Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean

Deterioration of air quality due to the increase in atmospheric emissions from biomass burning (BB) is one of the major environmental problems worldwide. In this study, we estimated the contributions of BB to PM2.5 concentrations in the municipalities of Soledad and Malambo located in the Colombian...

Full description

Autores:
Bolaño-Truyol, Jehison
Schneider, Ismael
CANO CUADRO, HEIDIS PATRICIA
Bolaño Truyol, Jorge Daniel
L.S. Oliveira, Marcos
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8302
Acceso en línea:
https://hdl.handle.net/11323/8302
https://doi.org/10.1016/j.gsf.2021.101152
https://repositorio.cuc.edu.co/
Palabra clave:
Biomass burning
Particulate matter
HYSPLIT
Dispersion model
Remote sensing
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_cfdedf4bcca022750f9c62949ce10c1f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8302
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean
title Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean
spellingShingle Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean
Biomass burning
Particulate matter
HYSPLIT
Dispersion model
Remote sensing
title_short Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean
title_full Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean
title_fullStr Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean
title_full_unstemmed Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean
title_sort Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean
dc.creator.fl_str_mv Bolaño-Truyol, Jehison
Schneider, Ismael
CANO CUADRO, HEIDIS PATRICIA
Bolaño Truyol, Jorge Daniel
L.S. Oliveira, Marcos
dc.contributor.author.spa.fl_str_mv Bolaño-Truyol, Jehison
Schneider, Ismael
CANO CUADRO, HEIDIS PATRICIA
Bolaño Truyol, Jorge Daniel
L.S. Oliveira, Marcos
dc.subject.eng.fl_str_mv Biomass burning
Particulate matter
HYSPLIT
Dispersion model
Remote sensing
topic Biomass burning
Particulate matter
HYSPLIT
Dispersion model
Remote sensing
description Deterioration of air quality due to the increase in atmospheric emissions from biomass burning (BB) is one of the major environmental problems worldwide. In this study, we estimated the contributions of BB to PM2.5 concentrations in the municipalities of Soledad and Malambo located in the Colombian Caribbean. The evaluation period ranged from February 24 to March 30, 2018, a period with a high number of BB events recorded in the surroundings of the evaluated sites. The contribution of BB to the two sampling sites was estimated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) dispersion model with forwarding trajectories from each of the burning points identified by satellite images (n = 1089). The PM2.5 emissions were determined using the fire radiative power (FRP), obtained by remote-sensing data, and corresponded to the radiant energy released per time unit by burning vegetation. The average PM2.5 concentrations during the evaluation period were 19.91 μg/m3 for Soledad and 22.44 μg/m3 for Malambo. The average contribution of BB to these municipalities was 22.8% and 28.8%, respectively. The methodology used in this study allowed to estimate the contribution of this important source without knowledge of a previous tracer of BB, thereby increasing the use of the proposed procedure worldwide. This information would enable the implementation of effective mitigation, thereby diminishing the adverse impact of PM2.5 on the health of the population.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-31T17:10:41Z
dc.date.available.none.fl_str_mv 2021-05-31T17:10:41Z
dc.date.issued.none.fl_str_mv 2021-01-31
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1674-9871
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8302
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.gsf.2021.101152
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1674-9871
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8302
https://doi.org/10.1016/j.gsf.2021.101152
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Amegah, A.K., 2018. Proliferation of low-cost sensors. What prospects for air pollution epidemiologic research in Sub-Saharan Africa? Environ. Pollut. 241, 1132–1137.
Barranquilla, 2016. Plan de Ordenamiento Territorial. https://www.barranquilla.gov.co/ transparencia/planeacion/politicas-lineamientos-y-manuales/planes-estrategicos/ plan-de-ordenamiento-territorial
DANE – Departamento Administrativo Nacional de Estadística, 2018. Censo Nacional de Población y Vivienda. https://www.dane.gov.co/files/censo2018/informaciontecnica/CNPV-2018-VIHOPE-v2.xls.
Guo, L., Chen, B., Zhang, H., Xu, G., Lu, L., Lin, X., Kong, Y., Wang, F., Li, Y., 2018. Improving PM2.5 forecasting and emission estimation based on the Bayesian Optimization Method and the coupled FLEXPART-WRF model. Atmosphere 9 (11), 428.
Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M.A., Espinosa, J.M., Restrepo, J.C., Escobar, J., 2017. The environmental envelope of fires in the Colombian Caribbean. Appl. Geogr. 84, 42–54
Huang, X.H.H., Bian, Q., Ng, W.M., Louie, P.K.K., Yu, J.Z., 2014. Characterization of PM2.5 major components and source investigation in suburban Hong Kong: a one year monitoring study. Aerosol Air Qual. Res. 14 (1), 237–250.
Islam, M.R., Jayarathne, T., Simpson, I.J., Werden, B., Maben, J., Gilbert, A., Praveen, P.S., Adhikari, S., Panday, A.K., Rupakheti, M., Blake, D.R., Yokelson, R.J., DeCarlo, P.F., Keene, W.C., Stone, E.A., 2019. Ambient air quality in the Kathmandu Valley, Nepal during the pre-monsoon: concentrations and sources of particulate matter and trace gases. Atmos. Chem. Phys. 20 (5), 2927–2951.
IUFRO – International Union of Forest Research Organizations, 2018. Global Fire Challenges in a Warming World. In: Robinne, F.-N., Burns, J., Kant, P., de Groot, B., Flannigan, M.D., Kleine, M., Wotton, D.M. (Eds.), Occasional Paper No. 32. 2018. IUFRO, Vienna.
Kota, S.H., Guo, H., Myllyvirta, L., Hu, J., Sahu, S.K., Garaga, R., Ying, Q., Gao, A., Dahiya, S., Wang, Y., Zhang, H., 2018. Year-long simulation of gaseous and particulate air pollutants in India. Atmos. Environ. 180, 244–255.
Lai, H.-C., Ma, H.-W., Chen, C.-R., Hsiao, M.-C., Pan, B.-H., 2019. Design and application of a hybrid assessment of air quality models for the source apportionment of PM2.5. Atmos. Environ. 212, 116–127.
Li, F., Zhang, X., Kondragunta, S., Roy, D.P., 2018. Investigation of the fire radiative energy biomass combustion coefficient: A comparison of polar and geostationary satellite retrievals over the conterminous United States. J. Geophys. Res.–Biogeo 123 (2), 722–739.
Li, F., Val Martin, M., Andreae, M.O., Arneth, A., Hantson, S., Kaiser, J.W., Lasslop, G., Yue, C., Bachelet, D., Forrest, M., Kluzek, E., Liu, X., Mangeon, S., Melton, J.R., Ward, D.S., Darmenov, A., Hickler, T., Ichoku, C., Magi, B.I., Sitch, S., van der Werf, G.R., Wiedinmyer, C., Rabin, S.S., 2019. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 19, 12545–12567.
Malamakal, T., Chen, L.-W.A., Wang, X., Green, M.C., Gronstal, S., Chow, J.C., Watson, J.G., 2013. Prescribed burn smoke impact in the Lake Tahoe Basin: model simulation and field verification. Int. J. Environ. Pollut. 52 (3/4), 225–243.
Masiol, M., Squizzato, S., Rich, D.Q., Hopke, P.K., 2019. Long-term trends (2005–2016) of source apportioned PM2.5 across New York State. Atmos. Environ. 201, 110–120
Noda, J., Bergström, R., Kong, X., Gustafsson, T.L., Kovacevik, B., Svane, M., Pettersson, J.B.C., 2019. Aerosol from biomass combustion in Northern Europe: Influence of meteorological conditions and air mass history. Atmosphere 10 (12), 789.
Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., 2020. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 248, 119250.
Pereira, A.A., Pereira, J.M.C., Libonati, R., Oom, D., Setzer, A.W., Morelli, F., Machado-Silva, F., de Carvalho, L.M.T., 2017. Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sens. 9 (11), 1161.
Prato, D.F., Huertas, J.I., 2019. Determination of the area affected by agricultural burning. Atmosphere 10 (6), 312.
Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., Sánchez de la Campa, A., Artíñano, B., Salvador, P., García dos Santos, S., FernándezPatier, R., Moreno-Grau, S., Negral, L., Minguillón, M.C., Monfort, E., Gil, J.I., Zabalza, J., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 41 (34), 7219–7231.
Ramírez, O., Sánchez de la Campa, A.M., Amato, F., Moreno, T., Silva, L.F., de la Rosa, J.D., 2019. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 652, 434–446.
Ramírez, O., da Boit, K., Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655.
Rojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: Environmental implications. Urban Clim. 27, 412–419.
Rönkkö, T.J., Hirvonen, M.R., Happo, M.S., Leskinen, A., Koponen, H., Mikkonen, S., Bauer, S., Ihantola, T., Hakkarainen, H., Miettinen, M., Orasche, J., Gu, C., Wang, Q., Jokiniemi, J., Sippula, O., Komppula, M., Jalava, P.I., 2020. Air quality intervention during the Nanjing youth olympic games altered PM sources, chemical composition, and toxicological responses. Environ. Res. 185, 109360.
Schneider, I.L., Teixeira, E.C., Oliveira, L.F.S., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollution Res. 6 (5), 877–885
She, H., Cheng, P.-H., Yuan, C.-S., Yang, Z.-M., Hung, C.-M., Ie, I.-R., 2020. Chemical characteristics, spatiotemporal distribution, and source apportionment of PM2.5 surrounding industrial complexes in Southern Kaohsiung. Aerosol Air Qual. Res. 20 (3), 557–575
Silva, P.S., Bastos, A., Libonati, R., Rodrigues, J.A., DaCamara, C.C., 2019. Impacts of the 1.5 °C global warming target on future burned area in the Brazilian Cerrado. Forest Ecol. Manag. 446, 193–203.
Silva, L.F.O., Pinto, D., Lima, B.D., 2020a. Implications of iron nanoparticles in spontaneous coal combustion and the effects on climatic variables. Chemosphere 254, 126814.
Silva, L.F.O., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020b. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776.
Silva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C.H., 2020c. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254, 126822.
Turap, Y., Rekefu, S., Wang, G., Talifu, D., Gao, B., Aierken, T., Hao, S., Wang, X., Tursun, Y., Maihemuti, M., Nuerla, A., 2019. Chemical characteristics and source apportionment of PM2.5 during winter in the southern part of Urumqi, China. Aerosol Air Qual. Res. 19 (6), 1325–1337
Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., Roberts, G.J., 2009. An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. J. Geophys. Res. 114, D18205
Wang, S.-C., Wang, Y., Estes, M., Lei, R., Talbot, R., Zhu, L., Hou, P., 2018. Transport of central American fire emissions to the U.S. Gulf Coast: climatological pathways and impacts on Ozone and PM2.5. J. Geophys. Res.-Atmos. 123 (15), 8344–8361
Wooster, M.J., 2002. Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophys. Res. Lett. 29 (21), 2027.
J. Bolaño-Truyol, I.L. Schneider, H.C. Cuadro et al
Wooster, M.J., Roberts, G., Perry, G.L.W., Kaufman, Y.J., 2005. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res.-Atmos. 110 D24311
Wu, Y., Arapi, A., Huang, J., Gross, B., Moshary, F., 2018. Intra-continental wildfire smoke transport and impact on local air quality observed by ground-based and satellite remote sensing in New York City. Atmos. Environ. 187, 266–281.
Yin, L., Du, P., Zhang, M., Liu, M., Xu, T., Song, Y., 2019. Estimation of emissions from biomass burning in China (2003-2017) based on MODIS fire radiative energy data. Biogeosciences 16 (7), 1629–1640
Zhang, X., Kondragunta, S., Quayle, B., 2011. Estimation of biomass burned areas using multiple-satellite-observed active fires. IEEE Trans. Geosci. Remote Sensing 49 (11), 4469–4482.
Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., Huang, H.-C., 2012. Near-real-time global biomass burning emissions product from geostationary satellite constellation. J. Geophys. Res.-Atmos. 117 (D14).
Zhou, Y., Han, Z., Liu, R., Zhu, B., Li, J., Zhang, R., 2018. A modeling study of the impact of crop residue burning on PM2.5 concentration in Beijing and Tianjin during a severe autumn haze event. Aerosol Air Qual. Res. 18 (7), 1558–1572
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.source.spa.fl_str_mv Geoscience Frontiers
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1674987121000165
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/36f1e459-5c80-445a-8e79-e427f988dc54/download
https://repositorio.cuc.edu.co/bitstreams/7be35d86-cf2e-4eee-b562-f1a009af34c9/download
https://repositorio.cuc.edu.co/bitstreams/f5d54d18-db43-49cf-8e9d-a14c0eae69c5/download
https://repositorio.cuc.edu.co/bitstreams/a3a037fe-7760-48dd-a001-2a0ea4ef2bbc/download
https://repositorio.cuc.edu.co/bitstreams/98867306-9768-4456-8f46-f9be965ef080/download
bitstream.checksum.fl_str_mv 48871a2d237d8ef59b002b04a8355826
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
92e0501ba2a05ab5a747bcd5c2b3ebf3
9243c5c2d657ae49c0a7e2e07c3dd509
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166840294047744
spelling Bolaño-Truyol, JehisonSchneider, IsmaelCANO CUADRO, HEIDIS PATRICIABolaño Truyol, Jorge DanielL.S. Oliveira, Marcos2021-05-31T17:10:41Z2021-05-31T17:10:41Z2021-01-311674-9871https://hdl.handle.net/11323/8302https://doi.org/10.1016/j.gsf.2021.101152Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Deterioration of air quality due to the increase in atmospheric emissions from biomass burning (BB) is one of the major environmental problems worldwide. In this study, we estimated the contributions of BB to PM2.5 concentrations in the municipalities of Soledad and Malambo located in the Colombian Caribbean. The evaluation period ranged from February 24 to March 30, 2018, a period with a high number of BB events recorded in the surroundings of the evaluated sites. The contribution of BB to the two sampling sites was estimated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) dispersion model with forwarding trajectories from each of the burning points identified by satellite images (n = 1089). The PM2.5 emissions were determined using the fire radiative power (FRP), obtained by remote-sensing data, and corresponded to the radiant energy released per time unit by burning vegetation. The average PM2.5 concentrations during the evaluation period were 19.91 μg/m3 for Soledad and 22.44 μg/m3 for Malambo. The average contribution of BB to these municipalities was 22.8% and 28.8%, respectively. The methodology used in this study allowed to estimate the contribution of this important source without knowledge of a previous tracer of BB, thereby increasing the use of the proposed procedure worldwide. This information would enable the implementation of effective mitigation, thereby diminishing the adverse impact of PM2.5 on the health of the population.Bolaño-Truyol, JehisonSchneider, Ismael-will be generated-orcid-0000-0002-6217-4183-600CANO CUADRO, HEIDIS PATRICIA-will be generated-orcid-0000-0003-2811-5769-600Bolaño Truyol, Jorge Daniel-will be generated-orcid-0000-0002-2934-2843-600L.S. Oliveira, Marcosapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Geoscience Frontiershttps://www.sciencedirect.com/science/article/pii/S1674987121000165Biomass burningParticulate matterHYSPLITDispersion modelRemote sensingEstimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian CaribbeanArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAmegah, A.K., 2018. Proliferation of low-cost sensors. What prospects for air pollution epidemiologic research in Sub-Saharan Africa? Environ. Pollut. 241, 1132–1137.Barranquilla, 2016. Plan de Ordenamiento Territorial. https://www.barranquilla.gov.co/ transparencia/planeacion/politicas-lineamientos-y-manuales/planes-estrategicos/ plan-de-ordenamiento-territorialDANE – Departamento Administrativo Nacional de Estadística, 2018. Censo Nacional de Población y Vivienda. https://www.dane.gov.co/files/censo2018/informaciontecnica/CNPV-2018-VIHOPE-v2.xls.Guo, L., Chen, B., Zhang, H., Xu, G., Lu, L., Lin, X., Kong, Y., Wang, F., Li, Y., 2018. Improving PM2.5 forecasting and emission estimation based on the Bayesian Optimization Method and the coupled FLEXPART-WRF model. Atmosphere 9 (11), 428.Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M.A., Espinosa, J.M., Restrepo, J.C., Escobar, J., 2017. The environmental envelope of fires in the Colombian Caribbean. Appl. Geogr. 84, 42–54Huang, X.H.H., Bian, Q., Ng, W.M., Louie, P.K.K., Yu, J.Z., 2014. Characterization of PM2.5 major components and source investigation in suburban Hong Kong: a one year monitoring study. Aerosol Air Qual. Res. 14 (1), 237–250.Islam, M.R., Jayarathne, T., Simpson, I.J., Werden, B., Maben, J., Gilbert, A., Praveen, P.S., Adhikari, S., Panday, A.K., Rupakheti, M., Blake, D.R., Yokelson, R.J., DeCarlo, P.F., Keene, W.C., Stone, E.A., 2019. Ambient air quality in the Kathmandu Valley, Nepal during the pre-monsoon: concentrations and sources of particulate matter and trace gases. Atmos. Chem. Phys. 20 (5), 2927–2951.IUFRO – International Union of Forest Research Organizations, 2018. Global Fire Challenges in a Warming World. In: Robinne, F.-N., Burns, J., Kant, P., de Groot, B., Flannigan, M.D., Kleine, M., Wotton, D.M. (Eds.), Occasional Paper No. 32. 2018. IUFRO, Vienna.Kota, S.H., Guo, H., Myllyvirta, L., Hu, J., Sahu, S.K., Garaga, R., Ying, Q., Gao, A., Dahiya, S., Wang, Y., Zhang, H., 2018. Year-long simulation of gaseous and particulate air pollutants in India. Atmos. Environ. 180, 244–255.Lai, H.-C., Ma, H.-W., Chen, C.-R., Hsiao, M.-C., Pan, B.-H., 2019. Design and application of a hybrid assessment of air quality models for the source apportionment of PM2.5. Atmos. Environ. 212, 116–127.Li, F., Zhang, X., Kondragunta, S., Roy, D.P., 2018. Investigation of the fire radiative energy biomass combustion coefficient: A comparison of polar and geostationary satellite retrievals over the conterminous United States. J. Geophys. Res.–Biogeo 123 (2), 722–739.Li, F., Val Martin, M., Andreae, M.O., Arneth, A., Hantson, S., Kaiser, J.W., Lasslop, G., Yue, C., Bachelet, D., Forrest, M., Kluzek, E., Liu, X., Mangeon, S., Melton, J.R., Ward, D.S., Darmenov, A., Hickler, T., Ichoku, C., Magi, B.I., Sitch, S., van der Werf, G.R., Wiedinmyer, C., Rabin, S.S., 2019. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 19, 12545–12567.Malamakal, T., Chen, L.-W.A., Wang, X., Green, M.C., Gronstal, S., Chow, J.C., Watson, J.G., 2013. Prescribed burn smoke impact in the Lake Tahoe Basin: model simulation and field verification. Int. J. Environ. Pollut. 52 (3/4), 225–243.Masiol, M., Squizzato, S., Rich, D.Q., Hopke, P.K., 2019. Long-term trends (2005–2016) of source apportioned PM2.5 across New York State. Atmos. Environ. 201, 110–120Noda, J., Bergström, R., Kong, X., Gustafsson, T.L., Kovacevik, B., Svane, M., Pettersson, J.B.C., 2019. Aerosol from biomass combustion in Northern Europe: Influence of meteorological conditions and air mass history. Atmosphere 10 (12), 789.Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., 2020. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 248, 119250.Pereira, A.A., Pereira, J.M.C., Libonati, R., Oom, D., Setzer, A.W., Morelli, F., Machado-Silva, F., de Carvalho, L.M.T., 2017. Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sens. 9 (11), 1161.Prato, D.F., Huertas, J.I., 2019. Determination of the area affected by agricultural burning. Atmosphere 10 (6), 312.Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., Sánchez de la Campa, A., Artíñano, B., Salvador, P., García dos Santos, S., FernándezPatier, R., Moreno-Grau, S., Negral, L., Minguillón, M.C., Monfort, E., Gil, J.I., Zabalza, J., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 41 (34), 7219–7231.Ramírez, O., Sánchez de la Campa, A.M., Amato, F., Moreno, T., Silva, L.F., de la Rosa, J.D., 2019. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 652, 434–446.Ramírez, O., da Boit, K., Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655.Rojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: Environmental implications. Urban Clim. 27, 412–419.Rönkkö, T.J., Hirvonen, M.R., Happo, M.S., Leskinen, A., Koponen, H., Mikkonen, S., Bauer, S., Ihantola, T., Hakkarainen, H., Miettinen, M., Orasche, J., Gu, C., Wang, Q., Jokiniemi, J., Sippula, O., Komppula, M., Jalava, P.I., 2020. Air quality intervention during the Nanjing youth olympic games altered PM sources, chemical composition, and toxicological responses. Environ. Res. 185, 109360.Schneider, I.L., Teixeira, E.C., Oliveira, L.F.S., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollution Res. 6 (5), 877–885She, H., Cheng, P.-H., Yuan, C.-S., Yang, Z.-M., Hung, C.-M., Ie, I.-R., 2020. Chemical characteristics, spatiotemporal distribution, and source apportionment of PM2.5 surrounding industrial complexes in Southern Kaohsiung. Aerosol Air Qual. Res. 20 (3), 557–575Silva, P.S., Bastos, A., Libonati, R., Rodrigues, J.A., DaCamara, C.C., 2019. Impacts of the 1.5 °C global warming target on future burned area in the Brazilian Cerrado. Forest Ecol. Manag. 446, 193–203.Silva, L.F.O., Pinto, D., Lima, B.D., 2020a. Implications of iron nanoparticles in spontaneous coal combustion and the effects on climatic variables. Chemosphere 254, 126814.Silva, L.F.O., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020b. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776.Silva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C.H., 2020c. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254, 126822.Turap, Y., Rekefu, S., Wang, G., Talifu, D., Gao, B., Aierken, T., Hao, S., Wang, X., Tursun, Y., Maihemuti, M., Nuerla, A., 2019. Chemical characteristics and source apportionment of PM2.5 during winter in the southern part of Urumqi, China. Aerosol Air Qual. Res. 19 (6), 1325–1337Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., Roberts, G.J., 2009. An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. J. Geophys. Res. 114, D18205Wang, S.-C., Wang, Y., Estes, M., Lei, R., Talbot, R., Zhu, L., Hou, P., 2018. Transport of central American fire emissions to the U.S. Gulf Coast: climatological pathways and impacts on Ozone and PM2.5. J. Geophys. Res.-Atmos. 123 (15), 8344–8361Wooster, M.J., 2002. Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophys. Res. Lett. 29 (21), 2027.J. Bolaño-Truyol, I.L. Schneider, H.C. Cuadro et alWooster, M.J., Roberts, G., Perry, G.L.W., Kaufman, Y.J., 2005. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res.-Atmos. 110 D24311Wu, Y., Arapi, A., Huang, J., Gross, B., Moshary, F., 2018. Intra-continental wildfire smoke transport and impact on local air quality observed by ground-based and satellite remote sensing in New York City. Atmos. Environ. 187, 266–281.Yin, L., Du, P., Zhang, M., Liu, M., Xu, T., Song, Y., 2019. Estimation of emissions from biomass burning in China (2003-2017) based on MODIS fire radiative energy data. Biogeosciences 16 (7), 1629–1640Zhang, X., Kondragunta, S., Quayle, B., 2011. Estimation of biomass burned areas using multiple-satellite-observed active fires. IEEE Trans. Geosci. Remote Sensing 49 (11), 4469–4482.Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., Huang, H.-C., 2012. Near-real-time global biomass burning emissions product from geostationary satellite constellation. J. Geophys. Res.-Atmos. 117 (D14).Zhou, Y., Han, Z., Liu, R., Zhu, B., Li, J., Zhang, R., 2018. A modeling study of the impact of crop residue burning on PM2.5 concentration in Beijing and Tianjin during a severe autumn haze event. Aerosol Air Qual. Res. 18 (7), 1558–1572PublicationORIGINAL1-s2.0-S1674987121000165-main.pdf1-s2.0-S1674987121000165-main.pdfapplication/pdf441489https://repositorio.cuc.edu.co/bitstreams/36f1e459-5c80-445a-8e79-e427f988dc54/download48871a2d237d8ef59b002b04a8355826MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/7be35d86-cf2e-4eee-b562-f1a009af34c9/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/f5d54d18-db43-49cf-8e9d-a14c0eae69c5/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAIL1-s2.0-S1674987121000165-main.pdf.jpg1-s2.0-S1674987121000165-main.pdf.jpgimage/jpeg71209https://repositorio.cuc.edu.co/bitstreams/a3a037fe-7760-48dd-a001-2a0ea4ef2bbc/download92e0501ba2a05ab5a747bcd5c2b3ebf3MD54TEXT1-s2.0-S1674987121000165-main.pdf.txt1-s2.0-S1674987121000165-main.pdf.txttext/plain34681https://repositorio.cuc.edu.co/bitstreams/98867306-9768-4456-8f46-f9be965ef080/download9243c5c2d657ae49c0a7e2e07c3dd509MD5511323/8302oai:repositorio.cuc.edu.co:11323/83022024-09-17 14:16:40.141http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==