Modelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre

La rápida propagación de enfermedades transmitidas por el mosquito Aedes aegypti, como el Dengue, Chikungunya y Zika, plantea un desafío significativo para los sistemas de salud pública, especialmente en regiones tropicales como el departamento de Sucre, Colombia. Estas arbovirosis comparten síntoma...

Full description

Autores:
Arrubla Hoyos, Wilson de Jesús
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2025
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/14217
Acceso en línea:
https://hdl.handle.net/11323/14217
https://repositorio.cuc.edu.co/
Palabra clave:
Dengue
Zika
Chikungunya
Machine learning
Clasificación diferencial
Differential classification
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id RCUC2_d09cc6af2d771f3435b03d90129e3835
oai_identifier_str oai:repositorio.cuc.edu.co:11323/14217
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Modelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre
title Modelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre
spellingShingle Modelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre
Dengue
Zika
Chikungunya
Machine learning
Clasificación diferencial
Differential classification
title_short Modelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre
title_full Modelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre
title_fullStr Modelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre
title_full_unstemmed Modelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre
title_sort Modelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre
dc.creator.fl_str_mv Arrubla Hoyos, Wilson de Jesús
dc.contributor.advisor.none.fl_str_mv De La Hoz Franco, Emiro
Gómez Gómez, Jorge
dc.contributor.author.none.fl_str_mv Arrubla Hoyos, Wilson de Jesús
dc.contributor.jury.none.fl_str_mv Sierra Carrillo, Javier
Benet Rodríguez, Mikhail
Barrios Barrios, Mauricio Andrés
dc.subject.proposal.spa.fl_str_mv Dengue
Zika
Chikungunya
Machine learning
Clasificación diferencial
topic Dengue
Zika
Chikungunya
Machine learning
Clasificación diferencial
Differential classification
dc.subject.proposal.eng.fl_str_mv Differential classification
description La rápida propagación de enfermedades transmitidas por el mosquito Aedes aegypti, como el Dengue, Chikungunya y Zika, plantea un desafío significativo para los sistemas de salud pública, especialmente en regiones tropicales como el departamento de Sucre, Colombia. Estas arbovirosis comparten síntomas similares, lo que dificulta su diagnóstico diferencial y retrasa tratamientos oportunos, incrementando el riesgo de complicaciones graves. En este contexto, esta tesis doctoral presenta el desarrollo de un modelo predictivo multiclase basado en técnicas de machine learning para la predicción diferencial de estas enfermedades. Además, propone una metodología fundamentada en las directrices de la OPS 2022, que transforma recomendaciones cualitativas basadas en evidencia médica en pesos cuantitativos aplicables a variables de signos y síntomas en los datos, mejorando así la precisión diagnóstica. Se emplearon algoritmos como bosques aleatorios y árboles de decisión, que lograron precisiones superiores al 99,0 %, y se desarrolló una plataforma tecnológica para validar el modelo en escenarios clínicos reales. Como conclusiones, el modelo demuestra ser eficaz para optimizar el diagnóstico diferencial y fortalecer los sistemas de salud en regiones endémicas. Aunque se abordaron limitaciones como la escasez de datos para Chikungunya mediante técnicas como bootstrapping, se reconoce que ampliar la base de datos podría mejorar su robustez. Entre los trabajos futuros, se sugiere validar el modelo en diversos contextos geográficos para evaluar su generalización y realizar estudios longitudinales que analicen su sostenibilidad y eficacia a largo plazo.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-05-07T22:27:58Z
dc.date.available.none.fl_str_mv 2025-05-07T22:27:58Z
dc.date.issued.none.fl_str_mv 2025-04-30
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TD
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/14217
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/14217
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Organización Panamericana de la Salud (OPS), "Actualización Epidemiológica Dengue, chikunguña y Zika en el contexto de COVID-19," 23 de diciembre de 2021. [En línea]. Disponible en: https://iris.paho.org/bitstream/handle/10665,2/55639/EpiUpdate23Dec2021_spa.pdf?sequence=2&isAllowed=y. Accedido: 30 de marzo de 2022.
W. E. Villamil-Gómez et al., "Zika, dengue, and chikungunya co-infection in a pregnant woman from Colombia," Int. J. Infect. Dis., vol. 51, pp. 135–138, oct. 2016, doi: 10.1016/j.ijid.2016.07.017.
R. Sippy et al., "Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection," PLoS Negl. Trop. Dis., vol. 14, no. 2, p. e0007969, feb. 2020, doi: 10.1371/journal.pntd.0007969.
Instituto Nacional de Salud (INS), "Boletín epidemiológico semana 12," 2022. [En línea]. Disponible en: https://www.ins.gov.co/buscador eventos/BoletinEpidemiologico/2022_Bolet%C3%ADn_epidemiologico_semana_12.pdf. Accedido: 2 de mayo de 2022.
Instituto Nacional de Salud (INS), "Informe de evento y tableros de control." [En línea]. Disponible en: https://www.ins.gov.co/buscador-eventos/Paginas/Info-Evento.aspx. Accedido: 5 de julio de 2024
Instituto Nacional de Salud (INS), "Boletín epidemiológico semana 52," 2024. [En línea]. Disponible en: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2024_Boletin_epidemiologico_semana_52.pdf. Accedido: 16 de marzo de 2025.
Organización Panamericana de la Salud (OPS), "Zika - OPS/OMS | Organización Panamericana de la Salud." [En línea]. Disponible en: https://www.paho.org/es/temas/zika. Accedido: 27 de abril de 2022.
Organización Panamericana de la Salud (OPS), "Chikungunya - OPS/OMS | Organización Panamericana de la Salud." [En línea]. Disponible en: https://www.paho.org/es/temas/chikungunya. Accedido: 2 de mayo de 2022.
Pan American Health Organization (PAHO), "Síntesis de evidencia: Directrices para el diagnóstico y el tratamiento del dengue, el chikunguña y el zika en la Región de las Américas," Rev. Panam. Salud Pública, vol. 46, p. 1, jul. 2022, doi: 10.26633/RPSP.2022.82
D. M. Caicedo et al., "Desarrollo de algoritmos clínicos para el diagnóstico del dengue en Colombia," Biomédica, vol. 39, no. 1, pp. 170–185, mar. 2019, doi: 10.7705/biomedica.v39i2.3990.
L. M. Rodriguez Lopez and Z. E. Roa Gómez, "Déficit de médicos en Colombia en área rural: exploración de incentivos para aumentar la participación de médicos en el servicio social obligatorio en zonas vulnerables de Colombia," jun. 2021. [En línea]. Disponible en: http://repository.javeriana.edu.co/handle/10554/54874. Accedido: 26 de noviembre de 2021.
S. Srivastava, S. Soman, A. Rai, and A. S. Cheema, "An Online Learning Approach for Dengue Fever Classification," in Proc. 2020 IEEE 33rd Int. Symp. Comput.-Based Med. Syst. (CBMS), jul. 2020, pp. 163–168, doi: 10.1109/CBMS49503.2020.00038.
P. Shimpi, S. Shah, M. Shroff, and A. Godbole, "An artificial neural network approach for classification of vector-borne diseases," in Proc. 2017 Int. Conf. Comput. Methodol. Commun. (ICCMC), jul. 2017, pp. 412–415, doi: 10.1109/ICCMC.2017.8282721.
P. Silitonga, A. Bustamam, H. Muradi, W. Mangunwardoyo, and B. E. Dewi, "Comparison of Dengue Predictive Models Developed Using Artificial Neural Network and Discriminant Analysis with Small Dataset," Appl. Sci., vol. 11, no. 3, art. no. 3, ene. 2021, doi: 10.3390/app11030943
V. Mariappan, S. Adikari, L. Shanmugam, J. M. Easow, and A. B. Pillai, "Expression dynamics of vascular endothelial markers: endoglin and syndecan-1 in predicting dengue disease outcome," Transl. Res., vol. 232, pp. 121–141, jun. 2021, doi: 10.1016/j.trsl.2021.02.001
C. Davi et al., "Severe Dengue Prognosis Using Human Genome Data and Machine Learning," IEEE Trans. Biomed. Eng., vol. 66, no. 10, pp. 2861–2868, oct. 2019, doi: 10.1109/TBME.2019.2897285.
J. L. Arredondo-García, A. Méndez-Herrera, and H. Medina-Cortina, "Arbovirus en Latinoamérica," Acta Pediátrica México, vol. 37, no. 2, pp. 111–131, abr. 2016.
OPS, "OPS/OMS | Información sobre los arbovirus en la Región de las Américas." [En línea]. Disponible en: https://www3.paho.org/hq/index.php?option=com_content&view=article&id=12905:information-arboviruses-region americas&Itemid=42243&lang=es. Accedido: 2 de mayo d
M. A. Espinal et al., "Emerging and Reemerging Aedes‐Transmitted Arbovirus Infections in the Region of the Americas: Implications for Health Policy," Am. J. Public Health, vol. 109, no. 3, pp. 387–392, mar. 2019, doi: 10.2105/AJPH.2018.304849.
World Health Organization (WHO), "Dengue y dengue grave." [En línea]. Disponible en: https://www.who.int/es/news room/fact-sheets/detail/dengue-and-severe-dengue. Accedido: 3 de octubre de 2021. [21] Pan American Health Organization; M. A. Espinal; World Health Organization, Dengue: guías para la atención de enfermos en la región de las Américas, 2016.
D. J. Gubler, "Dengue and dengue hemorrhagic fever," Clin. Microbiol. Rev., vol. 11, no. 3, pp. 480–496, Jul. 1998.
N. Raafat, S. D. Blacksell, and R. J. Maude, "A review of dengue diagnostics and implications for surveillance and control," Trans. R. Soc. Trop. Med. Hyg., vol. 113, no. 11, pp. 653–660, Nov. 2019, doi: 10.1093/trstmh/trz068.
Instituto Nacional de Salud (INS), "2019 Boletín epidemiológico semana 30," 2019. [En línea]. Disponible en: http://www.ins.gov.co/buscador eventos/BoletinEpidemiologico/2019%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%2030.pdf. Accedido: 11 de noviembre de 2021.
Gaceta Departamental de Sucre, "1140_plan-departamental-de-desarrollo-20162019.pdf," 2016.
Gobernación de Sucre, "Plan de Desarrollo Sucre Diferente 2020-2023." [En línea]. Disponible en: http://www.sucre.gov.co/planes/plan-de-desarrollo-departamental-sucre-diferente-sin. Accedido: 7 de diciembre de 2021.
Secretaría de Salud Departamental - Salud Pública de Sucre, "BOLETIN DENGUE A SEMANA 8_2022.pdf," 2022.
K. Allgoewer et al., "New proteomic signatures to distinguish between Zika and dengue infections," Mol. Cell. Proteomics, vol. 20, p. 100052, 2021, doi: 10.1016/j.mcpro.2021.100052.
Instituto Nacional de Salud (INS), "Boletín epidemiológico semana 44," 2024. [En línea]. Disponible en: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2024_Boletin_epidemiologico_semana_44.pdf. Accedido: 13 de noviembre de 2024.
W. Arrubla-Hoyos and A. Solano-Barliza, "Contribuciones del aprendizaje automático en el descubrimiento del dengue: un análisis cienciométrico," Rev. Cubana Inf. Cienc. Salud, vol. 35, Jul. 2024. [En línea]. Disponible en: https://acimed.sld.cu/index.php/acimed/article/view/2630. Accedido: 6 de febrero de 2025.
C. A. Bechara and C. S. Restrepo, "Manifestaciones oculares de infección del virus del chikunguña: Revisión de literatura," 2015, p. 7.
Organización Panamericana de la Salud (OPS), "Epidemiological Update for Dengue and other Arboviruses." [En línea]. Disponible en: https://ais.paho.org/ha_viz/Arbo/Arbo_Bulletin_Es_2022.asp?env=pri. Accedido: 13 de noviembre de 2024.
S. R. da Silva Neto, T. T. de Oliveira, V. de S. Sampaio, T. Lynn, and P. T. Endo, "Platform for monitoring and clinical diagnosis of arboviruses using computational models," in Proc. 2020 Int. Conf. Cyber Security and Prot. Digital Serv. (Cyber Security), Jun. 2020, pp. 1–3, doi: 10.1109/CyberSecurity49315.2020.9138880.
R. Benítez, G. Escudero, S. Kanaan, and D. M. Rodó, Inteligencia artificial avanzada. Editorial UOC, 2014.
Y. Ocaña-Fernández, L. A. Valenzuela-Fernández, and L. L. Garro-Aburto, "Inteligencia artificial y sus implicaciones en la educación superior," Propósitos y Representaciones, vol. 7, no. 2, pp. 536–568, Jul. 2019, doi: 10.20511/pyr2019.v7n2.274.
N. E. A. Osorio, "El derecho de autor en la Inteligencia Artificial de machine learning," vol. 30, pp. 327–353, Bogotá, Colombia: Universidad Externado de Colombia, 2020, doi: 10.18601/16571959.n30.12.
A. Núñez Reiz, M. A. Armengol de la Hoz, and M. Sánchez García, "Big Data Analysis y Machine Learning en medicina intensiva," Medicina Intensiva, vol. 43, no. 7, pp. 416–426, Oct. 2019, doi: 10.1016/j.medin.2018.10.007.
H. C. Arteaga, "Técnicas de aprendizaje supervisado y no supervisado para el aprendizaje automatizado de computadoras," in Memorias del Primer Congreso Internacional de Ciencias Pedagógicas: Por una educación integral, participativa e incluyente, Instituto Superior Tecnológico Bolivariano, 2015, pp. 549–564, ISBN 978-9942-17-011-8. [En línea]. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7192675. Accedido: 17 de octubre de 2021.
M. L. Errecalde, "Marcos teóricos del aprendizaje por refuerzo multiagente," presentado en el III Workshop de Investigadores en Ciencias de la Computación, 2001. [En línea]. Disponible en: http://sedici.unlp.edu.ar/handle/10915/21638. Accedido: 17 de octubre de 2021.
S. A. Hicks et al., "On evaluation metrics for medical applications of artificial intelligence," Sci. Rep., vol. 12, no. 1, art. no. 1, Apr. 2022, doi: 10.1038/s41598-022-09954-8.
M. A. Carlos, M. Nogueira, and R. J. Machado, "Analysis of dengue outbreaks using big data analytics and social networks," in Proc. 2017 4th Int. Conf. Syst. and Informatics (ICSAI), Hangzhou, IEEE, Nov. 2017, pp. 1592–1597, doi: 10.1109/ICSAI.2017.8248538.
G. Manogaran and D. Lopez, "A Gaussian process based big data processing framework in cluster computing environment," Cluster Comput., vol. 21, no. 1, pp. 189–204, Mar. 2018, doi: 10.1007/s10586-017-0982-5.
N. Noorbakhsh-Sabet, R. Zand, Y. Zhang, and V. Abedi, "Artificial Intelligence Transforms the Future of Health Care," The American Journal of Medicine, vol. 132, no. 7, pp. 795–801, Jul. 2019, doi: 10.1016/j.amjmed.2019.01.017.
D. Wiljer and Z. Hakim, "Developing an Artificial Intelligence–Enabled Health Care Practice: Rewiring Health Care Professions for Better Care," J. Med. Imaging Radiat. Sci., vol. 50, no. 4, pp. S8–S14, Dec. 2019, doi: 10.1016/j.jmir.2019.09.010.
K. W. Tan et al., "Dynamic dengue haemorrhagic fever calculators as clinical decision support tools in adult dengue," Trans. R. Soc. Trop. Med. Hyg., vol. 114, no. 1, pp. 7–15, Jan. 2020, doi: 10.1093/trstmh/trz099
P. Dharap and S. Raimbault, "Performance evaluation of machine learning-based infectious screening flags on the HORIBA Medical Yumizen H550 Haematology Analyzer for vivax malaria and dengue fever," Malar. J., vol. 19, no. 1, 2020, doi: 10.1186/s12936-020-03502-3.
J.-P. Tchapet Njafa and S. G. Nana Engo, "Quantum associative memory with linear and non-linear algorithms for the diagnosis of some tropical diseases," Neural Netw., vol. 97, pp. 1–10, Jan. 2018, doi: 10.1016/j.neunet.2017.09.002.
C. Rodriguez-Quijada, J. Gomez-Marquez, and K. Hamad-Schifferli, "Repurposing old antibodies for new diseases by exploiting cross-reactivity and multicolored nanoparticles," ACS Nano, vol. 14, no. 6, pp. 6626–6635, 2020, doi: 10.1021/acsnano.9b09049.
R. V. Veiga et al., "Classification algorithm for congenital Zika Syndrome: characterizations, diagnosis and validation," Sci. Rep., vol. 11, no. 1, p. 6770, 2021.
S. Gambhir, K. M. Sanjay, and Y. K. Jaypee, "The diagnosis of dengue disease: An evaluation of three machine learning approaches," Int. J. Healthc. Inf. Syst. Inform., 2018.
J. Acosta Torres et al., "Técnica árboles de decisión aplicada al método clínico en el diagnóstico del dengue," Rev. Cubana Pediatr., vol. 88, no. 4, pp. 441–453, Dec. 2016.
A. Bharambe, A. A. Chandorkar, and D. Kalbande, "A deep learning approach for dengue tweet classification," in Proc. 2021 3rd Int. Conf. Invent. Res. Comput. Appl. (ICIRCA), Coimbatore, India: IEEE, Sep. 2021, pp. 1043–1047, doi: 10.1109/ICIRCA51532.2021.9544862.
P. H. Khotimah, A. Fachrur Rozie, E. Nugraheni, A. Arisal, W. Suwarningsih, and A. Purwarianti, "Deep learning for dengue fever event detection using online news," in Proc. 2020 Int. Conf. Radar, Antenna, Microwave, Electron. and Telecommun. (ICRAMET), Tangerang, Indonesia: IEEE, Nov. 2020, pp. 261–266, doi: 10.1109/ICRAMET51080.2020.9298630.
L. Medeiros Neto, S. Rogerio da Silva Neto, and P. T. Endo, "A comparative analysis of converters of tabular data into image for the classification of arboviruses using convolutional neural networks," PLoS One, vol. 18, no. 12, p. e0295598, Dec. 2023, doi: 10.1371/journal.pone.0295598.
C. Rodriguez-Quijada, J. Gomez-Marquez, and K. Hamad-Schifferli, "Repurposing old antibodies for new diseases by exploiting cross-reactivity and multicolored nanoparticles," ACS Nano, vol. 14, no. 6, pp. 6626–6635, Jun. 2020, doi: 10.1021/acsnano.9b09049
N. Iqbal and M. Islam, "Machine learning for dengue outbreak prediction: A performance evaluation of different prominent classifiers," Informatica, vol. 43, no. 3, art. no. 3, Sep. 2019, doi: 10.31449/inf.v43i3.1548.
R. Alfred and J. H. Obit, "The roles of machine learning methods in limiting the spread of deadly diseases: A systematic review," Heliyon, vol. 7, no. 6, p. e07371, 2021, doi: 10.1016/j.heliyon.2021.e07371.
World Health Organization, Global Report on Ageism, 2021. [En línea]. Disponible en: https://iris.who.int/handle/10665/340208. Accedido: Mar. 7, 2024.
Md. S. Islam, S. A. Khushbu, A. S. Azad Rabby, and T. Bhuiyan, "A study on dengue fever in Bangladesh: Predicting the probability of dengue infection with external behavior with machine learning," in Proc. 2021 5th Int. Conf. Intell. Comput. Control Syst. (ICICCS), May 2021, pp. 1717–1721, doi: 10.1109/ICICCS51141.2021.9432288
T.-S. Ho et al., "Comparing machine learning with case-control models to identify confirmed dengue cases," PLoS Negl. Trop. Dis., vol. 14, no. 11, p. e0008843, Nov. 2020, doi: 10.1371/journal.pntd.0008843.
S. Khan et al., "Random Forest-Based Evaluation of Raman Spectroscopy for Dengue Fever Analysis," Appl. Spectrosc., vol. 71, no. 9, pp. 2111–2117, Sep. 2017, doi: 10.1177/0003702817695571.
S. M. K. Dourjoy, A. M. G. R. Rafi, Z. N. Tumpa, and Mohd. Saifuzzaman, "A Comparative Study on Prediction of Dengue Fever Using Machine Learning Algorithm," in Advances in Distributed Computing and Machine Learning, Lecture Notes in Networks and Systems, vol. 127, edited by A. K. Tripathy, M. Sarkar, J. P. Sahoo, K.-C. Li, and S. Chinara, Singapore: Springer Singapore, 2021, pp. 501–510, doi: 10.1007/978-981-15-4218-3_49.
A. J. Dinu, R. Ganesan, F. Joseph, and V. Balaji, "A study on deep machine learning algorithms for diagnosis of diseases," Int. J. Appl. Eng. Res., vol. 12, no. 17, pp. 6338–6346, 2017.
Md. Habibur Rahman, Md. Omar Faroque, and F. S. Tithi, "Dengue Fever Prediction," in Information and Communication Technology for Competitive Strategies (ICTCS 2020), Lecture Notes in Networks and Systems, vol. 191, edited by A. Joshi, M. Mahmud, R. G. Ragel, and N. V. Thakur, Singapore: Springer Singapore, 2022, pp. 709–718, doi: 10.1007/978- 981-16-0739-4_67.
S. Suhaeri, N. Mohd Nawi, and M. Fathurahman, "Early Detection of Dengue Disease Using Extreme Learning Machine," Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 5, pp. 2219–2224, 2018.
S. A. alias Balamurugan, M. S. M. Mallick, and G. Chinthana, "Improved prediction of dengue outbreak using combinatorial feature selector and classifier based on entropy weighted score based optimal ranking," Informatics Med. Unlocked, vol. 20, p. 100400, 2020, doi: 10.1016/j.imu.2020.100400.
J. D. Mello-Román, J. C. Mello-Román, S. Gómez-Guerrero, and M. García-Torres, "Predictive Models for the Medical Diagnosis of Dengue: A Case Study in Paraguay," Comput. Math. Methods Med., vol. 2019, pp. 1–7, Jul. 2019, doi: 10.1155/2019/7307803.
S. Gambhir, S. K. Malik, and Y. Kumar, "PSO-ANN based diagnostic model for the early detection of dengue disease," New Horiz. Transl. Med., vol. 4, no. 1–4, pp. 1–8, Nov. 2017, doi: 10.1016/j.nhtm.2017.10.001.
R. Kapoor, V. Kadyan, and S. Ahuja, "Weight Based- Artificial Neural Network (W-Ann) For Predicting Dengue Using Machine Learning Approach With Indian Perspective," vol. 9, no. 2, p. 9, 2020.
W. Nadda, W. Boonchieng, and E. Boonchieng, "Weighted Extreme Learning Machine for Dengue Detection with Class imbalance Classification," in Proc. 2019 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT), Bethesda, MD, USA, Nov. 2019, pp. 151–154, doi: 10.1109/HI-POCT45284.2019.8962825.
W. Nadda, W. Boonchieng, and E. Boonchieng, "Influenza, dengue and common cold detection using LSTM with fully connected neural network and keywords selection," BioData Min., vol. 15, no. 1, p. 5, Feb. 2022, doi: 10.1186/s13040- 022-00288-9.
B. Abdualgalil, S. Abraham, and W. M. Ismael, "Early Diagnosis for Dengue Disease Prediction Using Efficient Machine Learning Techniques Based on Clinical Data," J. Robot. Control (JRC), vol. 3, no. 3, art. no. 3, May 2022, doi: 10.18196/jrc.v3i3.14387.
A. Nagori, L. S. Dhingra, A. Bhatnagar, R. Lodha, and T. Sethi, "Predicting Hemodynamic Shock from Thermal Images using Machine Learning," Sci. Rep., vol. 9, no. 1, p. 91, Jan. 2019, doi: 10.1038/s41598-018-36586-8.
W. Caicedo-Torres, Á. Paternina-Caicedo, H. Pinzón-Redondo, and J. Gutiérrez, "Differential Diagnosis of Dengue and Chikungunya in Colombian Children Using Machine Learning," in Advances in Artificial Intelligence – IBERAMIA 2018, edited by G. R. Simari, E. Fermé, F. Gutiérrez Segura, and J. A. Rodríguez Melquiades, Lecture Notes in Computer Science, Cham: Springer International Publishing, 2018, pp. 181–192, doi: 10.1007/978-3-030-03928-8_15.
A. K. Chattopadhyay and S. Chattopadhyay, "VIRDOCD: A VIRtual DOCtor to predict dengue fatality," Expert Syst., vol. n/a, no. n/a, p. e12796, 2021, doi: 10.1111/exsy.12796.
D. Sarma, S. Hossain, T. Mittra, Md. A. M. Bhuiya, I. Saha, and R. Chakma, "Dengue Prediction using Machine Learning Algorithms," in Proc. 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC), Kuching, Malaysia, Dec. 2020, pp. 1–6, doi: 10.1109/R10-HTC49770.2020.9357035.
A. Fahmi, D. Purwitasari, S. Sumpeno, and M. H. Purnomo, "Performance Evaluation of Classifiers for Predicting Infection Cases of Dengue Virus Based on Clinical Diagnosis Criteria," in Proc. 2020 Int. Electronics Symposium (IES), Surabaya, Indonesia, Sep. 2020, pp. 456–462, doi: 10.1109/IES50839.2020.9231728.
S. Swami, H. Kanwar, A. Gambhir, P. Singh, M. Diwakar, and K. Kishor, "Design and Development of Machine Learning Techniques for Disease Prediction," in Proc. 2022 IEEE 11th Int. Conf. Commun. Syst. and Netw. Technol. (CSNT), Apr. 2022, pp. 176–182, doi: 10.1109/CSNT54456.2022.9787674.
I. Nikolayeva et al., "A Blood RNA Signature Detecting Severe Disease in Young Dengue Patients at Hospital Arrival," J. Infect. Dis., vol. 217, no. 11, pp. 1690–1698, May 2018, doi: 10.1093/infdis/jiy086.
S. H. U. Briyatis, S. C. Premaratne, and D. G. H. De Silva, "A novel method for dengue management based on vital signs and blood profile," Int. J. Eng. Adv. Technol., vol. 8, no. 6 (Special Issue 3), pp. 154–159, 2019, doi: 10.35940/ijeat.F1025.0986S319.
A. Shukla and V. Goyal, "Deep Learning-Based Severe Dengue Prognosis Using Human Genome Data with Novel Feature Selection Method," in Advances in Computer, Communication and Computational Sciences, in Advances in Intelligent Systems and Computing, S. K. Bhatia, S. Tiwari, S. Ruidan, M. C. Trivedi, and K. K. Mishra, Eds., Singapore: Springer, 2021, pp. 473–482, doi: 10.1007/978-981-15-4409-5_43
V. E. Fiestas Solórzano et al., "Different Profiles of Cytokines, Chemokines and Coagulation Mediators Associated with Severity in Brazilian Patients Infected with Dengue Virus," Viruses, vol. 13, no. 9, Art. no. 9, Sep. 2021, doi: 10.3390/v13091789.
P. Silitonga, B. E. Dewi, A. Bustamam, and H. S. Al-Ash, "Evaluation of Dengue Model Performances Developed Using Artificial Neural Network and Random Forest Classifiers," Procedia Computer Science, vol. 179, pp. 135–143, 2021, doi: 10.1016/j.procs.2020.12.018.
S. D. P. Jayasundara, S. S. N. Perera, G. N. Malavige, and S. Jayasinghe, "Mathematical modelling and a systems science approach to describe the role of cytokines in the evolution of severe dengue," BMC Syst. Biol., vol. 11, no. 1, p. 34, Mar. 2017, doi: 10.1186/s12918-017-0415-3.
S.-W. Huang, H.-P. Tsai, S.-J. Hung, W.-C. Ko, and J.-R. Wang, "Assessing the risk of dengue severity using demographic information and laboratory test results with machine learning," PLoS Negl. Trop. Dis., vol. 14, no. 12, p. e0008960, Dec. 2020, doi: 10.1371/journal.pntd.0008960.
S. U. Chowdhury, S. Sayeed, I. Rashid, M. G. R. Alam, A. K. M. Masum, and M. A. A. Dewan, "Shapley-Additive Explanations-Based Factor Analysis for Dengue Severity Prediction using Machine Learning," J. Imaging, vol. 8, no. 9, Art. no. 9, Sep. 2022, doi: 10.3390/jimaging8090229.
W. Hoyos, J. Aguilar, and M. Toro, "A clinical decision-support system for dengue based on fuzzy cognitive maps," Health Care Manag. Sci., Aug. 2022, doi: 10.1007/s10729-022-09611-6.
H. Hamdani, H.-R. Hatta, N. Puspitasari, A. Septiarini, and H. Henderi, "Dengue classification method using support vector machines and cross-validation techniques," IAES Int. J. Artif. Intell. (IJ-AI), vol. 11, no. 3, Art. no. 3, Sep. 2022, doi: 10.11591/ijai.v11.i3.pp1119-1129.
Y. E. Liu et al., "An 8-gene machine learning model improves clinical prediction of severe dengue progression," Genome Med., vol. 14, no. 1, p. 33, Mar. 2022, doi: 10.1186/s13073-022-01034-w
M. Robinson et al., "A 20-Gene Set Predictive of Progression to Severe Dengue," Cell Rep., vol. 26, no. 5, pp. 1104– 1111.e4, Jan. 2019, doi: 10.1016/j.celrep.2019.01.033.
Y. Zhang, R. Bhattacharya, and R. Scheuermann, "Identifying disease severity associated genetic regions in Dengue virus using computational and machine learning approaches," Int. J. Infect. Dis., vol. 101, p. 231, Dec. 2020, doi: 10.1016/j.ijid.2020.11.038.
O. Braga, G. Albuquerque, M. Oliveira, and O. Monteiro, "Intelligent Solution for Classification of Diseases Transmitted by Vector Aedes Aegypti," in Proc. Euro American Conf. Telematics and Information Systems, Fortaleza, Brazil: ACM, Nov. 2018, pp. 1–5, doi: 10.1145/3293614,3293640.
R. K. Putra and S. Mulyati, "Classification of Childhood Diseases with Fever Using Fuzzy K-Nearest Neighbor Method," in Proc. 2018 Int. Sem. Res. Inf. Technol. and Intell. Syst. (ISRITI), Nov. 2018, pp. 332–337, doi: 10.1109/ISRITI.2018.8864475.
P. Dutta, S. Paul, A. J. Obaid, S. Pal, and K. Mukhopadhyay, "Feature Selection based Artificial Intelligence Techniques for the Prediction of COVID like Diseases," J. Phys.: Conf. Ser., vol. 1963, no. 1, p. 012167, Jul. 2021, doi: 10.1088/1742- 6596/1963/1/012167.
P. Dharap and S. Raimbault, "Performance evaluation of machine learning-based infectious screening flags on the HORIBA Medical Yumizen H550 Haematology Analyzer for vivax malaria and dengue fever," Malar. J., vol. 19, no. 1, p. 429, Nov. 2020, doi: 10.1186/s12936-020-03502-3.
D. K. Ming et al., "The Diagnosis of Dengue in Patients Presenting With Acute Febrile Illness Using Supervised Machine Learning and Impact of Seasonality," Front. Digit. Health, vol. 4, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fdgth.2022.849641. Accessed: Aug. 18, 2022.
I. Ozer, O. Cetin, K. Gorur, and F. Temurtas, "Improved machine learning performances with transfer learning to predicting need for hospitalization in arboviral infections against the small dataset," Neural Comput. Appl., Jun. 2021, doi: 10.1007/s00521-021-06133-0.
S. K. Sood, V. Sood, I. Mahajan, and Sahil, "An intelligent healthcare system for predicting and preventing dengue virus infection," Computing, Jan. 2021, doi: 10.1007/s00607-020-00877-8.
F. Narita et al., "A Review of Piezoelectric and Magnetostrictive Biosensor Materials for Detection of COVID-19 and Other Viruses," Adv. Mater., vol. 33, no. 1, p. 2005448, 2021, doi: 10.1002/adma.202005448.
S. Jain et al., "Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases," Biosens. Bioelectron., vol. 179, p. 113074, May 2021, doi: 10.1016/j.bios.2021.113074.
L. Dey and A. Mukhopadhyay, "A Classification-based Approach to Prediction of Dengue Virus and Human Protein Protein Interactions using Amino Acid Composition and Conjoint Triad Features", in 2019 IEEE Region 10 Symposium (TENSYMP), Kolkata, India, Jun. 2019, pp. 373–378, doi: 10.1109/TENSYMP46218.2019.8971382.
V. Saranya and R. Porkodi, "Identifying Significant Gene Interaction Networks Using Machine Learning and Statistical Techniques", in 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, Feb. 2019, pp. 1–7, doi: 10.1109/ICECCT.2019.8869103.
E. Yang, B. Gu, and T. Yoon, "Intensified analysis and comparison of 5 flacicirus with the use of decision tree and support vector machine (SVM)", in 2017 19th International Conference on Advanced Communication Technology (ICACT), Bongpyeong, South Korea, 2017, pp. 526–529, doi: 10.23919/ICACT.2017.7890146.
S. Chatterjee, N. Dey, F. Shi, A. S. Ashour, S. J. Fong, and S. Sen, "Clinical application of modified bag-of-features coupled with hybrid neural-based classifier in dengue fever classification using gene expression data", Med. Biol. Eng. Comput., vol. 56, no. 4, pp. 709–720, Apr. 2018, doi: 10.1007/s11517-017-1722-y.
J.-M. Kim, H. Ju, and Y. Jung, "Copula Approach for Developing a Biomarker Panel for Prediction of Dengue Hemorrhagic Fever", Ann. Data Sci., vol. 7, no. 4, pp. 697–712, Dec. 2020, doi: 10.1007/s40745-020-00293-x.
R. Delli Ponti and M. Mutwil, "Structural landscape of the complete genomes of dengue virus serotypes and other viral hemorrhagic fevers", BMC Genomics, vol. 22, no. 1, p. 352, May 2021, doi: 10.1186/s12864-021-07638-7.
F. Falconi-Agapito et al., "Peptide Biomarkers for the Diagnosis of Dengue Infection", Front. Immunol., vol. 13, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fimmu.2022.793882. Accessed: Aug. 18, 2022
T. A. Saifuzzaman, K. Y. Lee, A. R. M. Radzol, P. S. Wong, and I. Looi, "Optimal Scree-CNN for Detecting NS1 Molecular Fingerprint from Salivary SERS Spectra", in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, Jul. 2020, pp. 180–183, doi: 10.1109/EMBC44109.2020.9176003.
A. R. M. Radzol, K. Y. Lee, W. Mansor, P. S. Wong, and I. Looi, "PCA-MLP SVM distinction of salivary Raman spectra of dengue fever infection", in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, South Korea, Jul. 2017, pp. 2875–2878, doi: 10.1109/EMBC.2017.8037457.
N. H. Othman, K. Y. Lee, A. R. M. Radzol, W. Mansor, P. S. Wong, and I. Looi, "PCA-KNN for Detection of NS1 from SERS Salivary Spectra", in Intelligent Information and Database Systems, Lecture Notes in Computer Science, Cham: Springer International Publishing, 2018, pp. 335–346, doi: 10.1007/978-3-319-75420-8_32.
N. H. Othman, K. Y. Lee, A. R. M. Mohd Radzol, W. Mansor, and N. Amanina Yusoff, "PCA-Polynomial-ELM Model Optimal for Detection of NS1 Adulterated Salivary SERS Spectra", J. Phys.: Conf. Ser., vol. 1372, p. 012064, Nov. 2019, doi: 10.1088/1742-6596/1372/1/012064
T. T. Han et al., "Machine learning based classification model for screening of infected patients using vital signs", Informatics Med. Unlocked, vol. 24, p. 100592, 2021, doi: 10.1016/j.imu.2021.100592.
N. D. Chinh et al., "Short time cardio-vascular pulses estimation for dengue fever screening via continuous-wave Doppler radar using empirical mode decomposition and continuous wavelet transform", Biomed. Signal Process. Control, vol. 65, p. 102361, Mar. 2021, doi: 10.1016/j.bspc.2020.102361.
X. Yang et al., "Dengue Fever Screening Using Vital Signs by Contactless Microwave Radar and Machine Learning", in 2019 IEEE Sensors Applications Symposium (SAS), Mar. 2019, pp. 1–6, doi: 10.1109/SAS.2019.8705968.
H. Kerdegari et al., "Automatic Detection of B-lines in Lung Ultrasound Videos from Severe Dengue Patients", in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Apr. 2021, pp. 989–993, doi: 10.1109/ISBI48211.2021.9434006.
H. T. Trieu et al., "The compensatory reserve index predicts recurrent shock in patients with severe dengue", BMC Med., vol. 20, no. 1, Art. no 1, Dec. 2022, doi: 10.1186/s12916-022-02311-6.
P. H. Dakappa, K. Prasad, S. B. Rao, G. Bolumbu, G. K. Bhat, and C. Mahabala, "Classification of Infectious and Noninfectious Diseases Using Artificial Neural Networks from 24-Hour Continuous Tympanic Temperature Data of Patients with Undifferentiated Fever", Crit. Rev. Biomed. Eng., vol. 46, no. 2, 2018, doi: 10.1615/CritRevBiomedEng.2018025917.
W. de Jong et al., "Point-of-care thrombocyte function testing using multiple-electrode aggregometry in dengue patients: an explorative study", BMC Infect. Dis., vol. 20, no. 1, p. 580, Aug. 2020, doi: 10.1186/s12879-020-05248-4.
J. J. Thomas, J. O. Y. Ling, and B. Belaton, "A HYBRID NEURAL KNOWLEDGE EXPERT SYSTEM WITH PARALLEL COORDINATES VISUALIZATION IN DENGUE DIAGNOSIS PREDICTION", Malays. J. Comput. Sci., pp. 38–55, Nov. 2019, doi: 10.22452/mjcs.sp2019no1.3.
S. H. U. Briyatis, S. C. Premaratne, and D. G. H. De Silva, "A novel method for dengue management based on vital signs and blood profile," Int. J. Eng. Adv. Technol., vol. 8, no. 6, pp. 154–159, 2019.
P. Pandiyarajan and K. Thangairulappan, "Classification of Dengue Serotypes Using Protein Sequence Based on Rule Extraction from Neural Network," in Mining Intelligence and Knowledge Exploration, A. Groza and R. Prasath, Eds., Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018, pp. 127–137, doi: 10.1007/978-3- 030-05918-7_12.
United Nations, "Sustainable Development Goals," United Nations Sustainable Development. [Online]. Available: https://www.un.org/sustainabledevelopment/. Accessed: Mar. 13, 2024.
L. Lambrechts, T. W. Scott, and D. J. Gubler, "Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission," PLoS Negl. Trop. Dis., vol. 4, no. 5, p. e646, 2010.
J. K. Chaw et al., "A predictive analytics model using machine learning algorithms to estimate the risk of shock development among dengue patients," Healthcare Analytics, vol. 5, p. 100290, Jun. 2024, doi: 10.1016/j.health.2023.100290
W. D. J. A. Arrubla, "Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías," Computer and Electronic Sciences: Theory and Applications, vol. 3, no. 1, Art. no. 1, Mar. 2022, doi: 10.17981/cesta.03.01.2022.01.
J.-R. Codina, M. Mascini, E. Dikici, S. K. Deo, and S. Daunert, "Accelerating the Screening of Small Peptide Ligands by Combining Peptide-Protein Docking and Machine Learning," Int. J. Mol. Sci., vol. 24, no. 15, Art. no. 15, Jan. 2023, doi: 10.3390/ijms241512144.
R. Gangula, L. Thirupathi, R. Parupati, K. Sreeveda, and S. Gattoju, "Ensemble machine learning based prediction of dengue disease with performance and accuracy elevation patterns," Mater. Today: Proc., Jul. 2021, doi: 10.1016/j.matpr.2021.07.270.
A. E. Paniz-Mondolfi, A. J. Rodriguez-Morales, G. Blohm, M. Marquez, and W. E. Villamil-Gomez, "ChikDenMaZika Syndrome: the challenge of diagnosing arboviral infections in the midst of concurrent epidemics," Ann. Clin. Microbiol. Antimicrob., vol. 15, no. 1, p. 42, Dec. 2016, doi: 10.1186/s12941-016-0157-x.
PAHO/WHO, "Epidemiological Update - Dengue, chikungunya and Zika - 10 June 2023 - PAHO/WHO | Pan American Health Organization." [Online]. Available: https://www.paho.org/en/documents/epidemiological-update-dengue chikungunya-and-zika-10-june-2023. Accessed: Mar. 13,
S. R. da Silva Neto et al., "Arboviral disease record data - Dengue and Chikungunya, Brazil, 2013-2020," Sci. Data, vol. 9, no. 1, p. 198, May 2022, doi: 10.1038/s41597-022-01312-7.
WHO, "Dengue- Global situation." [Online]. Available: https://www.who.int/emergencies/disease-outbreak news/item/2023-DON498. Accessed: Mar. 13, 2024
J. G. Rigau-Pérez, G. G. Clark, D. J. Gubler, P. Reiter, E. J. Sanders, and A. V. Vorndam, "Dengue and dengue haemorrhagic fever," The Lancet, vol. 352, no. 9132, pp. 971–977, 1998.
A. Rico-Mendoza, A. Porras-Ramírez, A. Chang, L. Encinales, and R. Lynch, "Co-circulation of dengue, chikungunya, and Zika viruses in Colombia from 2008 to 2018," Rev. Panam. Salud Pública, vol. 43, p. 1, Jun. 2019, doi: 10.26633/RPSP.2019.49.
S. Gambhir, S. K. Malik, and Y. Kumar, "The diagnosis of dengue disease: An evaluation of three machine learning approaches," in Cog. Analytics: Concepts, Methodologies, Tools, and Applic., IGI Global, 2020, pp. 1076–1095, doi: 10.4018/978-1-7998-2460-2.ch055.
W. Arrubla-Hoyos, Z. Seveiche-Maury, K. Saeed, J. E. G. Gómez, and E. De-La-Hoz-Franco, "Comparison of classical machine learning and ensemble techniques in the context of dengue severity prediction," in 2023 IEEE Colombian Caribbean Conference (C3), Nov. 2023, pp. 1–5, doi: 10.1109/C358072.2023.10436288.
L. Tanner et al., "Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness," PLoS Negl. Trop. Dis., vol. 2, no. 3, p. e196, 2008.
T.-S. Ho et al., "Comparing machine learning with case-control models to identify confirmed dengue cases," PLoS Negl. Trop. Dis., vol. 14, no. 11, pp. 1–21, 2020, doi: 10.1371/journal.pntd.0008843.
S. A. Fathima and N. Hundewale, "Comparative analysis of machine learning techniques for classification of arbovirus," in Proc. 2012 IEEE-EMBS Int. Conf. Biomed. Health Informatics, Hong Kong: IEEE, Jan. 2012, pp. 376–379, doi: 10.1109/BHI.2012.6211593.
] T. Sajana, M. Navya, Y. Gayathri, and N. Reshma, "Classification of dengue using machine learning techniques," Int. J. Eng. Technol., vol. 7, no. 2,32, pp. 212–218, 2018.
D. Sanjudevi and D. Savitha, "Dengue fever prediction using classification techniques," Int. Res. J. Eng. Technol. (IRJET), vol. 6, no. 02, pp. 558–563, 2019.
J. A. Potts et al., "Prediction of dengue disease severity among pediatric Thai patients using early clinical laboratory indicators," PLoS Negl. Trop. Dis., vol. 4, no. 8, p. e769, 2010.
K. Phakhounthong et al., "Predicting the severity of dengue fever in children on admission based on clinical features and laboratory indicators: application of classification tree analysis," BMC Pediatr., vol. 18, no. 1, p. 109, Mar. 2018, doi: 10.1186/s12887-018-1078-y.
T. Faisal, F. Ibrahim, and M. N. Taib, "A noninvasive intelligent approach for predicting the risk in dengue patients," Expert Syst. Appl., vol. 37, no. 3, pp. 2175–2181, 2010
S. R. da Silva Neto et al., "Machine learning and deep learning techniques to support clinical diagnosis of arboviral diseases: A systematic review," PLoS Negl. Trop. Dis., vol. 16, no. 1, p. e0010061, Jan. 2022, doi: 10.1371/journal.pntd.0010061.
Blackmist, "Evaluación de los resultados de los experimentos de aprendizaje automático automatizado - Azure Machine Learning," [Online]. Available: https://learn.microsoft.com/es-es/azure/machine-learning/how-to-understand-automated ml. Accessed: Oct. 23, 2
S. K. Narayanasamy and A. Elçi, "An effective prediction model for online course dropout rate," Int. J. Dist. Educ. Technol. (IJDET), vol. 18, no. 4, pp. 94–110, 2020.
M. Grandini, E. Bagli, and G. Visani, "Metrics for multi-class classification: an overview," arXiv preprint arXiv:2008.05756, 2020
S. Swasnita, S. Suparti, and S. Sugito, "Perhitungan Suku Bunga Efektif Untuk Penentuan Alternatif Pembiayaan Kendaraan Motor Pada Leasing Dan Bank Dengan Metode Interpolasi Linier (Studi Kasus Harga Sepeda Motor Honda Beat Injeksi Terdaftar Bulan September 2014)," Jurnal Gaussian, vol. 4, no. 2, pp. 403–412, 2015.
P. Fu-bin, Y. Yu-bo, and J. Jian-fei, "The influences of message jitter on linear interpolation for electronic transformer data synchronization," in TENCON 2015-2015 IEEE Region 10 Conference, 2015, pp. 1–5.
J. G. P. Veracierta, "LA INTERPOLACIÓN LINEAL EN LA DISTRIBUCIÓN T: valores y errores."
I. H. Al Amin, V. Lusiana, and B. Hartono, "Pencarian Lintasan pada Collision Detection Menggunakan Pendekatan Interpolasi Linier," 2018.
X. Yan and X. Enhua, "ARIMA and Multiple Regression Additive Models for PM2.5 Based on Linear Interpolation," in 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), 2020, pp. 266– 269
Sujito, L. Gumilar, R. R. Hadi, M. Rodhi Faiz, Syafriyudin, and Z. S. Nugroho, "Analysis Comparison of Linear Interpolation and Quadratic Interpolation Methods for Forecasting a Growth Total of Electricity Customers in Kotawaringin Barat Regency at 2022-2025 Years," in 2022 International Electronics Symposium (IES), Aug. 2022, pp. 73–78, doi: 10.1109/IES55876.2022.9888647.
W. Arrubla-Hoyos, J. G. Gómez, and E. De-La-Hoz-Franco, "Methodology for the Differential Classification of Dengue and Chikungunya According to the PAHO 2022 Diagnostic Guide," Viruses, vol. 16, no. 7, Art. no 7, Jul. 2024, doi: 10.3390/v16071088
J. E. Staples, R. F. Breiman, and A. M. Powers, "Chikungunya Fever: An Epidemiological Review of a Re-Emerging Infectious Disease," Clin. Infect. Dis., vol. 49, no. 6, pp. 942–948, Sep. 2009, doi: 10.1086/605496.
WHO, "Chikungunya," [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/chikungunya. Accessed: Mar. 7, 2024.
S. Choubey, S. Barde, and A. Badholia, "Analysis of Deep Learning Techniques to Investigate and Support Diagnosis of Virus Borne Diseases," in Proc. 3rd Int. Conf. Electronics and Sustainable Communication Systems (ICESC 2022) - Proceedings, IEEE, 2022, pp. 921–928, doi: 10.1109/ICESC54411.2022.9885376.
A. M. Zoubir and D. R. Iskander, Bootstrap Techniques for Signal Processing. Cambridge, UK: Cambridge University Press, 2004.
P. J. Smith, D. C. Hoaglin, M. P. Battaglia, and L. Barker, "Implementation and applications of bootstrap methods for the National Immunization Survey," Stat. Med., vol. 22, no. 15, pp. 2487–2502, 2003.
C. Wu and J. N. K. Rao, "Bootstrap procedures for the pseudo empirical likelihood method in sample surveys," Stat. Probab. Lett., vol. 80, no. 19, pp. 1472–1478, Oct. 2010, doi: 10.1016/j.spl.2010.05.015.
H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, 2009.
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: synthetic minority over-sampling technique," J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002.
A. Fernández, S. Garcia, F. Herrera, and N. V. Chawla, "SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary," J. Artif. Intell. Res., vol. 61, pp. 863–905, 2018.
P. J. Kunz, S. ben Abid, and A. M. Zoubir, "The Heterogeneity-Intensified and Heterogeneity Ratio-Stratified Bootstrap (HiS- and HeRS-Boot) Oversampling to Boost a Detector Performance," in 2023 IEEE SENSORS, Oct. 2023, pp. 1–4, doi: 10.1109/SENSORS56945.2023.10324861.
S. Connor and T. M. Khoshgoftaar, "A survey on image data augmentation for deep learning," J. Big Data, vol. 6, no. 1, pp. 1–48, 2019.
S. G. Shaikh, B. S. Kumar, G. Narang, and N. N. Pachpor, "Original Research Article Hybrid machine learning method for classification and recommendation of vector-borne disease," J. Auton. Intell., vol. 7, no. 2, 2024
dc.rights.license.none.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 133 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Sucre
dc.publisher.none.fl_str_mv Corporación Universidad de la Costa
dc.publisher.department.none.fl_str_mv Ciencias de la Computación y Electrónica
dc.publisher.place.none.fl_str_mv Barranquilla, Colombia
dc.publisher.program.none.fl_str_mv Doctorado en Tecnologías de la Información y la Comunicación
publisher.none.fl_str_mv Corporación Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/2045a3b9-2225-4d84-be95-e6a866fcc27f/download
https://repositorio.cuc.edu.co/bitstreams/9d4c4275-3555-4cc3-a6cf-b52f5ea387cf/download
https://repositorio.cuc.edu.co/bitstreams/345c84bb-0981-4f65-b39e-e7c4b0e1feda/download
https://repositorio.cuc.edu.co/bitstreams/40db99bd-06af-40d7-b868-a7d3ea894d3d/download
bitstream.checksum.fl_str_mv 26c333c8707547a18557e8b2f2b8e9c1
73a5432e0b76442b22b026844140d683
3c25de2bcb1130faa65437239c4cf933
6bca26b4b636abd56587a01e50634582
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1834108547625910272
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2De La Hoz Franco, EmiroGómez Gómez, JorgeArrubla Hoyos, Wilson de JesúsSierra Carrillo, JavierBenet Rodríguez, MikhailBarrios Barrios, Mauricio Andrés2025-05-07T22:27:58Z2025-05-07T22:27:58Z2025-04-30https://hdl.handle.net/11323/14217Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/La rápida propagación de enfermedades transmitidas por el mosquito Aedes aegypti, como el Dengue, Chikungunya y Zika, plantea un desafío significativo para los sistemas de salud pública, especialmente en regiones tropicales como el departamento de Sucre, Colombia. Estas arbovirosis comparten síntomas similares, lo que dificulta su diagnóstico diferencial y retrasa tratamientos oportunos, incrementando el riesgo de complicaciones graves. En este contexto, esta tesis doctoral presenta el desarrollo de un modelo predictivo multiclase basado en técnicas de machine learning para la predicción diferencial de estas enfermedades. Además, propone una metodología fundamentada en las directrices de la OPS 2022, que transforma recomendaciones cualitativas basadas en evidencia médica en pesos cuantitativos aplicables a variables de signos y síntomas en los datos, mejorando así la precisión diagnóstica. Se emplearon algoritmos como bosques aleatorios y árboles de decisión, que lograron precisiones superiores al 99,0 %, y se desarrolló una plataforma tecnológica para validar el modelo en escenarios clínicos reales. Como conclusiones, el modelo demuestra ser eficaz para optimizar el diagnóstico diferencial y fortalecer los sistemas de salud en regiones endémicas. Aunque se abordaron limitaciones como la escasez de datos para Chikungunya mediante técnicas como bootstrapping, se reconoce que ampliar la base de datos podría mejorar su robustez. Entre los trabajos futuros, se sugiere validar el modelo en diversos contextos geográficos para evaluar su generalización y realizar estudios longitudinales que analicen su sostenibilidad y eficacia a largo plazo.The rapid spread of diseases transmitted by the Aedes aegypti mosquito, such as Dengue, Chikungunya, and Zika, poses a significant challenge to public health systems, especially in tropical regions such as the department of Sucre, Colombia. These arboviruses share similar symptoms, which makes their differential diagnosis difficult and delays timely treatment, increasing the risk of serious complications. In this context, this doctoral thesis presents the development of a multiclass predictive model based on machine learning techniques for the differential prediction of these diseases. In addition, it proposes a methodology based on the PAHO 2022 guidelines, which transforms qualitative recommendations based on medical evidence into quantitative weights applicable to sign and symptom variables in the data, thus improving diagnostic accuracy. Algorithms such as random forests and decision trees were used, which achieved accuracie greater than 99,0 %, and a technological platform was developed to validate the model in real clinical scenarios. In conclusion, the model proves to be effective in optimizing differential diagnosis and strengthening health systems in endemic regions. Although limitations such as the scarcity of data for Chikungunya were addressed using techniques such as bootstrap, it is recognized that expanding the database could improve its robustness. Future work suggests validating the model in various geographic contexts to assess its generalizability and conduct longitudinal studies to analyze its long-term sustainability and effectiveness.Lista De Tablas 11 Introducción 15 -- Motivación Y/O Problema 15 -- Objetivos 18 -- Fundamentos 19 -- Arbovirosis Generadas Por El Vector Aedes 19 -- Dengue 21 -- Proliferación Del Dengue En El Departamento De Sucre 23 -- Zika 23 -- Chikungunya 25 -- Tecnologías Para El Diagnóstico De Arbovirosis 26 -- Inteligencia Artificial Y Machine Learning 26 -- Machine Learning Para La Predicción De Arbovirus 28 -- Contribuciones Y Publicaciones 29 -- Organización Del Documento 33 -- Revisión De La Literatura 35 -- Diagnóstico Invasivo Del Denv 49 -- Diagnóstico No Invasivo Del Dengue 63 -- Conclusiones De La Rsl 65 -- Metodología Para La Clasificación Diferencial De Dengue Y Chikungunya Según La Guía Diagnóstica 2022 De La Ops 67 -- Introducción 67 – Antecedentes 68 -- Aprendizaje Automático En La Clasificación Diferencial De Los Arbovirus 68 -- Métricas De Calidad Para La Evaluación De Modelos 69 -- Interpolación Lineal 71 -- Síntesis De Una Guía Para El Diagnóstico Y Tratamiento Del Dengue, Chikungunya Y Zika En La Región Américas 72 -- Materiales Y Métodos 73 -- Identificación De Las Variables Del Protocolo De La Ops En El Conjunto De Datos Y Normas De Calidad 74 -- Codificación Y Categorización Según La Certeza De Las Pruebas De La Ops 76 -- Ajuste De Valores Atípicos Del Conjunto De Datos 77 -- Parametrizar La Función De Interpolación Lineal 78 -- Aplicar La Transformación De Etiquetas Cualitativas A Cuantitativas Según La Función De Interpolación 78 -- Preprocesamiento De Datos 79 -- Ajuste De Hiperparametros De Las Técnicas De Ml 79 -- Modelado Con Técnicas De Ml 80 -- Selección Del Modelo Con Mejor Resultado 80 -- Resultados Y Discusión 80 -- Conclusiones Del Capítulo 86 -- Resultados Y Discusión 88 – Introducción 88 – Antecedentes 89 -- Clasificación Diferencial Del Dengue, El Zika Y El Chikungunya 89 -- Técnica De Remuestreo Bootstrap 89 -- Materiales Y Métodos 90 -- Procesamiento De Datos 91 -- Creación Del Conjunto De Datos 91 -- Limpieza De Datos 92 -- 4) Balanceo De La Variable Objetivo Mediante Bootstrap 93 -- Entrenamiento Del Modelo Basado En La Metodología Ops 2022 94 -- Transformación De Datos Según Metodología Basada En Las Guías De La Ops (2022) 94 -- Modelado Con Técnicas De Ml 95 -- Entrenamiento De Modelos 95 -- Evaluación 96 -- Resultados Y Discusiones 96 -- Despliegue Plataforma Tecnológica Para Validar El Uso Del Modelo Predictivo En La Clasificación Diferencial Del Dengue Zika Y Chikungunya 112 -- Conclusiones 118 -- Conclusiones Y Aportes 120 -- Referencias 126Doctor(a) en Tecnologías de la Información y la ComunicaciónDoctorado133 páginasapplication/pdfspaCorporación Universidad de la CostaCiencias de la Computación y ElectrónicaBarranquilla, ColombiaDoctorado en Tecnologías de la Información y la ComunicaciónModelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de SucreTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttp://purl.org/redcol/resource_type/TDinfo:eu-repo/semantics/acceptedVersionSucreOrganización Panamericana de la Salud (OPS), "Actualización Epidemiológica Dengue, chikunguña y Zika en el contexto de COVID-19," 23 de diciembre de 2021. [En línea]. Disponible en: https://iris.paho.org/bitstream/handle/10665,2/55639/EpiUpdate23Dec2021_spa.pdf?sequence=2&isAllowed=y. Accedido: 30 de marzo de 2022.W. E. Villamil-Gómez et al., "Zika, dengue, and chikungunya co-infection in a pregnant woman from Colombia," Int. J. Infect. Dis., vol. 51, pp. 135–138, oct. 2016, doi: 10.1016/j.ijid.2016.07.017.R. Sippy et al., "Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection," PLoS Negl. Trop. Dis., vol. 14, no. 2, p. e0007969, feb. 2020, doi: 10.1371/journal.pntd.0007969.Instituto Nacional de Salud (INS), "Boletín epidemiológico semana 12," 2022. [En línea]. Disponible en: https://www.ins.gov.co/buscador eventos/BoletinEpidemiologico/2022_Bolet%C3%ADn_epidemiologico_semana_12.pdf. Accedido: 2 de mayo de 2022.Instituto Nacional de Salud (INS), "Informe de evento y tableros de control." [En línea]. Disponible en: https://www.ins.gov.co/buscador-eventos/Paginas/Info-Evento.aspx. Accedido: 5 de julio de 2024Instituto Nacional de Salud (INS), "Boletín epidemiológico semana 52," 2024. [En línea]. Disponible en: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2024_Boletin_epidemiologico_semana_52.pdf. Accedido: 16 de marzo de 2025.Organización Panamericana de la Salud (OPS), "Zika - OPS/OMS | Organización Panamericana de la Salud." [En línea]. Disponible en: https://www.paho.org/es/temas/zika. Accedido: 27 de abril de 2022.Organización Panamericana de la Salud (OPS), "Chikungunya - OPS/OMS | Organización Panamericana de la Salud." [En línea]. Disponible en: https://www.paho.org/es/temas/chikungunya. Accedido: 2 de mayo de 2022.Pan American Health Organization (PAHO), "Síntesis de evidencia: Directrices para el diagnóstico y el tratamiento del dengue, el chikunguña y el zika en la Región de las Américas," Rev. Panam. Salud Pública, vol. 46, p. 1, jul. 2022, doi: 10.26633/RPSP.2022.82D. M. Caicedo et al., "Desarrollo de algoritmos clínicos para el diagnóstico del dengue en Colombia," Biomédica, vol. 39, no. 1, pp. 170–185, mar. 2019, doi: 10.7705/biomedica.v39i2.3990.L. M. Rodriguez Lopez and Z. E. Roa Gómez, "Déficit de médicos en Colombia en área rural: exploración de incentivos para aumentar la participación de médicos en el servicio social obligatorio en zonas vulnerables de Colombia," jun. 2021. [En línea]. Disponible en: http://repository.javeriana.edu.co/handle/10554/54874. Accedido: 26 de noviembre de 2021.S. Srivastava, S. Soman, A. Rai, and A. S. Cheema, "An Online Learning Approach for Dengue Fever Classification," in Proc. 2020 IEEE 33rd Int. Symp. Comput.-Based Med. Syst. (CBMS), jul. 2020, pp. 163–168, doi: 10.1109/CBMS49503.2020.00038.P. Shimpi, S. Shah, M. Shroff, and A. Godbole, "An artificial neural network approach for classification of vector-borne diseases," in Proc. 2017 Int. Conf. Comput. Methodol. Commun. (ICCMC), jul. 2017, pp. 412–415, doi: 10.1109/ICCMC.2017.8282721.P. Silitonga, A. Bustamam, H. Muradi, W. Mangunwardoyo, and B. E. Dewi, "Comparison of Dengue Predictive Models Developed Using Artificial Neural Network and Discriminant Analysis with Small Dataset," Appl. Sci., vol. 11, no. 3, art. no. 3, ene. 2021, doi: 10.3390/app11030943V. Mariappan, S. Adikari, L. Shanmugam, J. M. Easow, and A. B. Pillai, "Expression dynamics of vascular endothelial markers: endoglin and syndecan-1 in predicting dengue disease outcome," Transl. Res., vol. 232, pp. 121–141, jun. 2021, doi: 10.1016/j.trsl.2021.02.001C. Davi et al., "Severe Dengue Prognosis Using Human Genome Data and Machine Learning," IEEE Trans. Biomed. Eng., vol. 66, no. 10, pp. 2861–2868, oct. 2019, doi: 10.1109/TBME.2019.2897285.J. L. Arredondo-García, A. Méndez-Herrera, and H. Medina-Cortina, "Arbovirus en Latinoamérica," Acta Pediátrica México, vol. 37, no. 2, pp. 111–131, abr. 2016.OPS, "OPS/OMS | Información sobre los arbovirus en la Región de las Américas." [En línea]. Disponible en: https://www3.paho.org/hq/index.php?option=com_content&view=article&id=12905:information-arboviruses-region americas&Itemid=42243&lang=es. Accedido: 2 de mayo dM. A. Espinal et al., "Emerging and Reemerging Aedes‐Transmitted Arbovirus Infections in the Region of the Americas: Implications for Health Policy," Am. J. Public Health, vol. 109, no. 3, pp. 387–392, mar. 2019, doi: 10.2105/AJPH.2018.304849.World Health Organization (WHO), "Dengue y dengue grave." [En línea]. Disponible en: https://www.who.int/es/news room/fact-sheets/detail/dengue-and-severe-dengue. Accedido: 3 de octubre de 2021. [21] Pan American Health Organization; M. A. Espinal; World Health Organization, Dengue: guías para la atención de enfermos en la región de las Américas, 2016.D. J. Gubler, "Dengue and dengue hemorrhagic fever," Clin. Microbiol. Rev., vol. 11, no. 3, pp. 480–496, Jul. 1998.N. Raafat, S. D. Blacksell, and R. J. Maude, "A review of dengue diagnostics and implications for surveillance and control," Trans. R. Soc. Trop. Med. Hyg., vol. 113, no. 11, pp. 653–660, Nov. 2019, doi: 10.1093/trstmh/trz068.Instituto Nacional de Salud (INS), "2019 Boletín epidemiológico semana 30," 2019. [En línea]. Disponible en: http://www.ins.gov.co/buscador eventos/BoletinEpidemiologico/2019%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%2030.pdf. Accedido: 11 de noviembre de 2021.Gaceta Departamental de Sucre, "1140_plan-departamental-de-desarrollo-20162019.pdf," 2016.Gobernación de Sucre, "Plan de Desarrollo Sucre Diferente 2020-2023." [En línea]. Disponible en: http://www.sucre.gov.co/planes/plan-de-desarrollo-departamental-sucre-diferente-sin. Accedido: 7 de diciembre de 2021.Secretaría de Salud Departamental - Salud Pública de Sucre, "BOLETIN DENGUE A SEMANA 8_2022.pdf," 2022.K. Allgoewer et al., "New proteomic signatures to distinguish between Zika and dengue infections," Mol. Cell. Proteomics, vol. 20, p. 100052, 2021, doi: 10.1016/j.mcpro.2021.100052.Instituto Nacional de Salud (INS), "Boletín epidemiológico semana 44," 2024. [En línea]. Disponible en: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2024_Boletin_epidemiologico_semana_44.pdf. Accedido: 13 de noviembre de 2024.W. Arrubla-Hoyos and A. Solano-Barliza, "Contribuciones del aprendizaje automático en el descubrimiento del dengue: un análisis cienciométrico," Rev. Cubana Inf. Cienc. Salud, vol. 35, Jul. 2024. [En línea]. Disponible en: https://acimed.sld.cu/index.php/acimed/article/view/2630. Accedido: 6 de febrero de 2025.C. A. Bechara and C. S. Restrepo, "Manifestaciones oculares de infección del virus del chikunguña: Revisión de literatura," 2015, p. 7.Organización Panamericana de la Salud (OPS), "Epidemiological Update for Dengue and other Arboviruses." [En línea]. Disponible en: https://ais.paho.org/ha_viz/Arbo/Arbo_Bulletin_Es_2022.asp?env=pri. Accedido: 13 de noviembre de 2024.S. R. da Silva Neto, T. T. de Oliveira, V. de S. Sampaio, T. Lynn, and P. T. Endo, "Platform for monitoring and clinical diagnosis of arboviruses using computational models," in Proc. 2020 Int. Conf. Cyber Security and Prot. Digital Serv. (Cyber Security), Jun. 2020, pp. 1–3, doi: 10.1109/CyberSecurity49315.2020.9138880.R. Benítez, G. Escudero, S. Kanaan, and D. M. Rodó, Inteligencia artificial avanzada. Editorial UOC, 2014.Y. Ocaña-Fernández, L. A. Valenzuela-Fernández, and L. L. Garro-Aburto, "Inteligencia artificial y sus implicaciones en la educación superior," Propósitos y Representaciones, vol. 7, no. 2, pp. 536–568, Jul. 2019, doi: 10.20511/pyr2019.v7n2.274.N. E. A. Osorio, "El derecho de autor en la Inteligencia Artificial de machine learning," vol. 30, pp. 327–353, Bogotá, Colombia: Universidad Externado de Colombia, 2020, doi: 10.18601/16571959.n30.12.A. Núñez Reiz, M. A. Armengol de la Hoz, and M. Sánchez García, "Big Data Analysis y Machine Learning en medicina intensiva," Medicina Intensiva, vol. 43, no. 7, pp. 416–426, Oct. 2019, doi: 10.1016/j.medin.2018.10.007.H. C. Arteaga, "Técnicas de aprendizaje supervisado y no supervisado para el aprendizaje automatizado de computadoras," in Memorias del Primer Congreso Internacional de Ciencias Pedagógicas: Por una educación integral, participativa e incluyente, Instituto Superior Tecnológico Bolivariano, 2015, pp. 549–564, ISBN 978-9942-17-011-8. [En línea]. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7192675. Accedido: 17 de octubre de 2021.M. L. Errecalde, "Marcos teóricos del aprendizaje por refuerzo multiagente," presentado en el III Workshop de Investigadores en Ciencias de la Computación, 2001. [En línea]. Disponible en: http://sedici.unlp.edu.ar/handle/10915/21638. Accedido: 17 de octubre de 2021.S. A. Hicks et al., "On evaluation metrics for medical applications of artificial intelligence," Sci. Rep., vol. 12, no. 1, art. no. 1, Apr. 2022, doi: 10.1038/s41598-022-09954-8.M. A. Carlos, M. Nogueira, and R. J. Machado, "Analysis of dengue outbreaks using big data analytics and social networks," in Proc. 2017 4th Int. Conf. Syst. and Informatics (ICSAI), Hangzhou, IEEE, Nov. 2017, pp. 1592–1597, doi: 10.1109/ICSAI.2017.8248538.G. Manogaran and D. Lopez, "A Gaussian process based big data processing framework in cluster computing environment," Cluster Comput., vol. 21, no. 1, pp. 189–204, Mar. 2018, doi: 10.1007/s10586-017-0982-5.N. Noorbakhsh-Sabet, R. Zand, Y. Zhang, and V. Abedi, "Artificial Intelligence Transforms the Future of Health Care," The American Journal of Medicine, vol. 132, no. 7, pp. 795–801, Jul. 2019, doi: 10.1016/j.amjmed.2019.01.017.D. Wiljer and Z. Hakim, "Developing an Artificial Intelligence–Enabled Health Care Practice: Rewiring Health Care Professions for Better Care," J. Med. Imaging Radiat. Sci., vol. 50, no. 4, pp. S8–S14, Dec. 2019, doi: 10.1016/j.jmir.2019.09.010.K. W. Tan et al., "Dynamic dengue haemorrhagic fever calculators as clinical decision support tools in adult dengue," Trans. R. Soc. Trop. Med. Hyg., vol. 114, no. 1, pp. 7–15, Jan. 2020, doi: 10.1093/trstmh/trz099P. Dharap and S. Raimbault, "Performance evaluation of machine learning-based infectious screening flags on the HORIBA Medical Yumizen H550 Haematology Analyzer for vivax malaria and dengue fever," Malar. J., vol. 19, no. 1, 2020, doi: 10.1186/s12936-020-03502-3.J.-P. Tchapet Njafa and S. G. Nana Engo, "Quantum associative memory with linear and non-linear algorithms for the diagnosis of some tropical diseases," Neural Netw., vol. 97, pp. 1–10, Jan. 2018, doi: 10.1016/j.neunet.2017.09.002.C. Rodriguez-Quijada, J. Gomez-Marquez, and K. Hamad-Schifferli, "Repurposing old antibodies for new diseases by exploiting cross-reactivity and multicolored nanoparticles," ACS Nano, vol. 14, no. 6, pp. 6626–6635, 2020, doi: 10.1021/acsnano.9b09049.R. V. Veiga et al., "Classification algorithm for congenital Zika Syndrome: characterizations, diagnosis and validation," Sci. Rep., vol. 11, no. 1, p. 6770, 2021.S. Gambhir, K. M. Sanjay, and Y. K. Jaypee, "The diagnosis of dengue disease: An evaluation of three machine learning approaches," Int. J. Healthc. Inf. Syst. Inform., 2018.J. Acosta Torres et al., "Técnica árboles de decisión aplicada al método clínico en el diagnóstico del dengue," Rev. Cubana Pediatr., vol. 88, no. 4, pp. 441–453, Dec. 2016.A. Bharambe, A. A. Chandorkar, and D. Kalbande, "A deep learning approach for dengue tweet classification," in Proc. 2021 3rd Int. Conf. Invent. Res. Comput. Appl. (ICIRCA), Coimbatore, India: IEEE, Sep. 2021, pp. 1043–1047, doi: 10.1109/ICIRCA51532.2021.9544862.P. H. Khotimah, A. Fachrur Rozie, E. Nugraheni, A. Arisal, W. Suwarningsih, and A. Purwarianti, "Deep learning for dengue fever event detection using online news," in Proc. 2020 Int. Conf. Radar, Antenna, Microwave, Electron. and Telecommun. (ICRAMET), Tangerang, Indonesia: IEEE, Nov. 2020, pp. 261–266, doi: 10.1109/ICRAMET51080.2020.9298630.L. Medeiros Neto, S. Rogerio da Silva Neto, and P. T. Endo, "A comparative analysis of converters of tabular data into image for the classification of arboviruses using convolutional neural networks," PLoS One, vol. 18, no. 12, p. e0295598, Dec. 2023, doi: 10.1371/journal.pone.0295598.C. Rodriguez-Quijada, J. Gomez-Marquez, and K. Hamad-Schifferli, "Repurposing old antibodies for new diseases by exploiting cross-reactivity and multicolored nanoparticles," ACS Nano, vol. 14, no. 6, pp. 6626–6635, Jun. 2020, doi: 10.1021/acsnano.9b09049N. Iqbal and M. Islam, "Machine learning for dengue outbreak prediction: A performance evaluation of different prominent classifiers," Informatica, vol. 43, no. 3, art. no. 3, Sep. 2019, doi: 10.31449/inf.v43i3.1548.R. Alfred and J. H. Obit, "The roles of machine learning methods in limiting the spread of deadly diseases: A systematic review," Heliyon, vol. 7, no. 6, p. e07371, 2021, doi: 10.1016/j.heliyon.2021.e07371.World Health Organization, Global Report on Ageism, 2021. [En línea]. Disponible en: https://iris.who.int/handle/10665/340208. Accedido: Mar. 7, 2024.Md. S. Islam, S. A. Khushbu, A. S. Azad Rabby, and T. Bhuiyan, "A study on dengue fever in Bangladesh: Predicting the probability of dengue infection with external behavior with machine learning," in Proc. 2021 5th Int. Conf. Intell. Comput. Control Syst. (ICICCS), May 2021, pp. 1717–1721, doi: 10.1109/ICICCS51141.2021.9432288T.-S. Ho et al., "Comparing machine learning with case-control models to identify confirmed dengue cases," PLoS Negl. Trop. Dis., vol. 14, no. 11, p. e0008843, Nov. 2020, doi: 10.1371/journal.pntd.0008843.S. Khan et al., "Random Forest-Based Evaluation of Raman Spectroscopy for Dengue Fever Analysis," Appl. Spectrosc., vol. 71, no. 9, pp. 2111–2117, Sep. 2017, doi: 10.1177/0003702817695571.S. M. K. Dourjoy, A. M. G. R. Rafi, Z. N. Tumpa, and Mohd. Saifuzzaman, "A Comparative Study on Prediction of Dengue Fever Using Machine Learning Algorithm," in Advances in Distributed Computing and Machine Learning, Lecture Notes in Networks and Systems, vol. 127, edited by A. K. Tripathy, M. Sarkar, J. P. Sahoo, K.-C. Li, and S. Chinara, Singapore: Springer Singapore, 2021, pp. 501–510, doi: 10.1007/978-981-15-4218-3_49.A. J. Dinu, R. Ganesan, F. Joseph, and V. Balaji, "A study on deep machine learning algorithms for diagnosis of diseases," Int. J. Appl. Eng. Res., vol. 12, no. 17, pp. 6338–6346, 2017.Md. Habibur Rahman, Md. Omar Faroque, and F. S. Tithi, "Dengue Fever Prediction," in Information and Communication Technology for Competitive Strategies (ICTCS 2020), Lecture Notes in Networks and Systems, vol. 191, edited by A. Joshi, M. Mahmud, R. G. Ragel, and N. V. Thakur, Singapore: Springer Singapore, 2022, pp. 709–718, doi: 10.1007/978- 981-16-0739-4_67.S. Suhaeri, N. Mohd Nawi, and M. Fathurahman, "Early Detection of Dengue Disease Using Extreme Learning Machine," Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 5, pp. 2219–2224, 2018.S. A. alias Balamurugan, M. S. M. Mallick, and G. Chinthana, "Improved prediction of dengue outbreak using combinatorial feature selector and classifier based on entropy weighted score based optimal ranking," Informatics Med. Unlocked, vol. 20, p. 100400, 2020, doi: 10.1016/j.imu.2020.100400.J. D. Mello-Román, J. C. Mello-Román, S. Gómez-Guerrero, and M. García-Torres, "Predictive Models for the Medical Diagnosis of Dengue: A Case Study in Paraguay," Comput. Math. Methods Med., vol. 2019, pp. 1–7, Jul. 2019, doi: 10.1155/2019/7307803.S. Gambhir, S. K. Malik, and Y. Kumar, "PSO-ANN based diagnostic model for the early detection of dengue disease," New Horiz. Transl. Med., vol. 4, no. 1–4, pp. 1–8, Nov. 2017, doi: 10.1016/j.nhtm.2017.10.001.R. Kapoor, V. Kadyan, and S. Ahuja, "Weight Based- Artificial Neural Network (W-Ann) For Predicting Dengue Using Machine Learning Approach With Indian Perspective," vol. 9, no. 2, p. 9, 2020.W. Nadda, W. Boonchieng, and E. Boonchieng, "Weighted Extreme Learning Machine for Dengue Detection with Class imbalance Classification," in Proc. 2019 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT), Bethesda, MD, USA, Nov. 2019, pp. 151–154, doi: 10.1109/HI-POCT45284.2019.8962825.W. Nadda, W. Boonchieng, and E. Boonchieng, "Influenza, dengue and common cold detection using LSTM with fully connected neural network and keywords selection," BioData Min., vol. 15, no. 1, p. 5, Feb. 2022, doi: 10.1186/s13040- 022-00288-9.B. Abdualgalil, S. Abraham, and W. M. Ismael, "Early Diagnosis for Dengue Disease Prediction Using Efficient Machine Learning Techniques Based on Clinical Data," J. Robot. Control (JRC), vol. 3, no. 3, art. no. 3, May 2022, doi: 10.18196/jrc.v3i3.14387.A. Nagori, L. S. Dhingra, A. Bhatnagar, R. Lodha, and T. Sethi, "Predicting Hemodynamic Shock from Thermal Images using Machine Learning," Sci. Rep., vol. 9, no. 1, p. 91, Jan. 2019, doi: 10.1038/s41598-018-36586-8.W. Caicedo-Torres, Á. Paternina-Caicedo, H. Pinzón-Redondo, and J. Gutiérrez, "Differential Diagnosis of Dengue and Chikungunya in Colombian Children Using Machine Learning," in Advances in Artificial Intelligence – IBERAMIA 2018, edited by G. R. Simari, E. Fermé, F. Gutiérrez Segura, and J. A. Rodríguez Melquiades, Lecture Notes in Computer Science, Cham: Springer International Publishing, 2018, pp. 181–192, doi: 10.1007/978-3-030-03928-8_15.A. K. Chattopadhyay and S. Chattopadhyay, "VIRDOCD: A VIRtual DOCtor to predict dengue fatality," Expert Syst., vol. n/a, no. n/a, p. e12796, 2021, doi: 10.1111/exsy.12796.D. Sarma, S. Hossain, T. Mittra, Md. A. M. Bhuiya, I. Saha, and R. Chakma, "Dengue Prediction using Machine Learning Algorithms," in Proc. 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC), Kuching, Malaysia, Dec. 2020, pp. 1–6, doi: 10.1109/R10-HTC49770.2020.9357035.A. Fahmi, D. Purwitasari, S. Sumpeno, and M. H. Purnomo, "Performance Evaluation of Classifiers for Predicting Infection Cases of Dengue Virus Based on Clinical Diagnosis Criteria," in Proc. 2020 Int. Electronics Symposium (IES), Surabaya, Indonesia, Sep. 2020, pp. 456–462, doi: 10.1109/IES50839.2020.9231728.S. Swami, H. Kanwar, A. Gambhir, P. Singh, M. Diwakar, and K. Kishor, "Design and Development of Machine Learning Techniques for Disease Prediction," in Proc. 2022 IEEE 11th Int. Conf. Commun. Syst. and Netw. Technol. (CSNT), Apr. 2022, pp. 176–182, doi: 10.1109/CSNT54456.2022.9787674.I. Nikolayeva et al., "A Blood RNA Signature Detecting Severe Disease in Young Dengue Patients at Hospital Arrival," J. Infect. Dis., vol. 217, no. 11, pp. 1690–1698, May 2018, doi: 10.1093/infdis/jiy086.S. H. U. Briyatis, S. C. Premaratne, and D. G. H. De Silva, "A novel method for dengue management based on vital signs and blood profile," Int. J. Eng. Adv. Technol., vol. 8, no. 6 (Special Issue 3), pp. 154–159, 2019, doi: 10.35940/ijeat.F1025.0986S319.A. Shukla and V. Goyal, "Deep Learning-Based Severe Dengue Prognosis Using Human Genome Data with Novel Feature Selection Method," in Advances in Computer, Communication and Computational Sciences, in Advances in Intelligent Systems and Computing, S. K. Bhatia, S. Tiwari, S. Ruidan, M. C. Trivedi, and K. K. Mishra, Eds., Singapore: Springer, 2021, pp. 473–482, doi: 10.1007/978-981-15-4409-5_43V. E. Fiestas Solórzano et al., "Different Profiles of Cytokines, Chemokines and Coagulation Mediators Associated with Severity in Brazilian Patients Infected with Dengue Virus," Viruses, vol. 13, no. 9, Art. no. 9, Sep. 2021, doi: 10.3390/v13091789.P. Silitonga, B. E. Dewi, A. Bustamam, and H. S. Al-Ash, "Evaluation of Dengue Model Performances Developed Using Artificial Neural Network and Random Forest Classifiers," Procedia Computer Science, vol. 179, pp. 135–143, 2021, doi: 10.1016/j.procs.2020.12.018.S. D. P. Jayasundara, S. S. N. Perera, G. N. Malavige, and S. Jayasinghe, "Mathematical modelling and a systems science approach to describe the role of cytokines in the evolution of severe dengue," BMC Syst. Biol., vol. 11, no. 1, p. 34, Mar. 2017, doi: 10.1186/s12918-017-0415-3.S.-W. Huang, H.-P. Tsai, S.-J. Hung, W.-C. Ko, and J.-R. Wang, "Assessing the risk of dengue severity using demographic information and laboratory test results with machine learning," PLoS Negl. Trop. Dis., vol. 14, no. 12, p. e0008960, Dec. 2020, doi: 10.1371/journal.pntd.0008960.S. U. Chowdhury, S. Sayeed, I. Rashid, M. G. R. Alam, A. K. M. Masum, and M. A. A. Dewan, "Shapley-Additive Explanations-Based Factor Analysis for Dengue Severity Prediction using Machine Learning," J. Imaging, vol. 8, no. 9, Art. no. 9, Sep. 2022, doi: 10.3390/jimaging8090229.W. Hoyos, J. Aguilar, and M. Toro, "A clinical decision-support system for dengue based on fuzzy cognitive maps," Health Care Manag. Sci., Aug. 2022, doi: 10.1007/s10729-022-09611-6.H. Hamdani, H.-R. Hatta, N. Puspitasari, A. Septiarini, and H. Henderi, "Dengue classification method using support vector machines and cross-validation techniques," IAES Int. J. Artif. Intell. (IJ-AI), vol. 11, no. 3, Art. no. 3, Sep. 2022, doi: 10.11591/ijai.v11.i3.pp1119-1129.Y. E. Liu et al., "An 8-gene machine learning model improves clinical prediction of severe dengue progression," Genome Med., vol. 14, no. 1, p. 33, Mar. 2022, doi: 10.1186/s13073-022-01034-wM. Robinson et al., "A 20-Gene Set Predictive of Progression to Severe Dengue," Cell Rep., vol. 26, no. 5, pp. 1104– 1111.e4, Jan. 2019, doi: 10.1016/j.celrep.2019.01.033.Y. Zhang, R. Bhattacharya, and R. Scheuermann, "Identifying disease severity associated genetic regions in Dengue virus using computational and machine learning approaches," Int. J. Infect. Dis., vol. 101, p. 231, Dec. 2020, doi: 10.1016/j.ijid.2020.11.038.O. Braga, G. Albuquerque, M. Oliveira, and O. Monteiro, "Intelligent Solution for Classification of Diseases Transmitted by Vector Aedes Aegypti," in Proc. Euro American Conf. Telematics and Information Systems, Fortaleza, Brazil: ACM, Nov. 2018, pp. 1–5, doi: 10.1145/3293614,3293640.R. K. Putra and S. Mulyati, "Classification of Childhood Diseases with Fever Using Fuzzy K-Nearest Neighbor Method," in Proc. 2018 Int. Sem. Res. Inf. Technol. and Intell. Syst. (ISRITI), Nov. 2018, pp. 332–337, doi: 10.1109/ISRITI.2018.8864475.P. Dutta, S. Paul, A. J. Obaid, S. Pal, and K. Mukhopadhyay, "Feature Selection based Artificial Intelligence Techniques for the Prediction of COVID like Diseases," J. Phys.: Conf. Ser., vol. 1963, no. 1, p. 012167, Jul. 2021, doi: 10.1088/1742- 6596/1963/1/012167.P. Dharap and S. Raimbault, "Performance evaluation of machine learning-based infectious screening flags on the HORIBA Medical Yumizen H550 Haematology Analyzer for vivax malaria and dengue fever," Malar. J., vol. 19, no. 1, p. 429, Nov. 2020, doi: 10.1186/s12936-020-03502-3.D. K. Ming et al., "The Diagnosis of Dengue in Patients Presenting With Acute Febrile Illness Using Supervised Machine Learning and Impact of Seasonality," Front. Digit. Health, vol. 4, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fdgth.2022.849641. Accessed: Aug. 18, 2022.I. Ozer, O. Cetin, K. Gorur, and F. Temurtas, "Improved machine learning performances with transfer learning to predicting need for hospitalization in arboviral infections against the small dataset," Neural Comput. Appl., Jun. 2021, doi: 10.1007/s00521-021-06133-0.S. K. Sood, V. Sood, I. Mahajan, and Sahil, "An intelligent healthcare system for predicting and preventing dengue virus infection," Computing, Jan. 2021, doi: 10.1007/s00607-020-00877-8.F. Narita et al., "A Review of Piezoelectric and Magnetostrictive Biosensor Materials for Detection of COVID-19 and Other Viruses," Adv. Mater., vol. 33, no. 1, p. 2005448, 2021, doi: 10.1002/adma.202005448.S. Jain et al., "Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases," Biosens. Bioelectron., vol. 179, p. 113074, May 2021, doi: 10.1016/j.bios.2021.113074.L. Dey and A. Mukhopadhyay, "A Classification-based Approach to Prediction of Dengue Virus and Human Protein Protein Interactions using Amino Acid Composition and Conjoint Triad Features", in 2019 IEEE Region 10 Symposium (TENSYMP), Kolkata, India, Jun. 2019, pp. 373–378, doi: 10.1109/TENSYMP46218.2019.8971382.V. Saranya and R. Porkodi, "Identifying Significant Gene Interaction Networks Using Machine Learning and Statistical Techniques", in 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, Feb. 2019, pp. 1–7, doi: 10.1109/ICECCT.2019.8869103.E. Yang, B. Gu, and T. Yoon, "Intensified analysis and comparison of 5 flacicirus with the use of decision tree and support vector machine (SVM)", in 2017 19th International Conference on Advanced Communication Technology (ICACT), Bongpyeong, South Korea, 2017, pp. 526–529, doi: 10.23919/ICACT.2017.7890146.S. Chatterjee, N. Dey, F. Shi, A. S. Ashour, S. J. Fong, and S. Sen, "Clinical application of modified bag-of-features coupled with hybrid neural-based classifier in dengue fever classification using gene expression data", Med. Biol. Eng. Comput., vol. 56, no. 4, pp. 709–720, Apr. 2018, doi: 10.1007/s11517-017-1722-y.J.-M. Kim, H. Ju, and Y. Jung, "Copula Approach for Developing a Biomarker Panel for Prediction of Dengue Hemorrhagic Fever", Ann. Data Sci., vol. 7, no. 4, pp. 697–712, Dec. 2020, doi: 10.1007/s40745-020-00293-x.R. Delli Ponti and M. Mutwil, "Structural landscape of the complete genomes of dengue virus serotypes and other viral hemorrhagic fevers", BMC Genomics, vol. 22, no. 1, p. 352, May 2021, doi: 10.1186/s12864-021-07638-7.F. Falconi-Agapito et al., "Peptide Biomarkers for the Diagnosis of Dengue Infection", Front. Immunol., vol. 13, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fimmu.2022.793882. Accessed: Aug. 18, 2022T. A. Saifuzzaman, K. Y. Lee, A. R. M. Radzol, P. S. Wong, and I. Looi, "Optimal Scree-CNN for Detecting NS1 Molecular Fingerprint from Salivary SERS Spectra", in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, Jul. 2020, pp. 180–183, doi: 10.1109/EMBC44109.2020.9176003.A. R. M. Radzol, K. Y. Lee, W. Mansor, P. S. Wong, and I. Looi, "PCA-MLP SVM distinction of salivary Raman spectra of dengue fever infection", in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, South Korea, Jul. 2017, pp. 2875–2878, doi: 10.1109/EMBC.2017.8037457.N. H. Othman, K. Y. Lee, A. R. M. Radzol, W. Mansor, P. S. Wong, and I. Looi, "PCA-KNN for Detection of NS1 from SERS Salivary Spectra", in Intelligent Information and Database Systems, Lecture Notes in Computer Science, Cham: Springer International Publishing, 2018, pp. 335–346, doi: 10.1007/978-3-319-75420-8_32.N. H. Othman, K. Y. Lee, A. R. M. Mohd Radzol, W. Mansor, and N. Amanina Yusoff, "PCA-Polynomial-ELM Model Optimal for Detection of NS1 Adulterated Salivary SERS Spectra", J. Phys.: Conf. Ser., vol. 1372, p. 012064, Nov. 2019, doi: 10.1088/1742-6596/1372/1/012064T. T. Han et al., "Machine learning based classification model for screening of infected patients using vital signs", Informatics Med. Unlocked, vol. 24, p. 100592, 2021, doi: 10.1016/j.imu.2021.100592.N. D. Chinh et al., "Short time cardio-vascular pulses estimation for dengue fever screening via continuous-wave Doppler radar using empirical mode decomposition and continuous wavelet transform", Biomed. Signal Process. Control, vol. 65, p. 102361, Mar. 2021, doi: 10.1016/j.bspc.2020.102361.X. Yang et al., "Dengue Fever Screening Using Vital Signs by Contactless Microwave Radar and Machine Learning", in 2019 IEEE Sensors Applications Symposium (SAS), Mar. 2019, pp. 1–6, doi: 10.1109/SAS.2019.8705968.H. Kerdegari et al., "Automatic Detection of B-lines in Lung Ultrasound Videos from Severe Dengue Patients", in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Apr. 2021, pp. 989–993, doi: 10.1109/ISBI48211.2021.9434006.H. T. Trieu et al., "The compensatory reserve index predicts recurrent shock in patients with severe dengue", BMC Med., vol. 20, no. 1, Art. no 1, Dec. 2022, doi: 10.1186/s12916-022-02311-6.P. H. Dakappa, K. Prasad, S. B. Rao, G. Bolumbu, G. K. Bhat, and C. Mahabala, "Classification of Infectious and Noninfectious Diseases Using Artificial Neural Networks from 24-Hour Continuous Tympanic Temperature Data of Patients with Undifferentiated Fever", Crit. Rev. Biomed. Eng., vol. 46, no. 2, 2018, doi: 10.1615/CritRevBiomedEng.2018025917.W. de Jong et al., "Point-of-care thrombocyte function testing using multiple-electrode aggregometry in dengue patients: an explorative study", BMC Infect. Dis., vol. 20, no. 1, p. 580, Aug. 2020, doi: 10.1186/s12879-020-05248-4.J. J. Thomas, J. O. Y. Ling, and B. Belaton, "A HYBRID NEURAL KNOWLEDGE EXPERT SYSTEM WITH PARALLEL COORDINATES VISUALIZATION IN DENGUE DIAGNOSIS PREDICTION", Malays. J. Comput. Sci., pp. 38–55, Nov. 2019, doi: 10.22452/mjcs.sp2019no1.3.S. H. U. Briyatis, S. C. Premaratne, and D. G. H. De Silva, "A novel method for dengue management based on vital signs and blood profile," Int. J. Eng. Adv. Technol., vol. 8, no. 6, pp. 154–159, 2019.P. Pandiyarajan and K. Thangairulappan, "Classification of Dengue Serotypes Using Protein Sequence Based on Rule Extraction from Neural Network," in Mining Intelligence and Knowledge Exploration, A. Groza and R. Prasath, Eds., Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018, pp. 127–137, doi: 10.1007/978-3- 030-05918-7_12.United Nations, "Sustainable Development Goals," United Nations Sustainable Development. [Online]. Available: https://www.un.org/sustainabledevelopment/. Accessed: Mar. 13, 2024.L. Lambrechts, T. W. Scott, and D. J. Gubler, "Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission," PLoS Negl. Trop. Dis., vol. 4, no. 5, p. e646, 2010.J. K. Chaw et al., "A predictive analytics model using machine learning algorithms to estimate the risk of shock development among dengue patients," Healthcare Analytics, vol. 5, p. 100290, Jun. 2024, doi: 10.1016/j.health.2023.100290W. D. J. A. Arrubla, "Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías," Computer and Electronic Sciences: Theory and Applications, vol. 3, no. 1, Art. no. 1, Mar. 2022, doi: 10.17981/cesta.03.01.2022.01.J.-R. Codina, M. Mascini, E. Dikici, S. K. Deo, and S. Daunert, "Accelerating the Screening of Small Peptide Ligands by Combining Peptide-Protein Docking and Machine Learning," Int. J. Mol. Sci., vol. 24, no. 15, Art. no. 15, Jan. 2023, doi: 10.3390/ijms241512144.R. Gangula, L. Thirupathi, R. Parupati, K. Sreeveda, and S. Gattoju, "Ensemble machine learning based prediction of dengue disease with performance and accuracy elevation patterns," Mater. Today: Proc., Jul. 2021, doi: 10.1016/j.matpr.2021.07.270.A. E. Paniz-Mondolfi, A. J. Rodriguez-Morales, G. Blohm, M. Marquez, and W. E. Villamil-Gomez, "ChikDenMaZika Syndrome: the challenge of diagnosing arboviral infections in the midst of concurrent epidemics," Ann. Clin. Microbiol. Antimicrob., vol. 15, no. 1, p. 42, Dec. 2016, doi: 10.1186/s12941-016-0157-x.PAHO/WHO, "Epidemiological Update - Dengue, chikungunya and Zika - 10 June 2023 - PAHO/WHO | Pan American Health Organization." [Online]. Available: https://www.paho.org/en/documents/epidemiological-update-dengue chikungunya-and-zika-10-june-2023. Accessed: Mar. 13,S. R. da Silva Neto et al., "Arboviral disease record data - Dengue and Chikungunya, Brazil, 2013-2020," Sci. Data, vol. 9, no. 1, p. 198, May 2022, doi: 10.1038/s41597-022-01312-7.WHO, "Dengue- Global situation." [Online]. Available: https://www.who.int/emergencies/disease-outbreak news/item/2023-DON498. Accessed: Mar. 13, 2024J. G. Rigau-Pérez, G. G. Clark, D. J. Gubler, P. Reiter, E. J. Sanders, and A. V. Vorndam, "Dengue and dengue haemorrhagic fever," The Lancet, vol. 352, no. 9132, pp. 971–977, 1998.A. Rico-Mendoza, A. Porras-Ramírez, A. Chang, L. Encinales, and R. Lynch, "Co-circulation of dengue, chikungunya, and Zika viruses in Colombia from 2008 to 2018," Rev. Panam. Salud Pública, vol. 43, p. 1, Jun. 2019, doi: 10.26633/RPSP.2019.49.S. Gambhir, S. K. Malik, and Y. Kumar, "The diagnosis of dengue disease: An evaluation of three machine learning approaches," in Cog. Analytics: Concepts, Methodologies, Tools, and Applic., IGI Global, 2020, pp. 1076–1095, doi: 10.4018/978-1-7998-2460-2.ch055.W. Arrubla-Hoyos, Z. Seveiche-Maury, K. Saeed, J. E. G. Gómez, and E. De-La-Hoz-Franco, "Comparison of classical machine learning and ensemble techniques in the context of dengue severity prediction," in 2023 IEEE Colombian Caribbean Conference (C3), Nov. 2023, pp. 1–5, doi: 10.1109/C358072.2023.10436288.L. Tanner et al., "Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness," PLoS Negl. Trop. Dis., vol. 2, no. 3, p. e196, 2008.T.-S. Ho et al., "Comparing machine learning with case-control models to identify confirmed dengue cases," PLoS Negl. Trop. Dis., vol. 14, no. 11, pp. 1–21, 2020, doi: 10.1371/journal.pntd.0008843.S. A. Fathima and N. Hundewale, "Comparative analysis of machine learning techniques for classification of arbovirus," in Proc. 2012 IEEE-EMBS Int. Conf. Biomed. Health Informatics, Hong Kong: IEEE, Jan. 2012, pp. 376–379, doi: 10.1109/BHI.2012.6211593.] T. Sajana, M. Navya, Y. Gayathri, and N. Reshma, "Classification of dengue using machine learning techniques," Int. J. Eng. Technol., vol. 7, no. 2,32, pp. 212–218, 2018.D. Sanjudevi and D. Savitha, "Dengue fever prediction using classification techniques," Int. Res. J. Eng. Technol. (IRJET), vol. 6, no. 02, pp. 558–563, 2019.J. A. Potts et al., "Prediction of dengue disease severity among pediatric Thai patients using early clinical laboratory indicators," PLoS Negl. Trop. Dis., vol. 4, no. 8, p. e769, 2010.K. Phakhounthong et al., "Predicting the severity of dengue fever in children on admission based on clinical features and laboratory indicators: application of classification tree analysis," BMC Pediatr., vol. 18, no. 1, p. 109, Mar. 2018, doi: 10.1186/s12887-018-1078-y.T. Faisal, F. Ibrahim, and M. N. Taib, "A noninvasive intelligent approach for predicting the risk in dengue patients," Expert Syst. Appl., vol. 37, no. 3, pp. 2175–2181, 2010S. R. da Silva Neto et al., "Machine learning and deep learning techniques to support clinical diagnosis of arboviral diseases: A systematic review," PLoS Negl. Trop. Dis., vol. 16, no. 1, p. e0010061, Jan. 2022, doi: 10.1371/journal.pntd.0010061.Blackmist, "Evaluación de los resultados de los experimentos de aprendizaje automático automatizado - Azure Machine Learning," [Online]. Available: https://learn.microsoft.com/es-es/azure/machine-learning/how-to-understand-automated ml. Accessed: Oct. 23, 2S. K. Narayanasamy and A. Elçi, "An effective prediction model for online course dropout rate," Int. J. Dist. Educ. Technol. (IJDET), vol. 18, no. 4, pp. 94–110, 2020.M. Grandini, E. Bagli, and G. Visani, "Metrics for multi-class classification: an overview," arXiv preprint arXiv:2008.05756, 2020S. Swasnita, S. Suparti, and S. Sugito, "Perhitungan Suku Bunga Efektif Untuk Penentuan Alternatif Pembiayaan Kendaraan Motor Pada Leasing Dan Bank Dengan Metode Interpolasi Linier (Studi Kasus Harga Sepeda Motor Honda Beat Injeksi Terdaftar Bulan September 2014)," Jurnal Gaussian, vol. 4, no. 2, pp. 403–412, 2015.P. Fu-bin, Y. Yu-bo, and J. Jian-fei, "The influences of message jitter on linear interpolation for electronic transformer data synchronization," in TENCON 2015-2015 IEEE Region 10 Conference, 2015, pp. 1–5.J. G. P. Veracierta, "LA INTERPOLACIÓN LINEAL EN LA DISTRIBUCIÓN T: valores y errores."I. H. Al Amin, V. Lusiana, and B. Hartono, "Pencarian Lintasan pada Collision Detection Menggunakan Pendekatan Interpolasi Linier," 2018.X. Yan and X. Enhua, "ARIMA and Multiple Regression Additive Models for PM2.5 Based on Linear Interpolation," in 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), 2020, pp. 266– 269Sujito, L. Gumilar, R. R. Hadi, M. Rodhi Faiz, Syafriyudin, and Z. S. Nugroho, "Analysis Comparison of Linear Interpolation and Quadratic Interpolation Methods for Forecasting a Growth Total of Electricity Customers in Kotawaringin Barat Regency at 2022-2025 Years," in 2022 International Electronics Symposium (IES), Aug. 2022, pp. 73–78, doi: 10.1109/IES55876.2022.9888647.W. Arrubla-Hoyos, J. G. Gómez, and E. De-La-Hoz-Franco, "Methodology for the Differential Classification of Dengue and Chikungunya According to the PAHO 2022 Diagnostic Guide," Viruses, vol. 16, no. 7, Art. no 7, Jul. 2024, doi: 10.3390/v16071088J. E. Staples, R. F. Breiman, and A. M. Powers, "Chikungunya Fever: An Epidemiological Review of a Re-Emerging Infectious Disease," Clin. Infect. Dis., vol. 49, no. 6, pp. 942–948, Sep. 2009, doi: 10.1086/605496.WHO, "Chikungunya," [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/chikungunya. Accessed: Mar. 7, 2024.S. Choubey, S. Barde, and A. Badholia, "Analysis of Deep Learning Techniques to Investigate and Support Diagnosis of Virus Borne Diseases," in Proc. 3rd Int. Conf. Electronics and Sustainable Communication Systems (ICESC 2022) - Proceedings, IEEE, 2022, pp. 921–928, doi: 10.1109/ICESC54411.2022.9885376.A. M. Zoubir and D. R. Iskander, Bootstrap Techniques for Signal Processing. Cambridge, UK: Cambridge University Press, 2004.P. J. Smith, D. C. Hoaglin, M. P. Battaglia, and L. Barker, "Implementation and applications of bootstrap methods for the National Immunization Survey," Stat. Med., vol. 22, no. 15, pp. 2487–2502, 2003.C. Wu and J. N. K. Rao, "Bootstrap procedures for the pseudo empirical likelihood method in sample surveys," Stat. Probab. Lett., vol. 80, no. 19, pp. 1472–1478, Oct. 2010, doi: 10.1016/j.spl.2010.05.015.H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, 2009.N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: synthetic minority over-sampling technique," J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002.A. Fernández, S. Garcia, F. Herrera, and N. V. Chawla, "SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary," J. Artif. Intell. Res., vol. 61, pp. 863–905, 2018.P. J. Kunz, S. ben Abid, and A. M. Zoubir, "The Heterogeneity-Intensified and Heterogeneity Ratio-Stratified Bootstrap (HiS- and HeRS-Boot) Oversampling to Boost a Detector Performance," in 2023 IEEE SENSORS, Oct. 2023, pp. 1–4, doi: 10.1109/SENSORS56945.2023.10324861.S. Connor and T. M. Khoshgoftaar, "A survey on image data augmentation for deep learning," J. Big Data, vol. 6, no. 1, pp. 1–48, 2019.S. G. Shaikh, B. S. Kumar, G. Narang, and N. N. Pachpor, "Original Research Article Hybrid machine learning method for classification and recommendation of vector-borne disease," J. Auton. Intell., vol. 7, no. 2, 2024DengueZikaChikungunyaMachine learningClasificación diferencialDifferential classificationPublicationORIGINALModelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del Dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre.pdfModelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del Dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre.pdfapplication/pdf3701702https://repositorio.cuc.edu.co/bitstreams/2045a3b9-2225-4d84-be95-e6a866fcc27f/download26c333c8707547a18557e8b2f2b8e9c1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/9d4c4275-3555-4cc3-a6cf-b52f5ea387cf/download73a5432e0b76442b22b026844140d683MD52TEXTModelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del Dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre.pdf.txtModelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del Dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre.pdf.txtExtracted texttext/plain101804https://repositorio.cuc.edu.co/bitstreams/345c84bb-0981-4f65-b39e-e7c4b0e1feda/download3c25de2bcb1130faa65437239c4cf933MD53THUMBNAILModelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del Dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre.pdf.jpgModelo predictivo multiclase basado en machine learning para el diagnóstico diferencial del Dengue de otros arbovirus transmitidos por mosquitos prevalentes en el departamento de Sucre.pdf.jpgGenerated Thumbnailimage/jpeg9988https://repositorio.cuc.edu.co/bitstreams/40db99bd-06af-40d7-b868-a7d3ea894d3d/download6bca26b4b636abd56587a01e50634582MD5411323/14217oai:repositorio.cuc.edu.co:11323/142172025-05-08 04:01:49.85https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K