Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean
Deterioration of air quality due to the increase in atmospheric emissions from biomass burning (BB) is one of the major environmental problems worldwide. In this study, we estimated the contributions of BB to PM2.5 concentrations in the municipalities of Soledad and Malambo located in the Colombian...
- Autores:
-
Bolaño-Truyol, Jehison
Schneider, Ismael
CANO CUADRO, HEIDIS PATRICIA
Bolaño Truyol, Jorge Daniel
L.S. Oliveira, Marcos
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8302
- Acceso en línea:
- https://hdl.handle.net/11323/8302
https://doi.org/10.1016/j.gsf.2021.101152
https://repositorio.cuc.edu.co/
- Palabra clave:
- Biomass burning
Particulate matter
HYSPLIT
Dispersion model
Remote sensing
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_cfdedf4bcca022750f9c62949ce10c1f |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8302 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean |
title |
Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean |
spellingShingle |
Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean Biomass burning Particulate matter HYSPLIT Dispersion model Remote sensing |
title_short |
Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean |
title_full |
Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean |
title_fullStr |
Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean |
title_full_unstemmed |
Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean |
title_sort |
Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean |
dc.creator.fl_str_mv |
Bolaño-Truyol, Jehison Schneider, Ismael CANO CUADRO, HEIDIS PATRICIA Bolaño Truyol, Jorge Daniel L.S. Oliveira, Marcos |
dc.contributor.author.spa.fl_str_mv |
Bolaño-Truyol, Jehison Schneider, Ismael CANO CUADRO, HEIDIS PATRICIA Bolaño Truyol, Jorge Daniel L.S. Oliveira, Marcos |
dc.subject.eng.fl_str_mv |
Biomass burning Particulate matter HYSPLIT Dispersion model Remote sensing |
topic |
Biomass burning Particulate matter HYSPLIT Dispersion model Remote sensing |
description |
Deterioration of air quality due to the increase in atmospheric emissions from biomass burning (BB) is one of the major environmental problems worldwide. In this study, we estimated the contributions of BB to PM2.5 concentrations in the municipalities of Soledad and Malambo located in the Colombian Caribbean. The evaluation period ranged from February 24 to March 30, 2018, a period with a high number of BB events recorded in the surroundings of the evaluated sites. The contribution of BB to the two sampling sites was estimated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) dispersion model with forwarding trajectories from each of the burning points identified by satellite images (n = 1089). The PM2.5 emissions were determined using the fire radiative power (FRP), obtained by remote-sensing data, and corresponded to the radiant energy released per time unit by burning vegetation. The average PM2.5 concentrations during the evaluation period were 19.91 μg/m3 for Soledad and 22.44 μg/m3 for Malambo. The average contribution of BB to these municipalities was 22.8% and 28.8%, respectively. The methodology used in this study allowed to estimate the contribution of this important source without knowledge of a previous tracer of BB, thereby increasing the use of the proposed procedure worldwide. This information would enable the implementation of effective mitigation, thereby diminishing the adverse impact of PM2.5 on the health of the population. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-05-31T17:10:41Z |
dc.date.available.none.fl_str_mv |
2021-05-31T17:10:41Z |
dc.date.issued.none.fl_str_mv |
2021-01-31 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1674-9871 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8302 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.gsf.2021.101152 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1674-9871 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8302 https://doi.org/10.1016/j.gsf.2021.101152 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Amegah, A.K., 2018. Proliferation of low-cost sensors. What prospects for air pollution epidemiologic research in Sub-Saharan Africa? Environ. Pollut. 241, 1132–1137. Barranquilla, 2016. Plan de Ordenamiento Territorial. https://www.barranquilla.gov.co/ transparencia/planeacion/politicas-lineamientos-y-manuales/planes-estrategicos/ plan-de-ordenamiento-territorial DANE – Departamento Administrativo Nacional de Estadística, 2018. Censo Nacional de Población y Vivienda. https://www.dane.gov.co/files/censo2018/informaciontecnica/CNPV-2018-VIHOPE-v2.xls. Guo, L., Chen, B., Zhang, H., Xu, G., Lu, L., Lin, X., Kong, Y., Wang, F., Li, Y., 2018. Improving PM2.5 forecasting and emission estimation based on the Bayesian Optimization Method and the coupled FLEXPART-WRF model. Atmosphere 9 (11), 428. Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M.A., Espinosa, J.M., Restrepo, J.C., Escobar, J., 2017. The environmental envelope of fires in the Colombian Caribbean. Appl. Geogr. 84, 42–54 Huang, X.H.H., Bian, Q., Ng, W.M., Louie, P.K.K., Yu, J.Z., 2014. Characterization of PM2.5 major components and source investigation in suburban Hong Kong: a one year monitoring study. Aerosol Air Qual. Res. 14 (1), 237–250. Islam, M.R., Jayarathne, T., Simpson, I.J., Werden, B., Maben, J., Gilbert, A., Praveen, P.S., Adhikari, S., Panday, A.K., Rupakheti, M., Blake, D.R., Yokelson, R.J., DeCarlo, P.F., Keene, W.C., Stone, E.A., 2019. Ambient air quality in the Kathmandu Valley, Nepal during the pre-monsoon: concentrations and sources of particulate matter and trace gases. Atmos. Chem. Phys. 20 (5), 2927–2951. IUFRO – International Union of Forest Research Organizations, 2018. Global Fire Challenges in a Warming World. In: Robinne, F.-N., Burns, J., Kant, P., de Groot, B., Flannigan, M.D., Kleine, M., Wotton, D.M. (Eds.), Occasional Paper No. 32. 2018. IUFRO, Vienna. Kota, S.H., Guo, H., Myllyvirta, L., Hu, J., Sahu, S.K., Garaga, R., Ying, Q., Gao, A., Dahiya, S., Wang, Y., Zhang, H., 2018. Year-long simulation of gaseous and particulate air pollutants in India. Atmos. Environ. 180, 244–255. Lai, H.-C., Ma, H.-W., Chen, C.-R., Hsiao, M.-C., Pan, B.-H., 2019. Design and application of a hybrid assessment of air quality models for the source apportionment of PM2.5. Atmos. Environ. 212, 116–127. Li, F., Zhang, X., Kondragunta, S., Roy, D.P., 2018. Investigation of the fire radiative energy biomass combustion coefficient: A comparison of polar and geostationary satellite retrievals over the conterminous United States. J. Geophys. Res.–Biogeo 123 (2), 722–739. Li, F., Val Martin, M., Andreae, M.O., Arneth, A., Hantson, S., Kaiser, J.W., Lasslop, G., Yue, C., Bachelet, D., Forrest, M., Kluzek, E., Liu, X., Mangeon, S., Melton, J.R., Ward, D.S., Darmenov, A., Hickler, T., Ichoku, C., Magi, B.I., Sitch, S., van der Werf, G.R., Wiedinmyer, C., Rabin, S.S., 2019. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 19, 12545–12567. Malamakal, T., Chen, L.-W.A., Wang, X., Green, M.C., Gronstal, S., Chow, J.C., Watson, J.G., 2013. Prescribed burn smoke impact in the Lake Tahoe Basin: model simulation and field verification. Int. J. Environ. Pollut. 52 (3/4), 225–243. Masiol, M., Squizzato, S., Rich, D.Q., Hopke, P.K., 2019. Long-term trends (2005–2016) of source apportioned PM2.5 across New York State. Atmos. Environ. 201, 110–120 Noda, J., Bergström, R., Kong, X., Gustafsson, T.L., Kovacevik, B., Svane, M., Pettersson, J.B.C., 2019. Aerosol from biomass combustion in Northern Europe: Influence of meteorological conditions and air mass history. Atmosphere 10 (12), 789. Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., 2020. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 248, 119250. Pereira, A.A., Pereira, J.M.C., Libonati, R., Oom, D., Setzer, A.W., Morelli, F., Machado-Silva, F., de Carvalho, L.M.T., 2017. Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sens. 9 (11), 1161. Prato, D.F., Huertas, J.I., 2019. Determination of the area affected by agricultural burning. Atmosphere 10 (6), 312. Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., Sánchez de la Campa, A., Artíñano, B., Salvador, P., García dos Santos, S., FernándezPatier, R., Moreno-Grau, S., Negral, L., Minguillón, M.C., Monfort, E., Gil, J.I., Zabalza, J., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 41 (34), 7219–7231. Ramírez, O., Sánchez de la Campa, A.M., Amato, F., Moreno, T., Silva, L.F., de la Rosa, J.D., 2019. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 652, 434–446. Ramírez, O., da Boit, K., Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655. Rojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: Environmental implications. Urban Clim. 27, 412–419. Rönkkö, T.J., Hirvonen, M.R., Happo, M.S., Leskinen, A., Koponen, H., Mikkonen, S., Bauer, S., Ihantola, T., Hakkarainen, H., Miettinen, M., Orasche, J., Gu, C., Wang, Q., Jokiniemi, J., Sippula, O., Komppula, M., Jalava, P.I., 2020. Air quality intervention during the Nanjing youth olympic games altered PM sources, chemical composition, and toxicological responses. Environ. Res. 185, 109360. Schneider, I.L., Teixeira, E.C., Oliveira, L.F.S., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollution Res. 6 (5), 877–885 She, H., Cheng, P.-H., Yuan, C.-S., Yang, Z.-M., Hung, C.-M., Ie, I.-R., 2020. Chemical characteristics, spatiotemporal distribution, and source apportionment of PM2.5 surrounding industrial complexes in Southern Kaohsiung. Aerosol Air Qual. Res. 20 (3), 557–575 Silva, P.S., Bastos, A., Libonati, R., Rodrigues, J.A., DaCamara, C.C., 2019. Impacts of the 1.5 °C global warming target on future burned area in the Brazilian Cerrado. Forest Ecol. Manag. 446, 193–203. Silva, L.F.O., Pinto, D., Lima, B.D., 2020a. Implications of iron nanoparticles in spontaneous coal combustion and the effects on climatic variables. Chemosphere 254, 126814. Silva, L.F.O., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020b. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776. Silva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C.H., 2020c. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254, 126822. Turap, Y., Rekefu, S., Wang, G., Talifu, D., Gao, B., Aierken, T., Hao, S., Wang, X., Tursun, Y., Maihemuti, M., Nuerla, A., 2019. Chemical characteristics and source apportionment of PM2.5 during winter in the southern part of Urumqi, China. Aerosol Air Qual. Res. 19 (6), 1325–1337 Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., Roberts, G.J., 2009. An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. J. Geophys. Res. 114, D18205 Wang, S.-C., Wang, Y., Estes, M., Lei, R., Talbot, R., Zhu, L., Hou, P., 2018. Transport of central American fire emissions to the U.S. Gulf Coast: climatological pathways and impacts on Ozone and PM2.5. J. Geophys. Res.-Atmos. 123 (15), 8344–8361 Wooster, M.J., 2002. Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophys. Res. Lett. 29 (21), 2027. J. Bolaño-Truyol, I.L. Schneider, H.C. Cuadro et al Wooster, M.J., Roberts, G., Perry, G.L.W., Kaufman, Y.J., 2005. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res.-Atmos. 110 D24311 Wu, Y., Arapi, A., Huang, J., Gross, B., Moshary, F., 2018. Intra-continental wildfire smoke transport and impact on local air quality observed by ground-based and satellite remote sensing in New York City. Atmos. Environ. 187, 266–281. Yin, L., Du, P., Zhang, M., Liu, M., Xu, T., Song, Y., 2019. Estimation of emissions from biomass burning in China (2003-2017) based on MODIS fire radiative energy data. Biogeosciences 16 (7), 1629–1640 Zhang, X., Kondragunta, S., Quayle, B., 2011. Estimation of biomass burned areas using multiple-satellite-observed active fires. IEEE Trans. Geosci. Remote Sensing 49 (11), 4469–4482. Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., Huang, H.-C., 2012. Near-real-time global biomass burning emissions product from geostationary satellite constellation. J. Geophys. Res.-Atmos. 117 (D14). Zhou, Y., Han, Z., Liu, R., Zhu, B., Li, J., Zhang, R., 2018. A modeling study of the impact of crop residue burning on PM2.5 concentration in Beijing and Tianjin during a severe autumn haze event. Aerosol Air Qual. Res. 18 (7), 1558–1572 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.spa.fl_str_mv |
Geoscience Frontiers |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1674987121000165 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/36f1e459-5c80-445a-8e79-e427f988dc54/download https://repositorio.cuc.edu.co/bitstreams/7be35d86-cf2e-4eee-b562-f1a009af34c9/download https://repositorio.cuc.edu.co/bitstreams/f5d54d18-db43-49cf-8e9d-a14c0eae69c5/download https://repositorio.cuc.edu.co/bitstreams/a3a037fe-7760-48dd-a001-2a0ea4ef2bbc/download https://repositorio.cuc.edu.co/bitstreams/98867306-9768-4456-8f46-f9be965ef080/download |
bitstream.checksum.fl_str_mv |
48871a2d237d8ef59b002b04a8355826 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 92e0501ba2a05ab5a747bcd5c2b3ebf3 9243c5c2d657ae49c0a7e2e07c3dd509 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166840294047744 |
spelling |
Bolaño-Truyol, JehisonSchneider, IsmaelCANO CUADRO, HEIDIS PATRICIABolaño Truyol, Jorge DanielL.S. Oliveira, Marcos2021-05-31T17:10:41Z2021-05-31T17:10:41Z2021-01-311674-9871https://hdl.handle.net/11323/8302https://doi.org/10.1016/j.gsf.2021.101152Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Deterioration of air quality due to the increase in atmospheric emissions from biomass burning (BB) is one of the major environmental problems worldwide. In this study, we estimated the contributions of BB to PM2.5 concentrations in the municipalities of Soledad and Malambo located in the Colombian Caribbean. The evaluation period ranged from February 24 to March 30, 2018, a period with a high number of BB events recorded in the surroundings of the evaluated sites. The contribution of BB to the two sampling sites was estimated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) dispersion model with forwarding trajectories from each of the burning points identified by satellite images (n = 1089). The PM2.5 emissions were determined using the fire radiative power (FRP), obtained by remote-sensing data, and corresponded to the radiant energy released per time unit by burning vegetation. The average PM2.5 concentrations during the evaluation period were 19.91 μg/m3 for Soledad and 22.44 μg/m3 for Malambo. The average contribution of BB to these municipalities was 22.8% and 28.8%, respectively. The methodology used in this study allowed to estimate the contribution of this important source without knowledge of a previous tracer of BB, thereby increasing the use of the proposed procedure worldwide. This information would enable the implementation of effective mitigation, thereby diminishing the adverse impact of PM2.5 on the health of the population.Bolaño-Truyol, JehisonSchneider, Ismael-will be generated-orcid-0000-0002-6217-4183-600CANO CUADRO, HEIDIS PATRICIA-will be generated-orcid-0000-0003-2811-5769-600Bolaño Truyol, Jorge Daniel-will be generated-orcid-0000-0002-2934-2843-600L.S. Oliveira, Marcosapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Geoscience Frontiershttps://www.sciencedirect.com/science/article/pii/S1674987121000165Biomass burningParticulate matterHYSPLITDispersion modelRemote sensingEstimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian CaribbeanArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAmegah, A.K., 2018. Proliferation of low-cost sensors. What prospects for air pollution epidemiologic research in Sub-Saharan Africa? Environ. Pollut. 241, 1132–1137.Barranquilla, 2016. Plan de Ordenamiento Territorial. https://www.barranquilla.gov.co/ transparencia/planeacion/politicas-lineamientos-y-manuales/planes-estrategicos/ plan-de-ordenamiento-territorialDANE – Departamento Administrativo Nacional de Estadística, 2018. Censo Nacional de Población y Vivienda. https://www.dane.gov.co/files/censo2018/informaciontecnica/CNPV-2018-VIHOPE-v2.xls.Guo, L., Chen, B., Zhang, H., Xu, G., Lu, L., Lin, X., Kong, Y., Wang, F., Li, Y., 2018. Improving PM2.5 forecasting and emission estimation based on the Bayesian Optimization Method and the coupled FLEXPART-WRF model. Atmosphere 9 (11), 428.Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M.A., Espinosa, J.M., Restrepo, J.C., Escobar, J., 2017. The environmental envelope of fires in the Colombian Caribbean. Appl. Geogr. 84, 42–54Huang, X.H.H., Bian, Q., Ng, W.M., Louie, P.K.K., Yu, J.Z., 2014. Characterization of PM2.5 major components and source investigation in suburban Hong Kong: a one year monitoring study. Aerosol Air Qual. Res. 14 (1), 237–250.Islam, M.R., Jayarathne, T., Simpson, I.J., Werden, B., Maben, J., Gilbert, A., Praveen, P.S., Adhikari, S., Panday, A.K., Rupakheti, M., Blake, D.R., Yokelson, R.J., DeCarlo, P.F., Keene, W.C., Stone, E.A., 2019. Ambient air quality in the Kathmandu Valley, Nepal during the pre-monsoon: concentrations and sources of particulate matter and trace gases. Atmos. Chem. Phys. 20 (5), 2927–2951.IUFRO – International Union of Forest Research Organizations, 2018. Global Fire Challenges in a Warming World. In: Robinne, F.-N., Burns, J., Kant, P., de Groot, B., Flannigan, M.D., Kleine, M., Wotton, D.M. (Eds.), Occasional Paper No. 32. 2018. IUFRO, Vienna.Kota, S.H., Guo, H., Myllyvirta, L., Hu, J., Sahu, S.K., Garaga, R., Ying, Q., Gao, A., Dahiya, S., Wang, Y., Zhang, H., 2018. Year-long simulation of gaseous and particulate air pollutants in India. Atmos. Environ. 180, 244–255.Lai, H.-C., Ma, H.-W., Chen, C.-R., Hsiao, M.-C., Pan, B.-H., 2019. Design and application of a hybrid assessment of air quality models for the source apportionment of PM2.5. Atmos. Environ. 212, 116–127.Li, F., Zhang, X., Kondragunta, S., Roy, D.P., 2018. Investigation of the fire radiative energy biomass combustion coefficient: A comparison of polar and geostationary satellite retrievals over the conterminous United States. J. Geophys. Res.–Biogeo 123 (2), 722–739.Li, F., Val Martin, M., Andreae, M.O., Arneth, A., Hantson, S., Kaiser, J.W., Lasslop, G., Yue, C., Bachelet, D., Forrest, M., Kluzek, E., Liu, X., Mangeon, S., Melton, J.R., Ward, D.S., Darmenov, A., Hickler, T., Ichoku, C., Magi, B.I., Sitch, S., van der Werf, G.R., Wiedinmyer, C., Rabin, S.S., 2019. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 19, 12545–12567.Malamakal, T., Chen, L.-W.A., Wang, X., Green, M.C., Gronstal, S., Chow, J.C., Watson, J.G., 2013. Prescribed burn smoke impact in the Lake Tahoe Basin: model simulation and field verification. Int. J. Environ. Pollut. 52 (3/4), 225–243.Masiol, M., Squizzato, S., Rich, D.Q., Hopke, P.K., 2019. Long-term trends (2005–2016) of source apportioned PM2.5 across New York State. Atmos. Environ. 201, 110–120Noda, J., Bergström, R., Kong, X., Gustafsson, T.L., Kovacevik, B., Svane, M., Pettersson, J.B.C., 2019. Aerosol from biomass combustion in Northern Europe: Influence of meteorological conditions and air mass history. Atmosphere 10 (12), 789.Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., 2020. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 248, 119250.Pereira, A.A., Pereira, J.M.C., Libonati, R., Oom, D., Setzer, A.W., Morelli, F., Machado-Silva, F., de Carvalho, L.M.T., 2017. Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sens. 9 (11), 1161.Prato, D.F., Huertas, J.I., 2019. Determination of the area affected by agricultural burning. Atmosphere 10 (6), 312.Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., Sánchez de la Campa, A., Artíñano, B., Salvador, P., García dos Santos, S., FernándezPatier, R., Moreno-Grau, S., Negral, L., Minguillón, M.C., Monfort, E., Gil, J.I., Zabalza, J., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 41 (34), 7219–7231.Ramírez, O., Sánchez de la Campa, A.M., Amato, F., Moreno, T., Silva, L.F., de la Rosa, J.D., 2019. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 652, 434–446.Ramírez, O., da Boit, K., Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655.Rojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: Environmental implications. Urban Clim. 27, 412–419.Rönkkö, T.J., Hirvonen, M.R., Happo, M.S., Leskinen, A., Koponen, H., Mikkonen, S., Bauer, S., Ihantola, T., Hakkarainen, H., Miettinen, M., Orasche, J., Gu, C., Wang, Q., Jokiniemi, J., Sippula, O., Komppula, M., Jalava, P.I., 2020. Air quality intervention during the Nanjing youth olympic games altered PM sources, chemical composition, and toxicological responses. Environ. Res. 185, 109360.Schneider, I.L., Teixeira, E.C., Oliveira, L.F.S., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollution Res. 6 (5), 877–885She, H., Cheng, P.-H., Yuan, C.-S., Yang, Z.-M., Hung, C.-M., Ie, I.-R., 2020. Chemical characteristics, spatiotemporal distribution, and source apportionment of PM2.5 surrounding industrial complexes in Southern Kaohsiung. Aerosol Air Qual. Res. 20 (3), 557–575Silva, P.S., Bastos, A., Libonati, R., Rodrigues, J.A., DaCamara, C.C., 2019. Impacts of the 1.5 °C global warming target on future burned area in the Brazilian Cerrado. Forest Ecol. Manag. 446, 193–203.Silva, L.F.O., Pinto, D., Lima, B.D., 2020a. Implications of iron nanoparticles in spontaneous coal combustion and the effects on climatic variables. Chemosphere 254, 126814.Silva, L.F.O., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020b. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776.Silva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C.H., 2020c. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254, 126822.Turap, Y., Rekefu, S., Wang, G., Talifu, D., Gao, B., Aierken, T., Hao, S., Wang, X., Tursun, Y., Maihemuti, M., Nuerla, A., 2019. Chemical characteristics and source apportionment of PM2.5 during winter in the southern part of Urumqi, China. Aerosol Air Qual. Res. 19 (6), 1325–1337Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., Roberts, G.J., 2009. An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. J. Geophys. Res. 114, D18205Wang, S.-C., Wang, Y., Estes, M., Lei, R., Talbot, R., Zhu, L., Hou, P., 2018. Transport of central American fire emissions to the U.S. Gulf Coast: climatological pathways and impacts on Ozone and PM2.5. J. Geophys. Res.-Atmos. 123 (15), 8344–8361Wooster, M.J., 2002. Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophys. Res. Lett. 29 (21), 2027.J. Bolaño-Truyol, I.L. Schneider, H.C. Cuadro et alWooster, M.J., Roberts, G., Perry, G.L.W., Kaufman, Y.J., 2005. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res.-Atmos. 110 D24311Wu, Y., Arapi, A., Huang, J., Gross, B., Moshary, F., 2018. Intra-continental wildfire smoke transport and impact on local air quality observed by ground-based and satellite remote sensing in New York City. Atmos. Environ. 187, 266–281.Yin, L., Du, P., Zhang, M., Liu, M., Xu, T., Song, Y., 2019. Estimation of emissions from biomass burning in China (2003-2017) based on MODIS fire radiative energy data. Biogeosciences 16 (7), 1629–1640Zhang, X., Kondragunta, S., Quayle, B., 2011. Estimation of biomass burned areas using multiple-satellite-observed active fires. IEEE Trans. Geosci. Remote Sensing 49 (11), 4469–4482.Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., Huang, H.-C., 2012. Near-real-time global biomass burning emissions product from geostationary satellite constellation. J. Geophys. Res.-Atmos. 117 (D14).Zhou, Y., Han, Z., Liu, R., Zhu, B., Li, J., Zhang, R., 2018. A modeling study of the impact of crop residue burning on PM2.5 concentration in Beijing and Tianjin during a severe autumn haze event. Aerosol Air Qual. Res. 18 (7), 1558–1572PublicationORIGINAL1-s2.0-S1674987121000165-main.pdf1-s2.0-S1674987121000165-main.pdfapplication/pdf441489https://repositorio.cuc.edu.co/bitstreams/36f1e459-5c80-445a-8e79-e427f988dc54/download48871a2d237d8ef59b002b04a8355826MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/7be35d86-cf2e-4eee-b562-f1a009af34c9/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/f5d54d18-db43-49cf-8e9d-a14c0eae69c5/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAIL1-s2.0-S1674987121000165-main.pdf.jpg1-s2.0-S1674987121000165-main.pdf.jpgimage/jpeg71209https://repositorio.cuc.edu.co/bitstreams/a3a037fe-7760-48dd-a001-2a0ea4ef2bbc/download92e0501ba2a05ab5a747bcd5c2b3ebf3MD54TEXT1-s2.0-S1674987121000165-main.pdf.txt1-s2.0-S1674987121000165-main.pdf.txttext/plain34681https://repositorio.cuc.edu.co/bitstreams/98867306-9768-4456-8f46-f9be965ef080/download9243c5c2d657ae49c0a7e2e07c3dd509MD5511323/8302oai:repositorio.cuc.edu.co:11323/83022024-09-17 14:16:40.141http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |