Characterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile

Generation of organic wastes is a worldwide environmental issue, although, if properly handled they may be a valuable source of animal nutrients. The objective was to determine the performance of a wild strain Saccharomyces cerevisiae in a biopreparation from ruminal content enriched with peels of f...

Full description

Autores:
Arias, Johanna M.
Lara, Cecilia
Salgado, Rodrigo
Torregroza, Angélica M.
Torregroza Espinosa, Ana Carolina
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/3290
Acceso en línea:
https://hdl.handle.net/11323/3290
https://repositorio.cuc.edu.co/
Palabra clave:
Ananas comosus
Carica papaya
Ruminal content
Ananas comosus
Contenido ruminal
Musa sapientum
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_d20ae69ba84e45020ce003c883638f25
oai_identifier_str oai:repositorio.cuc.edu.co:11323/3290
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Characterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile
dc.title.translated.spa.fl_str_mv Caracterización de una cepa salvaje de saccharomyces cerevisiae para obtener una biopreparación con perfil probiótico.
title Characterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile
spellingShingle Characterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile
Ananas comosus
Carica papaya
Ruminal content
Ananas comosus
Contenido ruminal
Musa sapientum
title_short Characterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile
title_full Characterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile
title_fullStr Characterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile
title_full_unstemmed Characterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile
title_sort Characterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile
dc.creator.fl_str_mv Arias, Johanna M.
Lara, Cecilia
Salgado, Rodrigo
Torregroza, Angélica M.
Torregroza Espinosa, Ana Carolina
dc.contributor.author.spa.fl_str_mv Arias, Johanna M.
Lara, Cecilia
Salgado, Rodrigo
Torregroza, Angélica M.
Torregroza Espinosa, Ana Carolina
dc.subject.spa.fl_str_mv Ananas comosus
Carica papaya
Ruminal content
Ananas comosus
Contenido ruminal
Musa sapientum
topic Ananas comosus
Carica papaya
Ruminal content
Ananas comosus
Contenido ruminal
Musa sapientum
description Generation of organic wastes is a worldwide environmental issue, although, if properly handled they may be a valuable source of animal nutrients. The objective was to determine the performance of a wild strain Saccharomyces cerevisiae in a biopreparation from ruminal content enriched with peels of fruits. Probiotic properties of the wild strain such as tolerance to bile salts, pH changes, changes in temperature, high concentrations of sodium chloride; additional to antagonism testing and gas production from glucose were verified in vitro. Microbial growth was evaluated in a medium prepared from clarified ruminal content 40 % v/v, enriched with peel wastes from papaya, pineapple and banana at 25, 50, and 75 % w/w concentrations. Results showed that wild strain had a higher growth in the medium obtained with 50 % w/v fruit wastes. Growth of the strain in this medium disclosed the highest biomass production at 40 hours (2.28x108 cfu·mL-1 ). The viability of the strain showed no important decrease during two months in the log scale of the inoculum. It is concluded that ruminal content enriched with fruit peels provides necessary nutrients for growth of the wild strain S. cerevisiae with probiotic characteristics and the biopreparation represents a supplement which may be useful not only at nutritional level but also to decrease environmental impact caused by these organic wastes.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-08-01
dc.date.accessioned.none.fl_str_mv 2019-05-10T16:09:05Z
dc.date.available.none.fl_str_mv 2019-05-10T16:09:05Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 13163361
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/3290
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 13163361
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/3290
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv AOAC. 1990. Methods of Analysis. Association of Official Analytical Chemist. Washington, D.C. Abreu-Abreu, A. 2012. Prebióticos, probióticos y simbióticos. Rev Gastroenterol Mex. 77: 26-28. APHA. 1998. Standard methods for the examination of water and wastewater. American Public Health Association. Washington, D.C. Blomberg, A. 2000. Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett. 182(1): 1-8. Bridson, E. 1994. The Development, Manufacture and Control of Microbiological Culture Media. Unipath. Bedford, UK. Cavazzoni, V., A. Adami and G. Castrovilli. 1998. Performance of broiler chickens supplemented with Bacillus coagulans as probiotic. British Poultry Science 30: 526-529. DANE (Dirección Nacional de Estadística). 2014. Censo Nacional Agropuecuario. http://www.dane.gov.co/index.php/estadisticas -por-tema/agropecuario/ (visited 07/28/2017). Drisko, J., C. Giles and B. Bischoff. 2003. Probiotics in health maintenance and disease prevention. Altern. Med. Rev. 8(2): 143-155. Duncan, S., K. Scott, A. Ramsay, H. Harmsen, W. Gjalt and S. Colin. 2013. Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Appl. Env. Microbiol. 69: 1136-1142. FAO. 2006. Livestock's long shadow. Environmental issues and options. Food and Agriculture Organization of the United Nations. Rome. 290 p. FAO. 2016. Probiotics in animal nutrition: production, impact and regulation. Animal Production and Health. Paper 179. Rome. García, M., Y. López and A. Carcassés. 2012. Empleo de probióticos en los animales. Sitio Argentino de Producción Animal. 8 p. http:// produccion-animal.com.ar (visited 07/28/2017). Gil, M., L. Vélez, L. d. Millán, M. Acosta, A. Díez, N. Cardona and G. Villa. 2011. Desarrollo de un producto de panadería con alto valor nutricional a partir de la harina obtenida del banano verde con cáscara: una nueva opción para el aprovechamiento de residuos de la industria de exportación. Producción+Limpia 6(1): 96-107. Guerrero, E. and F. Ramírez. 2004. Manejo ambiental de residuos en mataderos de pequeños municipios. Scientia et Technica 10(26): 199-204. Gutiérrez, E., G. Medina, M. Roman, O. Florez and O. Martínez. 2002. Obtención y cuantificación de fibra dietaria a partir de residuos de algunas frutas comunes en Colombia. Vitae 9(1): 5-14. Lara, C. 2008. Chemical composition of a culture medium from bitter guava (Psidium araca) and its relation to the ruminals microorganisms nutrition. Revista Colombiana de Biotecnología 2: 44-49. Lara, C., L. García and L. Oviedo. 2010. Medio de cultivo utilizando residuos-sólidos para el crecimiento de una bacteria nativa con potencial biofertilizante. Revista Colombiana de Biotecnología 12 (1): 103-112. Leiva, S., M. Yáñez, L. Zaror, H. Rodríguez and H. García. 2004. Actividad antimicrobiana de actinomycetes aislados desde ambientes acuáticos del sur de Chile. Revista Médica de Chile 132: 151-159. Lopera, M., J. Homez, M. Ordoñez and H. Pabon. 2009. Guía Ambiental Hortifruticula de Colombia. Edit. Nuevas Ediciones. Bogotá. Lobaina, T., C. Rodríguez and R. Zhurbenko. 2007. Caracterización de un extracto de Ipomoea batatas para ser utilizado en calidad de base nutritiva en medios de cultivo. Rev. Cubana Med. Trop. 59(3): 218-26 Manovacía, N., A. Moreno, O. Mayorga and R. Barahona. 2008. Evaluation of the nutrient content and biomass production in Colombian and commercial yeast strains. Revista Facultad Nacional de Agronomía (Medellín) 61(2): 4542-4553. Marín, Z., M. Cortes and O. Montoya. 2009. Evaluación de la viabilidad de crecimiento de la cepa nativa Lactobacillus plantarum lpbm10 y la cepa comercial Lactobacillus casei atcc 393 en pulpa de uchuva y en solución isotónica de glucosa. Vitae 16(2): 210-217. Martínez, E., A. Torregroza, Ana. Torregroza and D. Mogollón. 2016. Efecto de la deshidratación osmótica-microondas sobre propiedades fisicoquímicas del mango (Mangifera indica L.) variedad Corazón. Agronomía Colombiana 34: 1236-1239. Membré, J., M. Kubaczka and C. Chene. 1999. Combined effects of pH and sugar on growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast. Appl. Env. Microbiol. 69(2): 1136-1142. Mitsui, K., H. Yasui, N. Nakamura and H. Kanazawa. 2005. Oligomerization of the Saccharomyces cerevisiae Na+ /H+antiporterNHa1p: Implications for its antiporter activity.Biochim. Biophys. 1720: 125-136. Moser, S. and D. Savage. 2001. Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in Lactobacilli. Appl. Env. Microbiol. 67(8): 3476-3480. Mossel, D., B. Moreno and C. Struijk. 2003. Microbiología de Los Alimentos. Edit. Acribia. Zaragoza, Spain. Ohgaki, R., N. Nakamura, K. Mitsui and H. Kanazawa. 2005. Characterization of the ion transport activity of the budding yeast Na+ /H+antiporter, NHA1P, using isolated secretory vesicles. Bioch. Biophys. Acta. 1712: 185-196. Ortiz, D., M. St.Pierre, A. Abdulmessih and I. Arias. 1997. A yeast ATP-binding cassettetype protein medianting ATP-dependent bile acid transport. J. Biol. Chem. 272: 15358-15365. Pascual, M. and V. Calderón. 2000. Microbiología Alimentaria. Metodología Analítica para alimentos y bebidas. Edit. Díaz de Santos. Madrid. Rendueles, M. and M. Díaz. 2014. Biotecnología industrial. Arbor CPC 190-768(a155): 13 p. Rep, M., M. Krantz, J. Thevelein and S. Hohmann. 2000. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol Chem. 275(12): 8290-300. Rodón, A., L. Samaniego, R. Bocourt, S. Rodríguez, G. Milián, M. Ramilla and M. Pérez. 2004. Ciencia y Tecnología Alimentaria. 6(1): 56-63. Rubio, A. 2008. Identificación preliminar in vitro de propiedades probióticas en cepas de S. cerevisiae. MVZ 13(1): 1157-1169. Salmines, S., A. Ouwenhand and Y. Lee. 1999. Probiotics: how should they be defined. Trends of Food Science and Technology 10: 107-110. Saval, S. 2012. Aprovechamiento de residuos agroindustriales: pasado, presente y futuro. BioTecnología 16(2): 14-46. Seema, R. 2015. Probiotics in valorization of innate immunity across various animal models. Journal of Functional Foods 14: 549-561. Serrano, R. 1996. Salt tolerance in plants andmicroorganisms: toxicity targets and defense responses. Int. Rev. of Cyt. 165: 1-52. Sychrovae, H., J. Ramírez and A. Peña. 1999. Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae. Microbiol. Let. 171(2): 167-172. Tao, W., J. Deschenes and J. Fassler. 1999. Intracellular glycerol levels modulate the activity of Sln1p, a Saccharomyces cerevisiae two-component regulator. J Biol Chem. 274(1): 360-367. Uicab-Brito, L. A. and C. A. Sandoval. 2003. Uso del contenido ruminal y algunos residuos de la industria cárnica en la elaboración de composta. Tropical and Subtropical Agroecosystems 2: 45-63. Valdovinos, M. 2013. Microbiota intestinal en los trastornos digestivos. Probióticos, prebióticos y simbióticos. Revista de Gastroenterología de México 78: 25-27. Viegas, C., P. Almeida, M. Cavaco and I. SáCorreia. 1998. The H-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability. Appl. Environ. Microbiol 64(2): 779-783. Yato, G. and J. Orihuela. 2015. Uso de fuentes no convencionales de nitrógeno en la fertilización del maíz (Zea mays L.) en Cañete (Perú). I: Rendimiento y extracción de N, P y K. Ecología Aplicada 14(2): 157-162.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Bioagro
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/6eb72e4f-1b88-421d-8e9c-93ecf39cdc93/download
https://repositorio.cuc.edu.co/bitstreams/7cd47078-bb98-4815-bfb1-259b91dfef4c/download
https://repositorio.cuc.edu.co/bitstreams/596c4fde-8a75-4a95-87d4-fb1bad17109a/download
https://repositorio.cuc.edu.co/bitstreams/d177cd15-8b05-4ee3-bc81-f707de2f8c42/download
https://repositorio.cuc.edu.co/bitstreams/18190bb1-9534-4a7f-8ffc-0c6c3bd0c3b8/download
bitstream.checksum.fl_str_mv 9d6cb3e0ba9167dddd2b635770c49335
934f4ca17e109e0a05eaeaba504d7ce4
8a4605be74aa9ea9d79846c1fba20a33
a399b0997812868eda66e2b79261518d
d20224d436b1f09352db9e411a070c41
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760723722764288
spelling Arias, Johanna M.Lara, CeciliaSalgado, RodrigoTorregroza, Angélica M.Torregroza Espinosa, Ana Carolina2019-05-10T16:09:05Z2019-05-10T16:09:05Z2017-08-0113163361https://hdl.handle.net/11323/3290Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Generation of organic wastes is a worldwide environmental issue, although, if properly handled they may be a valuable source of animal nutrients. The objective was to determine the performance of a wild strain Saccharomyces cerevisiae in a biopreparation from ruminal content enriched with peels of fruits. Probiotic properties of the wild strain such as tolerance to bile salts, pH changes, changes in temperature, high concentrations of sodium chloride; additional to antagonism testing and gas production from glucose were verified in vitro. Microbial growth was evaluated in a medium prepared from clarified ruminal content 40 % v/v, enriched with peel wastes from papaya, pineapple and banana at 25, 50, and 75 % w/w concentrations. Results showed that wild strain had a higher growth in the medium obtained with 50 % w/v fruit wastes. Growth of the strain in this medium disclosed the highest biomass production at 40 hours (2.28x108 cfu·mL-1 ). The viability of the strain showed no important decrease during two months in the log scale of the inoculum. It is concluded that ruminal content enriched with fruit peels provides necessary nutrients for growth of the wild strain S. cerevisiae with probiotic characteristics and the biopreparation represents a supplement which may be useful not only at nutritional level but also to decrease environmental impact caused by these organic wastes.La generación de desechos orgánicos es un problema medioambiental mundial, aunque, si se maneja adecuadamente, puede ser una valiosa fuente de nutrientes para animales. El objetivo fue determinar el rendimiento de una cepa silvestre de Saccharomyces cerevisiae en un biopreparado a partir de contenido ruminal enriquecido con cáscaras de frutas. Se verificaron in vitro las propiedades probióticas de la cepa como tolerancia a sales biliares, cambios de pH, cambios de temperatura y altas concentraciones de cloruro de sodio, así como de pruebas de antagonismo y producción de gas a partir de la glucosa. Se evaluó el crecimiento microbiano en el medio elaborado a partir del contenido ruminal al 40% v/v, enriquecido con desechos de cáscaras de papaya, piña y banano en concentraciones de 25, 50 y 75 %. El mayor crecimiento se produjo en el medio con 50 % de desechos de frutas y la cepa reveló la mayor producción de biomasa a las 40 horas (2,28x108 ufc·mL-1 ). Su viabilidad no presentó disminución importante en la escala logarítmica del inóculo durante dos meses. Se concluye que el contenido ruminal enriquecido con cáscaras de frutas al 50 %, proporciona los nutrientes necesarios para el crecimiento de S. cerevisiae con características probióticas, y el biopreparado representa un suplemento que no solo puede ser benéfico a nivel nutricional, sino que también disminuiría el impacto ambiental ocasionado por estos desechos orgánicos.Arias, Johanna M.-e0631f04-a631-48f0-9b3a-7192272851ab-0Lara, Cecilia-76efc429-ac50-4890-b468-b1af3da3babf-0Salgado, Rodrigo-52d96902-fb4b-46ff-af4b-c1e03ec39d14-0Torregroza, Angélica M.-0b94c29c-991c-4e4d-a3e5-732d32f1074c-0Torregroza Espinosa, Ana Carolina-0000-0001-8077-8880-600engBioagroAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ananas comosusCarica papayaRuminal contentAnanas comosusContenido ruminalMusa sapientumCharacterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profileCaracterización de una cepa salvaje de saccharomyces cerevisiae para obtener una biopreparación con perfil probiótico.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAOAC. 1990. Methods of Analysis. Association of Official Analytical Chemist. Washington, D.C. Abreu-Abreu, A. 2012. Prebióticos, probióticos y simbióticos. Rev Gastroenterol Mex. 77: 26-28. APHA. 1998. Standard methods for the examination of water and wastewater. American Public Health Association. Washington, D.C. Blomberg, A. 2000. Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett. 182(1): 1-8. Bridson, E. 1994. The Development, Manufacture and Control of Microbiological Culture Media. Unipath. Bedford, UK. Cavazzoni, V., A. Adami and G. Castrovilli. 1998. Performance of broiler chickens supplemented with Bacillus coagulans as probiotic. British Poultry Science 30: 526-529. DANE (Dirección Nacional de Estadística). 2014. Censo Nacional Agropuecuario. http://www.dane.gov.co/index.php/estadisticas -por-tema/agropecuario/ (visited 07/28/2017). Drisko, J., C. Giles and B. Bischoff. 2003. Probiotics in health maintenance and disease prevention. Altern. Med. Rev. 8(2): 143-155. Duncan, S., K. Scott, A. Ramsay, H. Harmsen, W. Gjalt and S. Colin. 2013. Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Appl. Env. Microbiol. 69: 1136-1142. FAO. 2006. Livestock's long shadow. Environmental issues and options. Food and Agriculture Organization of the United Nations. Rome. 290 p. FAO. 2016. Probiotics in animal nutrition: production, impact and regulation. Animal Production and Health. Paper 179. Rome. García, M., Y. López and A. Carcassés. 2012. Empleo de probióticos en los animales. Sitio Argentino de Producción Animal. 8 p. http:// produccion-animal.com.ar (visited 07/28/2017). Gil, M., L. Vélez, L. d. Millán, M. Acosta, A. Díez, N. Cardona and G. Villa. 2011. Desarrollo de un producto de panadería con alto valor nutricional a partir de la harina obtenida del banano verde con cáscara: una nueva opción para el aprovechamiento de residuos de la industria de exportación. Producción+Limpia 6(1): 96-107. Guerrero, E. and F. Ramírez. 2004. Manejo ambiental de residuos en mataderos de pequeños municipios. Scientia et Technica 10(26): 199-204. Gutiérrez, E., G. Medina, M. Roman, O. Florez and O. Martínez. 2002. Obtención y cuantificación de fibra dietaria a partir de residuos de algunas frutas comunes en Colombia. Vitae 9(1): 5-14. Lara, C. 2008. Chemical composition of a culture medium from bitter guava (Psidium araca) and its relation to the ruminals microorganisms nutrition. Revista Colombiana de Biotecnología 2: 44-49. Lara, C., L. García and L. Oviedo. 2010. Medio de cultivo utilizando residuos-sólidos para el crecimiento de una bacteria nativa con potencial biofertilizante. Revista Colombiana de Biotecnología 12 (1): 103-112. Leiva, S., M. Yáñez, L. Zaror, H. Rodríguez and H. García. 2004. Actividad antimicrobiana de actinomycetes aislados desde ambientes acuáticos del sur de Chile. Revista Médica de Chile 132: 151-159. Lopera, M., J. Homez, M. Ordoñez and H. Pabon. 2009. Guía Ambiental Hortifruticula de Colombia. Edit. Nuevas Ediciones. Bogotá. Lobaina, T., C. Rodríguez and R. Zhurbenko. 2007. Caracterización de un extracto de Ipomoea batatas para ser utilizado en calidad de base nutritiva en medios de cultivo. Rev. Cubana Med. Trop. 59(3): 218-26 Manovacía, N., A. Moreno, O. Mayorga and R. Barahona. 2008. Evaluation of the nutrient content and biomass production in Colombian and commercial yeast strains. Revista Facultad Nacional de Agronomía (Medellín) 61(2): 4542-4553. Marín, Z., M. Cortes and O. Montoya. 2009. Evaluación de la viabilidad de crecimiento de la cepa nativa Lactobacillus plantarum lpbm10 y la cepa comercial Lactobacillus casei atcc 393 en pulpa de uchuva y en solución isotónica de glucosa. Vitae 16(2): 210-217. Martínez, E., A. Torregroza, Ana. Torregroza and D. Mogollón. 2016. Efecto de la deshidratación osmótica-microondas sobre propiedades fisicoquímicas del mango (Mangifera indica L.) variedad Corazón. Agronomía Colombiana 34: 1236-1239. Membré, J., M. Kubaczka and C. Chene. 1999. Combined effects of pH and sugar on growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast. Appl. Env. Microbiol. 69(2): 1136-1142. Mitsui, K., H. Yasui, N. Nakamura and H. Kanazawa. 2005. Oligomerization of the Saccharomyces cerevisiae Na+ /H+antiporterNHa1p: Implications for its antiporter activity.Biochim. Biophys. 1720: 125-136. Moser, S. and D. Savage. 2001. Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in Lactobacilli. Appl. Env. Microbiol. 67(8): 3476-3480. Mossel, D., B. Moreno and C. Struijk. 2003. Microbiología de Los Alimentos. Edit. Acribia. Zaragoza, Spain. Ohgaki, R., N. Nakamura, K. Mitsui and H. Kanazawa. 2005. Characterization of the ion transport activity of the budding yeast Na+ /H+antiporter, NHA1P, using isolated secretory vesicles. Bioch. Biophys. Acta. 1712: 185-196. Ortiz, D., M. St.Pierre, A. Abdulmessih and I. Arias. 1997. A yeast ATP-binding cassettetype protein medianting ATP-dependent bile acid transport. J. Biol. Chem. 272: 15358-15365. Pascual, M. and V. Calderón. 2000. Microbiología Alimentaria. Metodología Analítica para alimentos y bebidas. Edit. Díaz de Santos. Madrid. Rendueles, M. and M. Díaz. 2014. Biotecnología industrial. Arbor CPC 190-768(a155): 13 p. Rep, M., M. Krantz, J. Thevelein and S. Hohmann. 2000. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol Chem. 275(12): 8290-300. Rodón, A., L. Samaniego, R. Bocourt, S. Rodríguez, G. Milián, M. Ramilla and M. Pérez. 2004. Ciencia y Tecnología Alimentaria. 6(1): 56-63. Rubio, A. 2008. Identificación preliminar in vitro de propiedades probióticas en cepas de S. cerevisiae. MVZ 13(1): 1157-1169. Salmines, S., A. Ouwenhand and Y. Lee. 1999. Probiotics: how should they be defined. Trends of Food Science and Technology 10: 107-110. Saval, S. 2012. Aprovechamiento de residuos agroindustriales: pasado, presente y futuro. BioTecnología 16(2): 14-46. Seema, R. 2015. Probiotics in valorization of innate immunity across various animal models. Journal of Functional Foods 14: 549-561. Serrano, R. 1996. Salt tolerance in plants andmicroorganisms: toxicity targets and defense responses. Int. Rev. of Cyt. 165: 1-52. Sychrovae, H., J. Ramírez and A. Peña. 1999. Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae. Microbiol. Let. 171(2): 167-172. Tao, W., J. Deschenes and J. Fassler. 1999. Intracellular glycerol levels modulate the activity of Sln1p, a Saccharomyces cerevisiae two-component regulator. J Biol Chem. 274(1): 360-367. Uicab-Brito, L. A. and C. A. Sandoval. 2003. Uso del contenido ruminal y algunos residuos de la industria cárnica en la elaboración de composta. Tropical and Subtropical Agroecosystems 2: 45-63. Valdovinos, M. 2013. Microbiota intestinal en los trastornos digestivos. Probióticos, prebióticos y simbióticos. Revista de Gastroenterología de México 78: 25-27. Viegas, C., P. Almeida, M. Cavaco and I. SáCorreia. 1998. The H-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability. Appl. Environ. Microbiol 64(2): 779-783. Yato, G. and J. Orihuela. 2015. Uso de fuentes no convencionales de nitrógeno en la fertilización del maíz (Zea mays L.) en Cañete (Perú). I: Rendimiento y extracción de N, P y K. Ecología Aplicada 14(2): 157-162.PublicationORIGINALCharacterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile.pdfCharacterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile.pdfapplication/pdf171527https://repositorio.cuc.edu.co/bitstreams/6eb72e4f-1b88-421d-8e9c-93ecf39cdc93/download9d6cb3e0ba9167dddd2b635770c49335MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/7cd47078-bb98-4815-bfb1-259b91dfef4c/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/596c4fde-8a75-4a95-87d4-fb1bad17109a/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILCharacterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile.pdf.jpgCharacterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile.pdf.jpgimage/jpeg68477https://repositorio.cuc.edu.co/bitstreams/d177cd15-8b05-4ee3-bc81-f707de2f8c42/downloada399b0997812868eda66e2b79261518dMD55TEXTCharacterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile.pdf.txtCharacterization of a wild strain of saccharomyces cerevisiae for obtaining a biopreparation with probiotic profile.pdf.txttext/plain38521https://repositorio.cuc.edu.co/bitstreams/18190bb1-9534-4a7f-8ffc-0c6c3bd0c3b8/downloadd20224d436b1f09352db9e411a070c41MD5611323/3290oai:repositorio.cuc.edu.co:11323/32902024-09-17 10:48:47.503http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=