. Eng. J. 183 (2012) 141–151, https://doi.org/10.1016/j. cej.2011.12.046.[28] R. Leyva-Ramos, C.J. Geankoplis, Model simulation and analysis of surface diffusion of liquids in porous solids, Chem. Eng. Sci. 40 (5) (1985) 799–807, https://doi.org/10.1016/0009-2509(85)85032-6.[29] J. Moreno-P´erez, P.S. Pauletto, A.M. Cunha, A. ´ Bonilla-Petriciolet, N.P.G. Salau, G. L. Dotto, Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite, Colloids Surf. A: Physicochem. Eng. Aspects 614 (2021) 126170, https://doi.org/10.1016/j.colsurfa.2021.126170.[30] V. Díaz-Blancas, R. Ocampo-P´erez, R. Leyva-Ramos, P.A. Alonso-D´ avila, A.I. MoralRodríguez, 3D modeling of the overall adsorption rate of metronidazole on granular activated carbon at low and high concentrations in aqueous solution, Chem. Eng. J. 349 (2018) 82–91, https://doi.org/10.1016/j.cej.2018.05.076.[31] A.C. Frohlich, ¨ R. Ocampo-P´erez, V. Díaz-Blancas, N.P.G. Salau, G.L. Dotto, Threedimensional mass transfer modeling of ibuprofen adsorption on activated carbon prepared by sonication, Chem. Eng. J. 341 (2018) 65–74, https://doi.org/ 10.1016/j.cej.2018.02.020.[32] G.L. Dotto, V.C. Souza, L.A.A. Pinto, Drying of chitosan in a spouted bed: the influences of temperature and equipment geometry in powder quality, LWT Food Sci. Technol. 44 (8) (2011) 1786–1792, https://doi.org/10.1016/j. lwt.2011.03.019.[33] J.M. Moura, B.S. Farias, D.A.S. Rodrigues, C.M. Moura, G.L. Dotto, L.A.A. Pinto, Preparation of chitosan with different characteristics and its application for biofilms production, J. Polym. Environ. 23 (4) (2015) 470–477, https://doi.org/ 10.1007/s10924-015-0730-y.[34] H. Freundlich, Über die adsorption in losungen, ¨ Zeitschrift Für Phys. Chemie. 57U (1) (1907) 385–470, https://doi.org/10.1515/zpch-1907-5723.[35] R. Sips, On the structure of a catalyst surface, J. Chem. Phys. 16 (5) (1948) 490–495, https://doi.org/10.1063/1.1746922.[36] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (4) (2020) 103988, https://doi.org/10.1016/j. jece.2020.103988.[37] G.L. Dotto, R. Ocampo-P´erez, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Adsorption rate of Reactive Black 5 on chitosan-based materials: geometry and swelling effects, Adsorption 22 (7) (2016) 973–983, https://doi.org/10.1007/s10450-016- 9804-y.[38] P.S. Souza, G.L. Dotto, N.P.G. Salau, Detailed numerical solution of pore volume and surface diffusion model in adsorption systems, Chem. Eng. Res. Des. 122 (2017) 298–307, https://doi.org/10.1016/j.cherd.2017.04.021.[39] P.S. Pauletto, J. Moreno-P´erez, L.E. Hernandez-Hern ´ andez, ´ A. Bonilla-Petriciolet, G.L. Dotto, N.P.G. Salau, Novel biochar and hydrochar for the adsorption of 2- nitrophenol from aqueous solutions: An approach using the PVSDM model, Chemosphere 269 (2021) 128748, https://doi.org/10.1016/j. chemosphere.2020.128748.[40] P.R. Souza, G.L. Dotto, N.P.G. Salau, Statistical evaluation of pore volume and surface diffusion model in adsorption systems, J. Environ. Chem. Eng. 5 (6) (2017) 5293–5297, https://doi.org/10.1016/j.jece.2017.10.012.[41] P.S. Pauletto, G.L. Dotto, N.P.G. Salau, Diffusion mechanisms and effect of adsorbent geometry on heavy metal adsorption, Chem. Eng. Res. Des. 157 (2020) 182–194, https://doi.org/10.1016/j.cherd.2020.02.031.[42] G.L. Dotto, L.A.A. Pinto, Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: stirring rate effect in kinetics and mechanism, J. Hazard. Mater. 187 (1-3) (2011) 164–170, https://doi.org/10.1016/j.jhazmat.2011.01.016.[43] Fogler, H.S., 2004. Elements of Chemical Reaction Engineering. Prentice-Hall of India.[44] J.P. Lima, G. Alvarenga, A.C.F. Goszczynski, G.R. Rosa, T.J. Lopes, Batch adsorption of methylene blue dye using Enterolobium contortisiliquum as bioadsorbent: experimental, mathematical modeling and simulation, J. Ind. Eng. Chem. 91 (2020) 362–371, https://doi.org/10.1016/j.jiec.2020.08.029.[45] G.L. Dotto, C. Buriol, L.A.A. Pinto, Diffusional mass transfer model for the adsorption of food dyes on chitosan films, Chem. Eng. Res. Des. 92 (11) (2014) 2324–2332, https://doi.org/10.1016/j.cherd.2014.03.013.[46] D.O. Cooney, Comparison of simple adsorber breakthrough curve method with exact solution, AIChE J. 39 (2) (1993) 355–358, https://doi.org/10.1002/51292AdsorptionAnthocyaninsFilmsMass transferRed cabbagePublicationORIGINALModeling of anthocyanins adsorption onto chitosan films_ An approach using the pore volume and surface diffusion model.pdfModeling of anthocyanins adsorption onto chitosan films_ An approach using the pore volume and surface diffusion model.pdfArtículoapplication/pdf1144379https://repositorio.cuc.edu.co/bitstreams/c14068b5-b617-4629-a714-0a1676518f7b/downloadb0117efbbb8664d5b1e9878992cdd65bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/abe090a1-f472-4918-a7f3-664ed5631886/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTModeling of anthocyanins adsorption onto chitosan films_ An approach using the pore volume and surface diffusion model.pdf.txtModeling of anthocyanins adsorption onto chitosan films_ An approach using the pore volume and surface diffusion model.pdf.txtExtracted texttext/plain32303https://repositorio.cuc.edu.co/bitstreams/4e3e1b58-a7f4-407c-8c0a-3876942344fa/downloade6843f615416ebc671a0d3268e759291MD53THUMBNAILModeling of anthocyanins adsorption onto chitosan films_ An approach using the pore volume and surface diffusion model.pdf.jpgModeling of anthocyanins adsorption onto chitosan films_ An approach using the pore volume and surface diffusion model.pdf.jpgGenerated Thumbnailimage/jpeg14935https://repositorio.cuc.edu.co/bitstreams/4838a10f-d54b-48ed-8182-f1ed9e9fa96c/downloadd173a8b5edb468e7ae154d31867fb34cMD5411323/10882oai:repositorio.cuc.edu.co:11323/108822024-09-17 11:07:23.726https://creativecommons.org/licenses/by-nc/4.0/Copyright 2022 Elsevier B.V., All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |