Hybrid Model for the Analysis of Human Gait: A Non-linear Approach

In this work, a generalization of the study of the human gait was made from already existent models in the literature, like models of Keller and Kockshenev. In this hybrid model, a strategy of metabolic energy minimization is combined in a race process, with a non-linear description of the movement...

Full description

Autores:
R. González, Ramón E.
COLLAZOS MORALES, CARLOS ANDRES
Galdino, João P.
Figueiredo, P. H.
Lombana, Juan
Moreno, Yésica
M. Segura, Sara
Ruiz, Iván
P. Ospina, Juan
A. Cárdenas, César
MELÉNDEZ, FARID
Ariza Colpas, Paola Patricia
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7357
Acceso en línea:
https://hdl.handle.net/11323/7357
https://doi.org/10.1007/978-3-030-58799-4_16
https://repositorio.cuc.edu.co/
Palabra clave:
Biomechanics
Center of mass
Dynamic
Hybrid model
Perimeters
Reaction force
Walk-run transition
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_d08fea8c7f588a86e1ae0fda1f80b450
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7357
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Hybrid Model for the Analysis of Human Gait: A Non-linear Approach
title Hybrid Model for the Analysis of Human Gait: A Non-linear Approach
spellingShingle Hybrid Model for the Analysis of Human Gait: A Non-linear Approach
Biomechanics
Center of mass
Dynamic
Hybrid model
Perimeters
Reaction force
Walk-run transition
title_short Hybrid Model for the Analysis of Human Gait: A Non-linear Approach
title_full Hybrid Model for the Analysis of Human Gait: A Non-linear Approach
title_fullStr Hybrid Model for the Analysis of Human Gait: A Non-linear Approach
title_full_unstemmed Hybrid Model for the Analysis of Human Gait: A Non-linear Approach
title_sort Hybrid Model for the Analysis of Human Gait: A Non-linear Approach
dc.creator.fl_str_mv R. González, Ramón E.
COLLAZOS MORALES, CARLOS ANDRES
Galdino, João P.
Figueiredo, P. H.
Lombana, Juan
Moreno, Yésica
M. Segura, Sara
Ruiz, Iván
P. Ospina, Juan
A. Cárdenas, César
MELÉNDEZ, FARID
Ariza Colpas, Paola Patricia
dc.contributor.author.spa.fl_str_mv R. González, Ramón E.
COLLAZOS MORALES, CARLOS ANDRES
Galdino, João P.
Figueiredo, P. H.
Lombana, Juan
Moreno, Yésica
M. Segura, Sara
Ruiz, Iván
P. Ospina, Juan
A. Cárdenas, César
MELÉNDEZ, FARID
Ariza Colpas, Paola Patricia
dc.subject.spa.fl_str_mv Biomechanics
Center of mass
Dynamic
Hybrid model
Perimeters
Reaction force
Walk-run transition
topic Biomechanics
Center of mass
Dynamic
Hybrid model
Perimeters
Reaction force
Walk-run transition
description In this work, a generalization of the study of the human gait was made from already existent models in the literature, like models of Keller and Kockshenev. In this hybrid model, a strategy of metabolic energy minimization is combined in a race process, with a non-linear description of the movement of the mass center’s libration, trying to reproduce the behavior of the walk-run transition. The results of the experimental data, for different speed regimes, indicate that the perimeter of the trajectory of the mass center is a relevant quantity in the quantification of this dynamic. An experimental procedure was put into practice in collaboration with the research group in Biomedical Engineering, Basic Sciences and Laboratories of the Manuela Beltrán University in Bogotá, Colombia.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-19T15:12:40Z
dc.date.available.none.fl_str_mv 2020-11-19T15:12:40Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7357
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-3-030-58799-4_16
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7357
https://doi.org/10.1007/978-3-030-58799-4_16
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://link.springer.com/bookseries/558
dc.relation.references.spa.fl_str_mv 1. Basset Jr., D.R.: Scientific contributions of AV. Hill: exercise physiology pioneer. J. Appl. Physiol. 93, 1567–1582 (2002)
2. Madihally, S.V.: Principles of Biomedical Engineering, 1st edn. Artech House, Norwood (2010)
3. Gatesy, S.M.: Bipedal locomotion: effects of speed, size and limb posture in birds and humans. J. Zool. 224, 127–147 (1990)
4. Rose, J., Gamble, J.G.: Marcha–Teoria e práctica da marcha humana, 2nd edn., editor Guanabara (2007)
5. Munro, C.F., Miller, D.I., Fuglevard, A.J.: Ground reaction forces in running: a reexamination. J. Biomech. 20, 147–155 (1987)
6. Weir, J.B.: New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 109, 1–9 (1949)
7. Blessey, R.: Energy cost of normal walking. Orthop. Clin. North Am. 9, 356–358 (1978)
8. Keller, J.B.: Optimal velocity in a race. Am. Math. Mon. 81, 474–480 (1974)
9. Kokshenev, V.B.: Dynamics of human walking at steady speeds. Phys. Rev. Lett. 93, 20 (2004)
10. Collazos, C.A., Argothy, R.E.: Physical modeling of normal and pathological gait using identification of kinematic parameters. Int. J. Biol. Biomed. Eng. 8 (2014)
11. Marrero, R.C.M.: Biomecanica clinica del aparato locomotor. Masson (1998)
12. Dufour, M., Pillu, M.: Biomecanica functional. Masson (2006)
13. Willems, P.A., Cavanga, G.A., Heglund, N.C.: External, internal and total work in human locomotion. J. Exp. Biol. 198, 379–393 (1995)
14. Cavanagh, P.R., Lafortune, M.A.: Ground reaction forces in distance running. J. Biomech. 13, 397–406 (1980)
15. Silveira, M.C: Análise da estabilidade da marcha de adultos em diferentes condições visuais. M.S. thesis, Escola de Educação Física, Universidade Federal do Rio Grande do Sul (2013)
16. Davis, R.B.: A gait analysis data collection and reduction technique. Hum. Mov. Sci. 10, 575–587 (1991)
17. Ramos, C., Collazos, C.A., Maldonado, A.: Acquisition of lower limb joint variables by an inertial card system. In: Torres, I., Bustamante, J., Sierra, D. (eds.) VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th–28th, 2016. IP, vol. 60, pp. 369–372. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4086-3_93
18. Collazos, C.A., Castellanos, H.E., Cardona, J.A., Lozano, J.C., Gutiérrez, A., Riveros, M.A.: A simple physical model of human gait using principles of kinematics and BTS GAITLAB. In: Torres, I., Bustamante, J., Sierra, D. (eds.) VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th–28th, 2016. IP, vol. 60, pp. 333–336. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4086-3_84
19. Jiménez, G., Collazos Morales, C.A., De-la-Hoz-Franco, E., Ariza-Colpas, P., González, R.E.R., Maldonado-Franco, A.: Wavelet transform selection method for biological signal treatment. In: Tiwary, U.S., Chaudhury, S. (eds.) IHCI 2019. LNCS, vol. 11886, pp. 23–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44689-5_3
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv International Conference on Computational Science and Its Applications
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-030-58799-4_16
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/ed516ac0-2192-49df-987a-024e1d13959f/download
https://repositorio.cuc.edu.co/bitstreams/16efbb40-5b70-4403-ba12-a28963e49145/download
https://repositorio.cuc.edu.co/bitstreams/0d1a3e25-a1ce-44ef-9ceb-ff4b5eac5dc7/download
https://repositorio.cuc.edu.co/bitstreams/3fe6eeea-7952-4876-bf3a-6a7b6d050aa7/download
https://repositorio.cuc.edu.co/bitstreams/d3b129c5-b98c-4c81-97ad-afc78274e62b/download
bitstream.checksum.fl_str_mv da8dd99ba5f57ee5bbcadf73890b1ff1
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
cdd3d395dcd4c839179e1b2150ae1907
06fedaa93818159ec152973be1e35a77
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760754606473216
spelling R. González, Ramón E.COLLAZOS MORALES, CARLOS ANDRESGaldino, João P.Figueiredo, P. H.Lombana, JuanMoreno, YésicaM. Segura, SaraRuiz, IvánP. Ospina, JuanA. Cárdenas, CésarMELÉNDEZ, FARIDAriza Colpas, Paola Patricia2020-11-19T15:12:40Z2020-11-19T15:12:40Z2020https://hdl.handle.net/11323/7357https://doi.org/10.1007/978-3-030-58799-4_16Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this work, a generalization of the study of the human gait was made from already existent models in the literature, like models of Keller and Kockshenev. In this hybrid model, a strategy of metabolic energy minimization is combined in a race process, with a non-linear description of the movement of the mass center’s libration, trying to reproduce the behavior of the walk-run transition. The results of the experimental data, for different speed regimes, indicate that the perimeter of the trajectory of the mass center is a relevant quantity in the quantification of this dynamic. An experimental procedure was put into practice in collaboration with the research group in Biomedical Engineering, Basic Sciences and Laboratories of the Manuela Beltrán University in Bogotá, Colombia.R. González, Ramón E.COLLAZOS MORALES, CARLOS ANDRES-will be generated-orcid-0000-0002-1996-1384-600Galdino, João P.Figueiredo, P. H.Lombana, JuanMoreno, YésicaM. Segura, SaraRuiz, IvánP. Ospina, JuanA. Cárdenas, CésarMELÉNDEZ, FARID-will be generated-orcid-0000-0001-7007-0109-600Ariza Colpas, Paola Patricia-will be generated-orcid-0000-0003-4503-5461-600application/pdfengCorporación Universidad de la Costahttps://link.springer.com/bookseries/5581. Basset Jr., D.R.: Scientific contributions of AV. Hill: exercise physiology pioneer. J. Appl. Physiol. 93, 1567–1582 (2002)2. Madihally, S.V.: Principles of Biomedical Engineering, 1st edn. Artech House, Norwood (2010)3. Gatesy, S.M.: Bipedal locomotion: effects of speed, size and limb posture in birds and humans. J. Zool. 224, 127–147 (1990)4. Rose, J., Gamble, J.G.: Marcha–Teoria e práctica da marcha humana, 2nd edn., editor Guanabara (2007)5. Munro, C.F., Miller, D.I., Fuglevard, A.J.: Ground reaction forces in running: a reexamination. J. Biomech. 20, 147–155 (1987)6. Weir, J.B.: New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 109, 1–9 (1949)7. Blessey, R.: Energy cost of normal walking. Orthop. Clin. North Am. 9, 356–358 (1978)8. Keller, J.B.: Optimal velocity in a race. Am. Math. Mon. 81, 474–480 (1974)9. Kokshenev, V.B.: Dynamics of human walking at steady speeds. Phys. Rev. Lett. 93, 20 (2004)10. Collazos, C.A., Argothy, R.E.: Physical modeling of normal and pathological gait using identification of kinematic parameters. Int. J. Biol. Biomed. Eng. 8 (2014)11. Marrero, R.C.M.: Biomecanica clinica del aparato locomotor. Masson (1998)12. Dufour, M., Pillu, M.: Biomecanica functional. Masson (2006)13. Willems, P.A., Cavanga, G.A., Heglund, N.C.: External, internal and total work in human locomotion. J. Exp. Biol. 198, 379–393 (1995)14. Cavanagh, P.R., Lafortune, M.A.: Ground reaction forces in distance running. J. Biomech. 13, 397–406 (1980)15. Silveira, M.C: Análise da estabilidade da marcha de adultos em diferentes condições visuais. M.S. thesis, Escola de Educação Física, Universidade Federal do Rio Grande do Sul (2013)16. Davis, R.B.: A gait analysis data collection and reduction technique. Hum. Mov. Sci. 10, 575–587 (1991)17. Ramos, C., Collazos, C.A., Maldonado, A.: Acquisition of lower limb joint variables by an inertial card system. In: Torres, I., Bustamante, J., Sierra, D. (eds.) VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th–28th, 2016. IP, vol. 60, pp. 369–372. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4086-3_9318. Collazos, C.A., Castellanos, H.E., Cardona, J.A., Lozano, J.C., Gutiérrez, A., Riveros, M.A.: A simple physical model of human gait using principles of kinematics and BTS GAITLAB. In: Torres, I., Bustamante, J., Sierra, D. (eds.) VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th–28th, 2016. IP, vol. 60, pp. 333–336. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4086-3_8419. Jiménez, G., Collazos Morales, C.A., De-la-Hoz-Franco, E., Ariza-Colpas, P., González, R.E.R., Maldonado-Franco, A.: Wavelet transform selection method for biological signal treatment. In: Tiwary, U.S., Chaudhury, S. (eds.) IHCI 2019. LNCS, vol. 11886, pp. 23–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44689-5_3Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Conference on Computational Science and Its Applicationshttps://link.springer.com/chapter/10.1007/978-3-030-58799-4_16BiomechanicsCenter of massDynamicHybrid modelPerimetersReaction forceWalk-run transitionHybrid Model for the Analysis of Human Gait: A Non-linear ApproachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALHybrid Model for the Analysis of Human Gait.pdfHybrid Model for the Analysis of Human Gait.pdfapplication/pdf84963https://repositorio.cuc.edu.co/bitstreams/ed516ac0-2192-49df-987a-024e1d13959f/downloadda8dd99ba5f57ee5bbcadf73890b1ff1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/16efbb40-5b70-4403-ba12-a28963e49145/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/0d1a3e25-a1ce-44ef-9ceb-ff4b5eac5dc7/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILHybrid Model for the Analysis of Human Gait.pdf.jpgHybrid Model for the Analysis of Human Gait.pdf.jpgimage/jpeg33703https://repositorio.cuc.edu.co/bitstreams/3fe6eeea-7952-4876-bf3a-6a7b6d050aa7/downloadcdd3d395dcd4c839179e1b2150ae1907MD54TEXTHybrid Model for the Analysis of Human Gait.pdf.txtHybrid Model for the Analysis of Human Gait.pdf.txttext/plain1227https://repositorio.cuc.edu.co/bitstreams/d3b129c5-b98c-4c81-97ad-afc78274e62b/download06fedaa93818159ec152973be1e35a77MD5511323/7357oai:repositorio.cuc.edu.co:11323/73572024-09-17 10:59:26.111http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==