Sensor-based datasets for human activity recognition - a systematic review of literature
The research area of ambient assisted living has led to the development of activity recognition systems (ARS) based on human activity recognition (HAR). These systems improve the quality of life and the health care of the elderly and dependent people. However, before making them available to end use...
- Autores:
-
De la Hoz, Emiro
Ariza Colpas, Paola Patricia
Medina Quero, Javier
Espinilla, Macarena
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1478
- Acceso en línea:
- https://hdl.handle.net/11323/1478
https://repositorio.cuc.edu.co/
- Palabra clave:
- Ambient assisted living–AAL
human activity recognition–HAR
activities of daily living–ADL
activity recognition systems–ARS
dataset
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_cfd57d5ee8373862d933f50c7851c2a9 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1478 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Sensor-based datasets for human activity recognition - a systematic review of literature |
title |
Sensor-based datasets for human activity recognition - a systematic review of literature |
spellingShingle |
Sensor-based datasets for human activity recognition - a systematic review of literature Ambient assisted living–AAL human activity recognition–HAR activities of daily living–ADL activity recognition systems–ARS dataset |
title_short |
Sensor-based datasets for human activity recognition - a systematic review of literature |
title_full |
Sensor-based datasets for human activity recognition - a systematic review of literature |
title_fullStr |
Sensor-based datasets for human activity recognition - a systematic review of literature |
title_full_unstemmed |
Sensor-based datasets for human activity recognition - a systematic review of literature |
title_sort |
Sensor-based datasets for human activity recognition - a systematic review of literature |
dc.creator.fl_str_mv |
De la Hoz, Emiro Ariza Colpas, Paola Patricia Medina Quero, Javier Espinilla, Macarena |
dc.contributor.author.spa.fl_str_mv |
De la Hoz, Emiro Ariza Colpas, Paola Patricia Medina Quero, Javier Espinilla, Macarena |
dc.subject.eng.fl_str_mv |
Ambient assisted living–AAL human activity recognition–HAR activities of daily living–ADL activity recognition systems–ARS dataset |
topic |
Ambient assisted living–AAL human activity recognition–HAR activities of daily living–ADL activity recognition systems–ARS dataset |
description |
The research area of ambient assisted living has led to the development of activity recognition systems (ARS) based on human activity recognition (HAR). These systems improve the quality of life and the health care of the elderly and dependent people. However, before making them available to end users, it is necessary to evaluate their performance in recognizing activities of daily living, using data set benchmarks in experimental scenarios. For that reason, the scientific community has developed and provided a huge amount of data sets for HAR. Therefore, identifying which ones to use in the evaluation process and which techniques are the most appropriate for prediction of HAR in a specific context is not a trivial task and is key to further progress in this area of research. This work presents a systematic review of the literature of the sensor-based data sets used to evaluate ARS. On the one hand, an analysis of different variables taken from indexed publications related to this field was performed. The sources of information are journals, proceedings, and books located in specialized databases. The analyzed variables characterize publications by year, database, type, quartile, country of origin, and destination, using scientometrics, which allowed identification of the data set most used by researchers. On the other hand, the descriptive and functional variables were analyzed for each of the identified data sets: occupation, annotation, approach, segmentation, representation, feature selection, balancing and addition of instances, and classifier used for recognition. This paper provides an analysis of the sensor-based data sets used in HAR to date, identifying the most appropriate dataset to evaluate ARS and the classification techniques that generate better results. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-20T19:42:13Z |
dc.date.available.none.fl_str_mv |
2018-11-20T19:42:13Z |
dc.date.issued.none.fl_str_mv |
2018-09-22 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
21693536 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1478 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
21693536 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1478 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] D. A. Umphred, Neurological Rehabilitation, vol. 27. Amsterdam, The Netherlands: Elsevier, no. 5, 2013. [2] D. Arifoglu and A. Bouchachia, ‘‘Activity recognition and abnormal behaviour detection with recurrent neural networks,’’ Procedia Comput. Sci., no. 110, pp. 86–93, Jul. 2017, doi: 10.1016/j.procs.2017.06.121. [3] M. S. Albert et al., ‘‘The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease,’’ Alzheimer’s Dementia, vol. 7, no. 3, pp. 270–279, 2011, doi: 10.1016/j.jalz.2011.03.008. [4] F. E. Mendoza et al., ‘‘Cardiovascular disease analysis using supervised and unsupervised data mining techniques,’’ J. Softw., vol. 12, no. 2, pp. 81–90, Feb. 2017, doi: 10.17706/jsw.12.2.81-90. [5] Alzheimer’s Association, ‘‘2013 Alzheimer’s disease facts and figures,’’ Alzheimer’s Dementia, vol. 9, no. 2, pp. 208–245, Mar. 2013, doi: 10.1016/j.jalz.2013.02.003. [6] T. L. M. van Kasteren, G. Englebienne, and B. J. A. Kröse, ‘‘Human activity recognition from wireless sensor network data: Benchmark and software,’’ in Activity Recognition in Pervasive Intelligent Environments, vol. 4. Paris, France: Atlantis Press, 2011, pp. 165–186. doi: 10.2991/978- 94-91216-05-3_8. [7] J. Ye, S. Dobson, and S. McKeever, ‘‘Situation identification techniques in pervasive computing: A review,’’ Pervasive Mobile Comput., vol. 8, no. 1, pp. 36–66, 2012, doi: 10.1016/j.pmcj.2011.01.004. [8] A. Aztiria, J. C. Augusto, R. Basagoiti, A. Izaguirre, and D. J. Cook, ‘‘Learning frequent behaviours of the users in intelligent environments,’’ J. Ambient Intell. Smart Environ., vol. 2, no. 4, pp. 435–436, 2010, doi: 10.3233/AIS-2010-0084. [9] M. Ghazvininejad, H. R. Rabiee, N. Pourdamghani, and P. Khanipour, ‘‘HMM based semi-supervised learning for activity recognition,’’ in Proc. ACM Int. Workshop Situation Activity Goal Awareness, Sep. 2011, pp. 95–100, doi: 10.1145/2030045.2030065. [10] P. Lasitha and S. Kodagoda, ‘‘Gaussian mixture based HMM for human daily activity recognition using 3D skeleton features,’’ in Proc. IEEE 8th Conf. Ind. Electron. Appl. (ICIEA), Jul. 2013, pp. 567–572, doi: 10.1109/ICIEA.2013.6566433. [11] N. Oliver, E. Horvitz, and A. Garg, ‘‘Layered representations for human activity recognition,’’ in Proc. 4th IEEE Int. Conf. Multimodal Interfaces, Oct. 2002, pp. 3–8, doi: 10.1109/ICMI.2002.1166960. [12] S. Mostafa-Al-Masum, H. Keikichi, and I. Mitsuru, ‘‘Recognition of realworld activities from environmental sound cues to create life-log,’’ in The Systemic Dimension of Globalization. Rijeka, Croatia: InTech, 2011, pp. 173–190, doi: 10.5772/22491. [13] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, ‘‘Recognizing independent and joint activities among multiple residents in smart environments,’’ J. Ambient Intell. Humanized Comput., vol. 1, no. 1, pp. 57–63, 2010, doi: 10.1007/s12652-009-0007-1. [14] L. Young-Seol and C. Sung-Bae, ‘‘Activity recognition using hierarchical hidden Markov models on a smartphone with 3D accelerometer,’’ in Proc. Int. Conf. Hybrid Artif. Intell. Syst., in Lecture Notes in Computer Science, vol. 6678. Berlin, Germany: Springer, 2011, pp. 460–467, doi: 10.1007/978-3-642-21219-2_58. [15] A. M. Mannini and A. Sabatini, ‘‘Machine learning methods for classifying human physical activity from on-body accelerometers,’’ Sensors, vol. 10, no. 2, pp. 1154–1175, 2010, doi: 10.3390/s100201154. [16] H. Gjoreski, M. Gams, and M. Lutrek, ‘‘Human activity recognition: From controlled lab experiments to competitive live evaluation,’’ in Proc. IEEE Int. Conf. Data Mining Workshop (ICDMW), Nov. 2015, pp. 139–145, doi: 10.1109/ICDMW.2015.29. [17] H. Gjoreski, M. Gams, and M. Lustrek, ‘‘Context-based fall detection ˝ and activity recognition using inertial and location sensors,’’ J. Ambient Intell. Smart Environ., vol. 6, no. 4, pp. 419–433, 2014, doi: 10.3233/AIS140268. [18] H. H. Manap, N. M. Tahir, and A. I. M. Yassin, ‘‘Anomalous gait detection based on support vector machine,’’ in Proc. IEEE Int. Conf. Comput. Appl. Ind. Electron., Dec. 2011, pp. 623–626, doi: 10.1109/ ICCAIE.2011.6162209. [19] H. Gjoreski, B. Kaluža, M. Gams, M. Radoje, and M. Luštrek, ‘‘Context-based ensemble method for human energy expenditure estimation,’’ Appl. Soft Comput., vol. 37, pp. 960–970, Dec. 2015, doi: 10.1016/j.asoc.2015.05.001. [20] M. Altini, J. Penders, R. Vullers, and O. Amft, ‘‘Estimating energy expenditure using body-worn accelerometers: A comparison of methods, sensors number and positioning,’’ IEEE J. Biomed. Health Inform., vol. 19, no. 1, pp. 219–226, Jan. 2015, doi: 10.1109/JBHI.2014.2313039. [21] M. Gjoreski, H. Gjoreski, M. Lutrek, and M. Gams, ‘‘Automatic detection of perceived stress in campus students using smartphones,’’ in Proc. Int. Conf. Intell. Environ., Jul. 2015, pp. 132–135, doi: 10.1109/ IE.2015.27. [22] H. Alemdar, C. Tunca, and C. Ersoy, ‘‘Daily life behaviour monitoring for health assessment using machine learning: Bridging the gap between domains,’’ Pers. Ubiquitous Comput., vol. 19, no. 2, pp. 303–315, Feb. 2015, doi: 10.1007/s00779-014-0823-y. [23] D. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, ‘‘CASAS: A smart home in a box,’’ Computer, vol. 46, no. 7, pp. 62–69, Jul. 2013, doi: 10.1109/MC.2012.328. [24] R. Chavarriaga et al., ‘‘The opportunity challenge: A benchmark database for on-body sensor-based activity recognition,’’ Pattern Recognit. Lett., vol. 34, no. 15, pp. 2033–2042, Nov. 2013, doi: 10.1016/j.patrec.2012.12.014. [25] N. Kawaguchi et al., ‘‘HASC Challenge: Gathering large scale human activity corpus for the real-world activity understandings,’’ in Proc. 2nd Augmented Hum. Int. Conf. AH, 2011, pp. 1–5, doi: 10.1145/ 1959826.1959853. [26] B. Kaluža, S. Kozina, and M. Luštrek, ‘‘The activity recognition repository: Towards competitive benchmarking in ambient intelligence,’’ in Proc. AAAI Activity Context Represent., Techn. Lang., Jan. 2012, pp. 44–47. [27] H. Gjoreski et al., ‘‘Competitive live evaluations of activity-recognition systems,’’ IEEE Pervasive Comput., vol. 14, no. 1, pp. 70–77, Jan./Mar. 2015, doi: 10.1109/MPRV.2015.3. [28] B. Chikhaoui and F. Gouineau, ‘‘Towards automatic feature extraction for activity recognition from wearable sensors: A deep learning approach,’’ in Proc. IEEE Int. Conf. Data Mining Workshops (ICDMW), New Orleans, LA, USA, Nov. 2017, pp. 693–702, doi: 10.1109/ICDMW.2017.97. [29] L. G. Fahad, S. F. Tahir, and M. Rajarajan, ‘‘Feature selection and data balancing for activity recognition in smart homes,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 512–517, doi: 10.1109/ICC.2015.7248373. [30] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, ‘‘Berkeley MHAD: A comprehensive multimodal human action database,’’ in Proc. IEEE Workshop Appl. Comput. Vis. (WACV), Jan. 2013, pp. 53–60, doi: 10.1109/WACV.2013.6474999. [31] M. Zhang and A. A. Sawchuk, ‘‘USC-HAD: A daily activity dataset for ubiquitous activity recognition using wearable sensors,’’ in Proc. ACM Conf. Ubiquitous Comput. (UbiComp), Sep. 2012, pp. 1036–1043, doi: 10.1145/2370216.2370438. [32] B. Bruno, F. Mastrogiovanni, A. Sgorbissa, T. Vernazza, and R. Zaccaria, ‘‘Analysis of human behavior recognition algorithms based on acceleration data,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2013, pp. 1602–1607, doi: 10.1109/ICRA.2013.6630784. [33] C. Chen, R. Jafari, and N. Kehtarnavaz, ‘‘UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2015, pp. 168–172, doi: 10.1109/ICIP.2015.7350781. [34] K. Altun, B. Barshan, and O. Tunçel, ‘‘Comparative study on classifying human activities with miniature inertial and magnetic sensors,’’ Pattern Recognit., vol. 43, no. 10, pp. 3605–3620, Oct. 2010, doi: 10.1016/j.patcog.2010.04.019. [35] M. Elhoushi, J. Georgy, A. Noureldin, and M. J. Korenberg, ‘‘A survey on approaches of motion mode recognition using sensors,’’ IEEE Trans. Intell. Transp. Syst., vol. 18, no. 7, pp. 1662–1686, Jul. 2017, doi: 10.1109/TITS.2016.2617200. [36] X. Yang and J. Lianwen, ‘‘A naturalistic 3D acceleration-based activity dataset & benchmark evaluations,’’ Proc. IEEE Int. Conf. Syst., Man Cybern., Oct. 2010, pp. 4081–4085, doi: 10.1109/ICSMC.2010. 5641790. [37] J. M. Alcalá, J. Ureña, A. Hernández, and D. Gualda, ‘‘Assessing human activity in elderly people using non-Intrusive load monitoring,’’ Sensors, vol. 17, no. 2, p. 351, Feb. 2017, doi: 10.3390/s17020351. [38] G. Chen, A. Wang, S. Zhao, L. Liu, and C.-Y. Chang, ‘‘Latent feature learning for activity recognition using simple sensors in smart homes,’’ Multimedia Tools Appl., vol. 77, no. 12, pp. 15201–15219, Jun. 2018, doi: 10.1007/s11042-017-5100-4. [39] T. Nef et al., ‘‘Evaluation of three state-of-the-art classifiers for recognition of activities of daily living from smart home ambient data,’’ Sensors, vol. 15, no. 5, pp. 11725–11740, May 2015, doi: 10.3390/s150511725. [40] J. P. Zimmermann et al., ‘‘Household electricity survey: A study of domestic electrical product usage,’’ Intertek, London, U.K., Tech. Rep. R66141, May 2012, p. 600. [41] J. Kelly and W. Knottenbelt, ‘‘The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes,’’ Sci. Data, vol. 2, Mar. 2015, Art. no. 150007, doi: 10.1038/sdata.2015.7. [42] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, ‘‘Systematic literature reviews in software engineering —A systematic literature review,’’ Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, Jan. 2009, doi: 10.1016/j.infsof.2008.09.009. [43] C. Manterola, P. Astudillo, E. Arias, and N. Claros, ‘‘Systematic reviews of the literature: What should be known about them,’’ Cirugía Española, vol. 91, no. 3, pp. 149–155, Mar. 2013, doi: 10.1016/j.ciresp.2011.07.009. [44] L. García-Pérez et al., ‘‘Systematic review of health-related utilities in Spain: the case of mental health,’’ Gaceta Sanitaria, vol. 28, no. 1, pp. 77–83, May 2013, doi: 10.1016/j.gaceta.2013.04.006. [45] C. A. Merlano-Porras and L. Gorbanev, ‘‘Health system in Colombia: A systematic review of literature,’’ Revista Gerencia Políticas Salud, vol. 12, no. 24, pp. 74–86, Jan./Jun. 2013. [46] A. Sanchez, D. Neira, and J. J. Cabello, ‘‘Frameworks applied in quality management—A systematic review,’’ Rev. Espacios, vol. 37, no. 9, p. 17, Jan. 2016. [Online]. Available: http://www.revistaespacios.com/a16v37n09/16370917.html [47] M. E. Grams et al., ‘‘Validation of CKD and related conditions in existing data sets: A systematic review,’’ Amer. J. Kidney Diseases, vol. 57, no. 1, pp. 44–54, Jan. 2011, doi: 10.1053/j.ajkd.2010.05.013. [48] C. Nugent et al., ‘‘An initiative for the creation of open datasets within pervasive healthcare,’’ in Proc. 10th EAI Int. Conf. Pervasive Comput. Technol. Healthcare, Cancun, Mexico, May 2016, pp. 318–321, doi: 10.4108/eai.16-5-2016.2263830. [49] S. K. Das and D. J. Cook, ‘‘Designing smart environments: A paradigm based on learning and prediction,’’ in Pattern Recognition and Machine Intelligence (Lecture Notes in Computer Science), vol. 3776, S. K. Pal, S. Bandyopadhyay, and S. Biswas, Eds. Berlin, Germany: Springer, 2005, pp. 80–90, doi: 10.1007/11590316_11. [50] ICPSR dataset. Inst. Social Res., Univ. Michigan, Ann Arbor, MI, USA. Accessed: Jul. 31, 2018. [Online]. Available: https://www.icpsr.umich.edu/icpsrweb/content/about [51] IRBS. International Review Boards. Accessed: Jul. 31, 2018. [Online]. Available: https://www.icpsr.umich.edu/icpsrweb/ICPSR/irb/index.jsp [52] N. D. Rodríguez, M. P. Cuéllar, J. Lilius, and M. D. Calvo-Flores, ‘‘A fuzzy ontology for semantic modelling and recognition of human behaviour,’’ Knowl.-Based Syst., vol. 66, pp. 46–60, Aug. 2014, doi: 10.1016/j.knosys.2014.04.016. [53] F. J. Quesada, F. Moya, J. Medina, L. Martínez, C. Nugent, and M. Espinilla, ‘‘Generation of a partitioned dataset with single, interleave and multioccupancy daily living activities,’’ in Proc. Int. Conf. Ubiquitous Comput. Ambient Intell. Cham, Switzerland: Springer, 2015, pp. 60–71, doi: 10.1007/978-3-319-26401-1_6. [54] D. Cook, M. Schmitter-Edgecombe, A. Crandall, C. Sanders, and B. Thomas, ‘‘Collecting and disseminating smart home sensor data in the CASAS project,’’ in Proc. CHI Workshop Developing Shared Home Behav. Datasets Adv. HCI Ubiquitous Comput. Res., 2009, pp. 1–7. [55] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, ‘‘Tracking activities in complex settings using smart environment technologies,’’ Int. J. Biosci. Psychiatry Technol., vol. 1, no. 1, pp. 25–35, Jan. 2009. [56] UCI Machine Learning Repository. Accessed: Jul. 31, 2018. [Online]. Available: https://archive.ics.uci.edu/ml/index.php [57] T. L. M. van Kasteren, G. Englebienne, and B. J. A. Kröse, ‘‘Activity recognition using semi-Markov models on real world smart home datasets,’’ J. Ambient Intell. Smart Environ., vol. 2, no. 3, pp. 311–325, Aug. 2010, doi: 10.3233/AIS-2010-0070. [58] D. Cook, ‘‘Learning setting-generalized activity models for smart spaces,’’ IEEE Intell. Syst., vol. 27, no. 1, pp. 32–38, Jan./Feb. 2012, doi: 10.1109/MIS.2010.112. [59] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, ‘‘A public domain dataset for human activity recognition using smartphones,’’ in Proc. 21th Eur. Symp. Artif. Neural Netw., Comput. Intell. Mach. Learn. (ESANN), Bruges, Belgium, Apr. 2013, pp. 437–442. [60] C. A. Ronao and S.-B. Cho, ‘‘Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models,’’ in Proc. 10th Int. Conf. Nat. Comput., Aug. 2014, pp. 681–686, doi: 10.1109/ICNC.2014.6975918. [61] D. Roggen et al., ‘‘Collecting complex activity datasets in highly rich networked sensor environments,’’ in Proc. 7th Int. Conf. Netw. Sens. Syst., Jun. 2010, pp. 233–240, doi: 10.1109/INSS.2010.5573462. [62] P. Lukowicz et al., ‘‘Recording a complex, multi modal activity data set for context recognition,’’ in Proc. 23th Int. Conf. Archit. Comput. Syst., Feb. 2010, pp. 1–6. Accessed: Jul. 31, 2018. [Online]. Available: http://www.opportunity-project.eu/challengeDataset [63] O. Banos et al., ‘‘mHealthDroid: A novel framework for agile development of mobile health applications,’’ in Proc. 6th Int. Workshop Conf. Ambient Assist. Living (IWAAL), Belfast, U.K., Dec. 2014, pp. 91–98, doi: 10.1007/978-3-319-13105-4_14. [64] A. Shahi, J. D. Deng, and B. J. Woodford, ‘‘A streaming ensemble classifier with multi-class imbalance learning for activity recognition,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 3983–3990. [65] M. H. Kabir, M. R. Hoque, K. Thapa, and S.-H. Yang, ‘‘Two-layer hidden Markov model for human activity recognition in home environments,’’ Int. J. Distrib. Sensor Netw., vol. 12, no. 1, p. 4560365, 2016, doi: 10.1155/2016/4560365. [66] H. Fang, R. Srinivasan, and D. J. Cook, ‘‘Feature selections for human activity recognition in smart home environments,’’ Int. J. Innov. Comput., Inf. Control, vol. 8, no. 5B, pp. 3525–3535, May 2012. [67] A. Shahi, B. J. Woodford, and H. Lin, ‘‘Dynamic real-time segmentation and recognition of activities using a multi-feature windowing approach,’’ in Proc. PAKDD Workshops, Jeju, South Korea, vol. 10526, U. Kang, ed. Cham, Switzerland: Springer, 2017, pp. 26–38, doi: 10.1007/978-3-319- 67274-8_3 [68] I. Fatima, M. Fahim, Y.-K. Lee, and S. Lee, ‘‘Effects of smart home dataset characteristics on classifiers performance for human activity recognition,’’ in Computer Science and Its Applications (Lecture Notes in Electrical Engineering), vol. 203, S.-S. Yeo ed. 2012, pp. 271–281, doi: 10.1007/978-94-007-5699-1_28.[69] N. Twomey, T. Diethe, I. Craddock, and P. Flach, ‘‘Unsupervised learning of sensor topologies for improving activity recognition in smart environments,’’ Neurocomputing, vol. 234, pp. 93–106, Apr. 2017, doi: 10.1016/j.neucom.2016.12.049. [70] N. K. Suryadevara, S. C. Mukhopadhyay, R. Wang, and R. K. Rayudu, ‘‘Forecasting the behavior of an elderly using wireless sensors data in a smart home,’’ Eng. Appl. Artif. Intell., vol. 26, no. 10, pp. 2641–2652, 2013, doi: 10.1016/j.engappai.2013.08.004. [71] K. Amphawan, J. Soulas, and P. Lenca, ‘‘Mining top-k regular episodes from sensor streams,’’ Procedia Comput. Sci., no. 69, pp. 76–85, Nov. 2015, doi: 10.1016/j.procs.2015.10.008. [72] J. W. Lee, A. Helal, Y. Sung, and K. Cho, ‘‘Context-driven control algorithms for scalable simulation of human activities in smart homes,’’ in Proc. IEEE 10th Int. Conf. Ubiquitous Intell. Comput., Dec. 2013, pp. 285–292, doi: 10.1109/UIC-ATC.2013.68. [73] S. S. Akter and L. B. Holder, ‘‘Activity recognition using graphical features,’’ in Proc. 13th Int. Conf. Mach. Learn. Appl., Dec. 2014, pp. 165–170, doi: 10.1109/ICMLA.2014.31. [74] T. R. Bandaragoda, K. M. Ting, D. Albrecht, F. T. Liu, and J. R. Wells, ‘‘Efficient anomaly detection by isolation using nearest neighbour ensemble,’’ in Proc. IEEE Int. Conf. Data Mining Workshop, Dec. 2014, pp. 698–705, doi: 10.1109/ICDMW.2014.70. [75] T. Chanyaswad, J. M. Chang, and S. Y. Kung, ‘‘A compressive multikernel method for privacy-preserving machine learning,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 4079–4086. [76] J. Wen and Z. Wang, ‘‘Sensor-based adaptive activity recognition with dynamically available sensors,’’ Neurocomputing, vol. 218, pp. 307–317, Dec. 2016, doi: 10.1016/j.neucom.2016.08.077. [77] D. Acharjee, A. Mukherjee, J. K. Mandal, and N. Mukherjee, ‘‘Activity recognition system using inbuilt sensors of smart mobile phone and minimizing feature vectors,’’ in Microsystem Technologies. Berlin, Germany: Springer-Verlag, 2015, doi: 10.1007/s00542-015-2551-2. [78] Y.-J. Kim, Y. Kim, J. Ahn, and D. Kim, ‘‘Integrating hidden Markov models based on mixture-of-templates and k-NN2 ensemble for activity recognition,’’ in Proc. 23rd Int. Conf. Pattern Recognit. (ICPR), Dec. 2016, pp. 1636–1641. [79] B. Bruno, F. Mastrogiovanni, and A. Sgorbissa, ‘‘A public domain dataset for ADL recognition using wrist-placed accelerometers,’’ in Proc. 23rd IEEE Int. Symp. Robot Hum. Interact. Commun., Aug. 2014, pp. 738–743, [80] O. Banos et al., ‘‘Design, implementation and validation of a novel open framework for agile development of mobile health applications,’’ BioMed. Eng. OnLine, vol. 14, nos. S2–S6, pp. 1–20, 2015. [81] S. A. Khowaja, B. N. Yahya, and S.-L. Lee, ‘‘Hierarchical classification method based on selective learning of slacked hierarchy for activity recognition systems,’’ Expert Syst. Appl., vol. 88, pp. 165–177, Dec. 2017, doi: 10.1016/j.eswa.2017.06.040. [82] S. Ha and S. Choi, ‘‘Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2016, pp. 381–388. [83] J. Saives, C. Pianon, and G. Faraut, ‘‘Activity discovery and detection of behavioral deviations of an inhabitant from binary sensors,’’ IEEE Trans. Autom. Sci. Eng., vol. 12, no. 4, pp. 1211–1224, Oct. 2015, doi: 10.1109/TASE.2015.2471842. [84] D. I. Kim and E. Martinson, ‘‘Human centric spatial affordances for improving human activity recognition,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 725–730, doi: 10.1109/IROS.2016.7759132. [85] A. K. Ramakrishnan, D. Preuveneers, and Y. Berbers, ‘‘A loosely coupled and distributed Bayesian framework for multi-context recognition in dynamic ubiquitous environments,’’ in Proc. IEEE 10th Int. Conf. Ubiquitous Intell. Comput. and IEEE 10th Int. Conf. Autonomic Trusted Comput., Dec. 2013, pp. 270–277, doi: 10.1109/UIC-ATC.2013.66. [86] R. Fallahzadeh and H. Ghasemzadeh, ‘‘Personalization without user interruption: Boosting activity recognition in new subjects using unlabeled data,’’ in Proc. ACM/IEEE 8th Int. Conf. Cyber-Phys. Syst. (ICCPS), Apr. 2017, pp. 293–302, doi: 10.1145/3055004.3055015. [87] A. S. Billis et al., ‘‘A decision-support framework for promoting independent living and ageing well,’’ IEEE J. Biomed. Health Inform., vol. 19, no. 1, pp. 199–209, Jan. 2015, doi: 10.1109/JBHI.2014.2336757. [88] E. E. Stone and M. Skubic, ‘‘Mapping kinect-based in-home gait speed to TUG time: A methodology to facilitate clinical interpretation,’’ in Proc. 7th Int. Conf. Pervasive Comput. Technol. Healthcare Workshops, May 2013, pp. 57–64, doi: 10.4108/icst.pervasivehealth.2013.252097. [89] S. Basterrech and V. K. Ojha, ‘‘Temporal learning using echo state network for human activity recognition,’’ in Proc. 3rd Eur. Netw. Intell. Conf. (ENIC), Sep. 2016, pp. 217–223, doi: 10.1109/ENIC.2016.039. [90] Y.-H. Chen, C.-H. Lu, K.-C. Hsu, L.-C. Fu, Y.-J. Yeh, and L.-C. Kuo, ‘‘Preference model assisted activity recognition learning in a smart home environment,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2009, pp. 4657–4662, doi: 10.1109/IROS.2009.5353937. [91] J. Soulas, P. Lenca, and A. Thépaut, ‘‘Unsupervised discovery of activities of daily living characterized by their periodicity and variability,’’ Eng. Appl. Artif. Intell., vol. 45, pp. 90–102, Oct. 2015, doi: 10.1016/j.engappai.2015.06.006. [92] M. Ros, M. Delgado, A. Vila, H. Hagras, and A. Bilgin, ‘‘A fuzzy logic approach for learning daily human activities in an ambient intelligent environment,’’ in Proc. IEEE Int. Conf. Fuzzy Syst., Jun. 2012, pp. 1–8, doi: 10.1109/FUZZ-IEEE.2012.6250770. [93] J. Kavya and M. Geetha, ‘‘An FSM based methodology for interleaved and concurrent activity recognition,’’ in Proc. Int. Conf. Adv. Comput., Commun. Informat. (ICACCI), Sep. 2016, pp. 994–999, doi: 10.1109/ICACCI.2016.7732174. [94] Y.-P. Huang and S.-R. Chen, ‘‘A fuzzy approach to discriminating heartbeat types and detecting arrhythmia,’’ in Proc. Int. Conf. Fuzzy Theory Appl., Nov. 2012, pp. 327–332, doi: 10.1109/iFUZZY.2012.6409725. [95] N. Pathak, N. Roy, and A. Biswas, ‘‘Iterative signal separation assisted energy disaggregation,’’ in Proc. 6th Int. Green Sustain. Comput. Conf. (IGSC), Dec. 2015, pp. 1–8, doi: 10.1109/IGCC.2015.7393701. [96] G. Acampora and A. Vitiello, ‘‘Interoperable neuro-fuzzy services for emotion-aware ambient intelligence,’’ Neurocomputing, vol. 122, pp. 3–12, Dec. 2013, doi: 10.1016/j.neucom.2013.01.046. [97] J. Shell and S. Coupland, ‘‘Improved decision making using fuzzy temporal relationships within intelligent assisted living environments,’’ in Proc. 7th Int. Conf. Intell. Environ., Jul. 2011, pp. 149–156, doi: 10.1109/IE.2011.30. [98] N. Oukrich, A. Maach, E. Sabri, E. Mabrouk, and K. Bouchard, ‘‘Activity recognition using back-propagation algorithm and minimum redundancy feature selection method,’’ in Proc. 4th IEEE Int. Colloq. Inf. Sci. Technol. (CiSt), Oct. 2016, pp. 818–823, doi: 10.1109/CIST.2016.7805000. [99] S. Soviany and S. Puscoci, ‘‘A hierarchical decision system for human behavioral recognition,’’ in Proc. 7th Int. Conf. Electron., Comput. Artif. Intell. (ECAI), Jun. 2015, pp. S-79–S-84, doi: 10.1109/ ECAI.2015.7301165. [100] K. Bouchard et al., ‘‘Unsupervised spatial data mining for smart homes,’’ in Proc. IEEE Int. Conf. Data Mining Workshop (ICDMW), Nov. 2015, pp. 1433–1440, doi: 10.1109/ICDMW.2015.126. [101] H. Zheng, H. Wang, and N. Black, ‘‘Human activity detection in smart home environment with self-adaptive neural networks,’’ in Proc. IEEE Int. Conf. Netw., Sens. Control (ICNSC), Apr. 2008, pp. 1505–1510, doi: 10.1109/ICNSC.2008.4525459. [102] X. Zhang, G.-B. Kim, Y. Xia, and H.-Y. Bae, ‘‘Human activity recognition with trajectory data in multi-floor indoor environment,’’ in Proc. Int. Conf. Rough Sets Knowl. Technol., in Lecture Notes in Computer Science, Chengdu, China, vol. 7414. Berlin, Germany: Springer, 2012, pp. 257–266, doi: 10.1007/978-3-642-31900-6_33. [103] R. C. Kumar, S. S. Bharadwaj, B. N. Sumukha, and K. George, ‘‘Human activity recognition in cognitive environments using sequential ELM,’’ in Proc. 2nd Int. Conf. Cognit. Comput. Inf. Process. (CCIP), Aug. 2016, pp. 1–6. doi: 10.1109/CCIP.2016.7802880. [104] R. Kumar, I. Qamar, J. S. Virdi, and N. C. Krishnan, ‘‘Multi-label learning for activity recognition,’’ in Proc. Int. Conf. Intell. Environ., Jul. 2015, pp. 152–155, doi: 10.1109/IE.2015.32. [105] C. Bhadrachalam, T. Jyothi, and T. S. Indulekha, ‘‘New approaches for discovering unsupervised human activities by mining sensor data,’’ in Proc. Int. Conf. Comput. Netw. Commun. (CoCoNet), Dec. 2015, pp. 118–123, doi: 10.1109/CoCoNet.2015.7411176. [106] A. Aztiria, G. Farhadi, and H. Aghajan, ‘‘User behavior shift detection in ambient assisted living environments,’’ J. Med. Internet Res., vol. 1, no. 1, p. e6, Jan./Jun. 2013, doi: 10.2196/mhealth.2536. [107] L. G. Fahad, S. F. Tahir, and M. Rajarajan, ‘‘Activity recognition in smart homes using clustering based classification,’’ in Proc. 22nd Int. Conf. Pattern Recognit., Aug. 2014, pp. 1348–1353, doi: 10.1109/ICPR.2014.241. [108] E. Hoque and J. Stankovic, ‘‘AALO: Activity recognition in smart homes using active learning in the presence of overlapped activities,’’ in Proc. 6th Int. Conf. Pervasive Comput. Technol. Healthcare (PervasiveHealth) Workshops, May 2012, pp. 139–146, doi: 10.4108/icst.pervasivehealth.2012.248600.109] V. Ghasemi and A. K. Pouyan, ‘‘Activity recognition in smart homes using absolute temporal information in dynamic graphical models,’’ in Proc. 10th Asian Control Conf., May/Jun. 2015, pp. 1–6. [110] P. Kodeswaran, R. Kokku, M. Mallick, and S. Sen, ‘‘Demultiplexing activities of daily living in IoT enabled smarthomes,’’ in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9. [111] J. L. G. Ortega, L. Han, N. Whittacker, and N. Bowring, ‘‘A machinelearning based approach to model user occupancy and activity patterns for energy saving in buildings,’’ in Proc. Sci. Inf. Conf., London, U.K., Jul. 2015, pp. 474–482. [112] U. Avci and A. Passerini, ‘‘Improving activity recognition by segmental pattern mining,’’ in Proc. 8th IEEE Int. Conf. Pervasive Comput. Commun. Workshops, Mar. 2012, pp. 709–714. [113] H. Alemdar, T. L. M. van Kasteren, M. E. Niessen, A. Merentitis, and C. Ersoy, ‘‘A unified model for human behavior modeling using a hierarchy with a variable number of states,’’ in Proc. 22nd Int. Conf. Pattern Recognit., Aug. 2014, pp. 3804–3809, doi: 10.1109/ICPR.2014.653. [114] M. B. Abidine, B. Fergani, and L. Clavier, ‘‘Importance-weighted the imbalanced data for C-SVM classifier to human activity recognition,’’ in Proc. 8th Int. Workshop Syst., Signal Process. Appl. (WoSSPA), May 2013, pp. 330–335. [115] M. B. Abidine and B. Fergani, ‘‘Evaluating a new classification method using PCA to human activity recognition,’’ in Proc. Int. Conf. Comput. Med. Appl. (ICCMA), Jan. 2013, pp. 1–4. [116] X. Hong, C. D. Nugent, M. D. Mulvenna, S. Martin, S. Devlin, and J. G. Wallace, ‘‘Dynamic similarity-based activity detection and recognition within smart homes,’’ Int. J. Pervasive Comput. Commun., vol. 8, no. 3, pp. 264–278, 2012, doi: 10.1108/17427371211262653. [117] V. Ghasemi, A. A. Pouyan, and M. Sharifi, ‘‘Human activity recognition in smart homes based on a difference of convex programming problem,’’ KSII Trans. Internet Inf. Syst., vol. 11, no. 1, pp. 321–344, Jan. 2017, doi: 10.3837/tiis.2017.01.017. [118] F. A. Machot and H. C. Mayr, ‘‘Improving human activity recognition by smart windowing and spatio-temporal feature analysis,’’ in Proc. 9th ACM Int. Conf. Pervasive Technol. Rel. Assistive Environ., 2016, p. 56, doi: 10.1145/2910674.2910697. [119] F. A. Machot, H. C. Mayr, and S. Ranasinghe, ‘‘A windowing approach for activity recognition in sensor data streams,’’ in Proc. 8th Int. Conf. Ubiquitous Future Netw. (ICUFN), Jul. 2016, pp. 951–953. [120] A. De Paola et al., ‘‘An ambient intelligence system for assisted living,’’ in Proc. AEIT Int. Annu. Conf., Sep. 2017, pp. 1–6. [121] N. Yala, B. Fergani, and A. Fleury, ‘‘Feature extractionand incremental learning to improve activity recognition on streaming data,’’ in Proc. IEEE Int. Conf. Evolving Adapt. Intell. Syst. (EAIS), Dec. 2015, pp. 1–8. [122] R. Mohamed, T. Perumal, N. Sulaiman, N. Mustapha, and M. N. Razali, ‘‘Conflict resolution using enhanced label combination method for complex activity recognition in smart home environment,’’ in Proc. IEEE 6th Global Conf. Consum. Electron. (GCCE), Oct. 2017, pp. 1–3. [123] S. Ntalampiras and M. Roveri, ‘‘An incremental learning mechanism for human activity recognition,’’ in Proc. IEEE Symp. Ser. Comput. Intell., Dec. 2016, pp. 1–6. [124] C. A. Ronao and S.-B. Cho, ‘‘Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models,’’ in Proc. 10th Int. Conf. Natural Comput., Aug. 2014, pp. 681–686. [125] E. Garcia-Ceja and R. F. Brena, ‘‘An improved three-stage classifier for activity recognition,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 32, no. 1, p. 1860003, 2018, doi: 10.1142/S0218001418600030. [126] J. Cumin, G. Lefebvre, F. Ramparany, and J. L. Crowley, ‘‘Human activity recognition using place-based decision fusion in smart home,’’ Arch. Ouverte HAL, Tech. Rep., 2017. [127] G. Chetty and M. White, ‘‘Body sensor networks for human activity recognition,’’ in Proc. 3rd Int. Conf. Signal Process. Integr. Netw. (SPIN), Noida, India, Feb. 2016, pp. 660–665, doi: 10.1109/SPIN.2016.7566779. [128] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, ‘‘SMOTE: Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16, no. 1, pp. 321–357, 2002. [129] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, ‘‘Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine,’’ in Proc. Int. Workshop Ambient Assist. Living (IWAAL), Vitoria-Gasteiz, Spain, Dec. 2012, pp. 216–223. [130] E. de la Hoz, E. de la Hoz, A |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/8cc6cd34-30a9-4c8f-b2cb-3f94bd2a8b57/download https://repositorio.cuc.edu.co/bitstreams/968df68d-b9f7-4d42-8373-b316f72b61ba/download https://repositorio.cuc.edu.co/bitstreams/1f3e9ed3-0abd-43a1-b97d-18844443fe9e/download https://repositorio.cuc.edu.co/bitstreams/b4e207bc-5076-4ffe-b7b9-de2813a45394/download |
bitstream.checksum.fl_str_mv |
9fe1b4c033240cd87d8503c7ea0d3f0d 8a4605be74aa9ea9d79846c1fba20a33 d37a69d389a487387c589e1457013b72 8bf861fe6581423d48fb24be7bb440d4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760821983772672 |
spelling |
De la Hoz, EmiroAriza Colpas, Paola PatriciaMedina Quero, JavierEspinilla, Macarena2018-11-20T19:42:13Z2018-11-20T19:42:13Z2018-09-2221693536https://hdl.handle.net/11323/1478Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The research area of ambient assisted living has led to the development of activity recognition systems (ARS) based on human activity recognition (HAR). These systems improve the quality of life and the health care of the elderly and dependent people. However, before making them available to end users, it is necessary to evaluate their performance in recognizing activities of daily living, using data set benchmarks in experimental scenarios. For that reason, the scientific community has developed and provided a huge amount of data sets for HAR. Therefore, identifying which ones to use in the evaluation process and which techniques are the most appropriate for prediction of HAR in a specific context is not a trivial task and is key to further progress in this area of research. This work presents a systematic review of the literature of the sensor-based data sets used to evaluate ARS. On the one hand, an analysis of different variables taken from indexed publications related to this field was performed. The sources of information are journals, proceedings, and books located in specialized databases. The analyzed variables characterize publications by year, database, type, quartile, country of origin, and destination, using scientometrics, which allowed identification of the data set most used by researchers. On the other hand, the descriptive and functional variables were analyzed for each of the identified data sets: occupation, annotation, approach, segmentation, representation, feature selection, balancing and addition of instances, and classifier used for recognition. This paper provides an analysis of the sensor-based data sets used in HAR to date, identifying the most appropriate dataset to evaluate ARS and the classification techniques that generate better results.De la Hoz, Emiro-will be generated-orcid-0000-0002-4926-7414-600Ariza Colpas, Paola Patricia-will be generated-orcid-0000-0003-4503-5461-600Medina Quero, Javier-will be generated-orcid-0000-0002-8577-8772-0Espinilla, Macarena-will be generated-orcid-0000-0003-1118-7782-0engInstitute of Electrical and Electronics Engineers Inc.Atribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ambient assisted living–AALhuman activity recognition–HARactivities of daily living–ADLactivity recognition systems–ARSdatasetSensor-based datasets for human activity recognition - a systematic review of literatureArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] D. A. Umphred, Neurological Rehabilitation, vol. 27. Amsterdam, The Netherlands: Elsevier, no. 5, 2013. [2] D. Arifoglu and A. Bouchachia, ‘‘Activity recognition and abnormal behaviour detection with recurrent neural networks,’’ Procedia Comput. Sci., no. 110, pp. 86–93, Jul. 2017, doi: 10.1016/j.procs.2017.06.121. [3] M. S. Albert et al., ‘‘The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease,’’ Alzheimer’s Dementia, vol. 7, no. 3, pp. 270–279, 2011, doi: 10.1016/j.jalz.2011.03.008. [4] F. E. Mendoza et al., ‘‘Cardiovascular disease analysis using supervised and unsupervised data mining techniques,’’ J. Softw., vol. 12, no. 2, pp. 81–90, Feb. 2017, doi: 10.17706/jsw.12.2.81-90. [5] Alzheimer’s Association, ‘‘2013 Alzheimer’s disease facts and figures,’’ Alzheimer’s Dementia, vol. 9, no. 2, pp. 208–245, Mar. 2013, doi: 10.1016/j.jalz.2013.02.003. [6] T. L. M. van Kasteren, G. Englebienne, and B. J. A. Kröse, ‘‘Human activity recognition from wireless sensor network data: Benchmark and software,’’ in Activity Recognition in Pervasive Intelligent Environments, vol. 4. Paris, France: Atlantis Press, 2011, pp. 165–186. doi: 10.2991/978- 94-91216-05-3_8. [7] J. Ye, S. Dobson, and S. McKeever, ‘‘Situation identification techniques in pervasive computing: A review,’’ Pervasive Mobile Comput., vol. 8, no. 1, pp. 36–66, 2012, doi: 10.1016/j.pmcj.2011.01.004. [8] A. Aztiria, J. C. Augusto, R. Basagoiti, A. Izaguirre, and D. J. Cook, ‘‘Learning frequent behaviours of the users in intelligent environments,’’ J. Ambient Intell. Smart Environ., vol. 2, no. 4, pp. 435–436, 2010, doi: 10.3233/AIS-2010-0084. [9] M. Ghazvininejad, H. R. Rabiee, N. Pourdamghani, and P. Khanipour, ‘‘HMM based semi-supervised learning for activity recognition,’’ in Proc. ACM Int. Workshop Situation Activity Goal Awareness, Sep. 2011, pp. 95–100, doi: 10.1145/2030045.2030065. [10] P. Lasitha and S. Kodagoda, ‘‘Gaussian mixture based HMM for human daily activity recognition using 3D skeleton features,’’ in Proc. IEEE 8th Conf. Ind. Electron. Appl. (ICIEA), Jul. 2013, pp. 567–572, doi: 10.1109/ICIEA.2013.6566433. [11] N. Oliver, E. Horvitz, and A. Garg, ‘‘Layered representations for human activity recognition,’’ in Proc. 4th IEEE Int. Conf. Multimodal Interfaces, Oct. 2002, pp. 3–8, doi: 10.1109/ICMI.2002.1166960. [12] S. Mostafa-Al-Masum, H. Keikichi, and I. Mitsuru, ‘‘Recognition of realworld activities from environmental sound cues to create life-log,’’ in The Systemic Dimension of Globalization. Rijeka, Croatia: InTech, 2011, pp. 173–190, doi: 10.5772/22491. [13] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, ‘‘Recognizing independent and joint activities among multiple residents in smart environments,’’ J. Ambient Intell. Humanized Comput., vol. 1, no. 1, pp. 57–63, 2010, doi: 10.1007/s12652-009-0007-1. [14] L. Young-Seol and C. Sung-Bae, ‘‘Activity recognition using hierarchical hidden Markov models on a smartphone with 3D accelerometer,’’ in Proc. Int. Conf. Hybrid Artif. Intell. Syst., in Lecture Notes in Computer Science, vol. 6678. Berlin, Germany: Springer, 2011, pp. 460–467, doi: 10.1007/978-3-642-21219-2_58. [15] A. M. Mannini and A. Sabatini, ‘‘Machine learning methods for classifying human physical activity from on-body accelerometers,’’ Sensors, vol. 10, no. 2, pp. 1154–1175, 2010, doi: 10.3390/s100201154. [16] H. Gjoreski, M. Gams, and M. Lutrek, ‘‘Human activity recognition: From controlled lab experiments to competitive live evaluation,’’ in Proc. IEEE Int. Conf. Data Mining Workshop (ICDMW), Nov. 2015, pp. 139–145, doi: 10.1109/ICDMW.2015.29. [17] H. Gjoreski, M. Gams, and M. Lustrek, ‘‘Context-based fall detection ˝ and activity recognition using inertial and location sensors,’’ J. Ambient Intell. Smart Environ., vol. 6, no. 4, pp. 419–433, 2014, doi: 10.3233/AIS140268. [18] H. H. Manap, N. M. Tahir, and A. I. M. Yassin, ‘‘Anomalous gait detection based on support vector machine,’’ in Proc. IEEE Int. Conf. Comput. Appl. Ind. Electron., Dec. 2011, pp. 623–626, doi: 10.1109/ ICCAIE.2011.6162209. [19] H. Gjoreski, B. Kaluža, M. Gams, M. Radoje, and M. Luštrek, ‘‘Context-based ensemble method for human energy expenditure estimation,’’ Appl. Soft Comput., vol. 37, pp. 960–970, Dec. 2015, doi: 10.1016/j.asoc.2015.05.001. [20] M. Altini, J. Penders, R. Vullers, and O. Amft, ‘‘Estimating energy expenditure using body-worn accelerometers: A comparison of methods, sensors number and positioning,’’ IEEE J. Biomed. Health Inform., vol. 19, no. 1, pp. 219–226, Jan. 2015, doi: 10.1109/JBHI.2014.2313039. [21] M. Gjoreski, H. Gjoreski, M. Lutrek, and M. Gams, ‘‘Automatic detection of perceived stress in campus students using smartphones,’’ in Proc. Int. Conf. Intell. Environ., Jul. 2015, pp. 132–135, doi: 10.1109/ IE.2015.27. [22] H. Alemdar, C. Tunca, and C. Ersoy, ‘‘Daily life behaviour monitoring for health assessment using machine learning: Bridging the gap between domains,’’ Pers. Ubiquitous Comput., vol. 19, no. 2, pp. 303–315, Feb. 2015, doi: 10.1007/s00779-014-0823-y. [23] D. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, ‘‘CASAS: A smart home in a box,’’ Computer, vol. 46, no. 7, pp. 62–69, Jul. 2013, doi: 10.1109/MC.2012.328. [24] R. Chavarriaga et al., ‘‘The opportunity challenge: A benchmark database for on-body sensor-based activity recognition,’’ Pattern Recognit. Lett., vol. 34, no. 15, pp. 2033–2042, Nov. 2013, doi: 10.1016/j.patrec.2012.12.014. [25] N. Kawaguchi et al., ‘‘HASC Challenge: Gathering large scale human activity corpus for the real-world activity understandings,’’ in Proc. 2nd Augmented Hum. Int. Conf. AH, 2011, pp. 1–5, doi: 10.1145/ 1959826.1959853. [26] B. Kaluža, S. Kozina, and M. Luštrek, ‘‘The activity recognition repository: Towards competitive benchmarking in ambient intelligence,’’ in Proc. AAAI Activity Context Represent., Techn. Lang., Jan. 2012, pp. 44–47. [27] H. Gjoreski et al., ‘‘Competitive live evaluations of activity-recognition systems,’’ IEEE Pervasive Comput., vol. 14, no. 1, pp. 70–77, Jan./Mar. 2015, doi: 10.1109/MPRV.2015.3. [28] B. Chikhaoui and F. Gouineau, ‘‘Towards automatic feature extraction for activity recognition from wearable sensors: A deep learning approach,’’ in Proc. IEEE Int. Conf. Data Mining Workshops (ICDMW), New Orleans, LA, USA, Nov. 2017, pp. 693–702, doi: 10.1109/ICDMW.2017.97. [29] L. G. Fahad, S. F. Tahir, and M. Rajarajan, ‘‘Feature selection and data balancing for activity recognition in smart homes,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 512–517, doi: 10.1109/ICC.2015.7248373. [30] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, ‘‘Berkeley MHAD: A comprehensive multimodal human action database,’’ in Proc. IEEE Workshop Appl. Comput. Vis. (WACV), Jan. 2013, pp. 53–60, doi: 10.1109/WACV.2013.6474999. [31] M. Zhang and A. A. Sawchuk, ‘‘USC-HAD: A daily activity dataset for ubiquitous activity recognition using wearable sensors,’’ in Proc. ACM Conf. Ubiquitous Comput. (UbiComp), Sep. 2012, pp. 1036–1043, doi: 10.1145/2370216.2370438. [32] B. Bruno, F. Mastrogiovanni, A. Sgorbissa, T. Vernazza, and R. Zaccaria, ‘‘Analysis of human behavior recognition algorithms based on acceleration data,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2013, pp. 1602–1607, doi: 10.1109/ICRA.2013.6630784. [33] C. Chen, R. Jafari, and N. Kehtarnavaz, ‘‘UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2015, pp. 168–172, doi: 10.1109/ICIP.2015.7350781. [34] K. Altun, B. Barshan, and O. Tunçel, ‘‘Comparative study on classifying human activities with miniature inertial and magnetic sensors,’’ Pattern Recognit., vol. 43, no. 10, pp. 3605–3620, Oct. 2010, doi: 10.1016/j.patcog.2010.04.019. [35] M. Elhoushi, J. Georgy, A. Noureldin, and M. J. Korenberg, ‘‘A survey on approaches of motion mode recognition using sensors,’’ IEEE Trans. Intell. Transp. Syst., vol. 18, no. 7, pp. 1662–1686, Jul. 2017, doi: 10.1109/TITS.2016.2617200. [36] X. Yang and J. Lianwen, ‘‘A naturalistic 3D acceleration-based activity dataset & benchmark evaluations,’’ Proc. IEEE Int. Conf. Syst., Man Cybern., Oct. 2010, pp. 4081–4085, doi: 10.1109/ICSMC.2010. 5641790. [37] J. M. Alcalá, J. Ureña, A. Hernández, and D. Gualda, ‘‘Assessing human activity in elderly people using non-Intrusive load monitoring,’’ Sensors, vol. 17, no. 2, p. 351, Feb. 2017, doi: 10.3390/s17020351. [38] G. Chen, A. Wang, S. Zhao, L. Liu, and C.-Y. Chang, ‘‘Latent feature learning for activity recognition using simple sensors in smart homes,’’ Multimedia Tools Appl., vol. 77, no. 12, pp. 15201–15219, Jun. 2018, doi: 10.1007/s11042-017-5100-4. [39] T. Nef et al., ‘‘Evaluation of three state-of-the-art classifiers for recognition of activities of daily living from smart home ambient data,’’ Sensors, vol. 15, no. 5, pp. 11725–11740, May 2015, doi: 10.3390/s150511725. [40] J. P. Zimmermann et al., ‘‘Household electricity survey: A study of domestic electrical product usage,’’ Intertek, London, U.K., Tech. Rep. R66141, May 2012, p. 600. [41] J. Kelly and W. Knottenbelt, ‘‘The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes,’’ Sci. Data, vol. 2, Mar. 2015, Art. no. 150007, doi: 10.1038/sdata.2015.7. [42] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, ‘‘Systematic literature reviews in software engineering —A systematic literature review,’’ Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, Jan. 2009, doi: 10.1016/j.infsof.2008.09.009. [43] C. Manterola, P. Astudillo, E. Arias, and N. Claros, ‘‘Systematic reviews of the literature: What should be known about them,’’ Cirugía Española, vol. 91, no. 3, pp. 149–155, Mar. 2013, doi: 10.1016/j.ciresp.2011.07.009. [44] L. García-Pérez et al., ‘‘Systematic review of health-related utilities in Spain: the case of mental health,’’ Gaceta Sanitaria, vol. 28, no. 1, pp. 77–83, May 2013, doi: 10.1016/j.gaceta.2013.04.006. [45] C. A. Merlano-Porras and L. Gorbanev, ‘‘Health system in Colombia: A systematic review of literature,’’ Revista Gerencia Políticas Salud, vol. 12, no. 24, pp. 74–86, Jan./Jun. 2013. [46] A. Sanchez, D. Neira, and J. J. Cabello, ‘‘Frameworks applied in quality management—A systematic review,’’ Rev. Espacios, vol. 37, no. 9, p. 17, Jan. 2016. [Online]. Available: http://www.revistaespacios.com/a16v37n09/16370917.html [47] M. E. Grams et al., ‘‘Validation of CKD and related conditions in existing data sets: A systematic review,’’ Amer. J. Kidney Diseases, vol. 57, no. 1, pp. 44–54, Jan. 2011, doi: 10.1053/j.ajkd.2010.05.013. [48] C. Nugent et al., ‘‘An initiative for the creation of open datasets within pervasive healthcare,’’ in Proc. 10th EAI Int. Conf. Pervasive Comput. Technol. Healthcare, Cancun, Mexico, May 2016, pp. 318–321, doi: 10.4108/eai.16-5-2016.2263830. [49] S. K. Das and D. J. Cook, ‘‘Designing smart environments: A paradigm based on learning and prediction,’’ in Pattern Recognition and Machine Intelligence (Lecture Notes in Computer Science), vol. 3776, S. K. Pal, S. Bandyopadhyay, and S. Biswas, Eds. Berlin, Germany: Springer, 2005, pp. 80–90, doi: 10.1007/11590316_11. [50] ICPSR dataset. Inst. Social Res., Univ. Michigan, Ann Arbor, MI, USA. Accessed: Jul. 31, 2018. [Online]. Available: https://www.icpsr.umich.edu/icpsrweb/content/about [51] IRBS. International Review Boards. Accessed: Jul. 31, 2018. [Online]. Available: https://www.icpsr.umich.edu/icpsrweb/ICPSR/irb/index.jsp [52] N. D. Rodríguez, M. P. Cuéllar, J. Lilius, and M. D. Calvo-Flores, ‘‘A fuzzy ontology for semantic modelling and recognition of human behaviour,’’ Knowl.-Based Syst., vol. 66, pp. 46–60, Aug. 2014, doi: 10.1016/j.knosys.2014.04.016. [53] F. J. Quesada, F. Moya, J. Medina, L. Martínez, C. Nugent, and M. Espinilla, ‘‘Generation of a partitioned dataset with single, interleave and multioccupancy daily living activities,’’ in Proc. Int. Conf. Ubiquitous Comput. Ambient Intell. Cham, Switzerland: Springer, 2015, pp. 60–71, doi: 10.1007/978-3-319-26401-1_6. [54] D. Cook, M. Schmitter-Edgecombe, A. Crandall, C. Sanders, and B. Thomas, ‘‘Collecting and disseminating smart home sensor data in the CASAS project,’’ in Proc. CHI Workshop Developing Shared Home Behav. Datasets Adv. HCI Ubiquitous Comput. Res., 2009, pp. 1–7. [55] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, ‘‘Tracking activities in complex settings using smart environment technologies,’’ Int. J. Biosci. Psychiatry Technol., vol. 1, no. 1, pp. 25–35, Jan. 2009. [56] UCI Machine Learning Repository. Accessed: Jul. 31, 2018. [Online]. Available: https://archive.ics.uci.edu/ml/index.php [57] T. L. M. van Kasteren, G. Englebienne, and B. J. A. Kröse, ‘‘Activity recognition using semi-Markov models on real world smart home datasets,’’ J. Ambient Intell. Smart Environ., vol. 2, no. 3, pp. 311–325, Aug. 2010, doi: 10.3233/AIS-2010-0070. [58] D. Cook, ‘‘Learning setting-generalized activity models for smart spaces,’’ IEEE Intell. Syst., vol. 27, no. 1, pp. 32–38, Jan./Feb. 2012, doi: 10.1109/MIS.2010.112. [59] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, ‘‘A public domain dataset for human activity recognition using smartphones,’’ in Proc. 21th Eur. Symp. Artif. Neural Netw., Comput. Intell. Mach. Learn. (ESANN), Bruges, Belgium, Apr. 2013, pp. 437–442. [60] C. A. Ronao and S.-B. Cho, ‘‘Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models,’’ in Proc. 10th Int. Conf. Nat. Comput., Aug. 2014, pp. 681–686, doi: 10.1109/ICNC.2014.6975918. [61] D. Roggen et al., ‘‘Collecting complex activity datasets in highly rich networked sensor environments,’’ in Proc. 7th Int. Conf. Netw. Sens. Syst., Jun. 2010, pp. 233–240, doi: 10.1109/INSS.2010.5573462. [62] P. Lukowicz et al., ‘‘Recording a complex, multi modal activity data set for context recognition,’’ in Proc. 23th Int. Conf. Archit. Comput. Syst., Feb. 2010, pp. 1–6. Accessed: Jul. 31, 2018. [Online]. Available: http://www.opportunity-project.eu/challengeDataset [63] O. Banos et al., ‘‘mHealthDroid: A novel framework for agile development of mobile health applications,’’ in Proc. 6th Int. Workshop Conf. Ambient Assist. Living (IWAAL), Belfast, U.K., Dec. 2014, pp. 91–98, doi: 10.1007/978-3-319-13105-4_14. [64] A. Shahi, J. D. Deng, and B. J. Woodford, ‘‘A streaming ensemble classifier with multi-class imbalance learning for activity recognition,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 3983–3990. [65] M. H. Kabir, M. R. Hoque, K. Thapa, and S.-H. Yang, ‘‘Two-layer hidden Markov model for human activity recognition in home environments,’’ Int. J. Distrib. Sensor Netw., vol. 12, no. 1, p. 4560365, 2016, doi: 10.1155/2016/4560365. [66] H. Fang, R. Srinivasan, and D. J. Cook, ‘‘Feature selections for human activity recognition in smart home environments,’’ Int. J. Innov. Comput., Inf. Control, vol. 8, no. 5B, pp. 3525–3535, May 2012. [67] A. Shahi, B. J. Woodford, and H. Lin, ‘‘Dynamic real-time segmentation and recognition of activities using a multi-feature windowing approach,’’ in Proc. PAKDD Workshops, Jeju, South Korea, vol. 10526, U. Kang, ed. Cham, Switzerland: Springer, 2017, pp. 26–38, doi: 10.1007/978-3-319- 67274-8_3 [68] I. Fatima, M. Fahim, Y.-K. Lee, and S. Lee, ‘‘Effects of smart home dataset characteristics on classifiers performance for human activity recognition,’’ in Computer Science and Its Applications (Lecture Notes in Electrical Engineering), vol. 203, S.-S. Yeo ed. 2012, pp. 271–281, doi: 10.1007/978-94-007-5699-1_28.[69] N. Twomey, T. Diethe, I. Craddock, and P. Flach, ‘‘Unsupervised learning of sensor topologies for improving activity recognition in smart environments,’’ Neurocomputing, vol. 234, pp. 93–106, Apr. 2017, doi: 10.1016/j.neucom.2016.12.049. [70] N. K. Suryadevara, S. C. Mukhopadhyay, R. Wang, and R. K. Rayudu, ‘‘Forecasting the behavior of an elderly using wireless sensors data in a smart home,’’ Eng. Appl. Artif. Intell., vol. 26, no. 10, pp. 2641–2652, 2013, doi: 10.1016/j.engappai.2013.08.004. [71] K. Amphawan, J. Soulas, and P. Lenca, ‘‘Mining top-k regular episodes from sensor streams,’’ Procedia Comput. Sci., no. 69, pp. 76–85, Nov. 2015, doi: 10.1016/j.procs.2015.10.008. [72] J. W. Lee, A. Helal, Y. Sung, and K. Cho, ‘‘Context-driven control algorithms for scalable simulation of human activities in smart homes,’’ in Proc. IEEE 10th Int. Conf. Ubiquitous Intell. Comput., Dec. 2013, pp. 285–292, doi: 10.1109/UIC-ATC.2013.68. [73] S. S. Akter and L. B. Holder, ‘‘Activity recognition using graphical features,’’ in Proc. 13th Int. Conf. Mach. Learn. Appl., Dec. 2014, pp. 165–170, doi: 10.1109/ICMLA.2014.31. [74] T. R. Bandaragoda, K. M. Ting, D. Albrecht, F. T. Liu, and J. R. Wells, ‘‘Efficient anomaly detection by isolation using nearest neighbour ensemble,’’ in Proc. IEEE Int. Conf. Data Mining Workshop, Dec. 2014, pp. 698–705, doi: 10.1109/ICDMW.2014.70. [75] T. Chanyaswad, J. M. Chang, and S. Y. Kung, ‘‘A compressive multikernel method for privacy-preserving machine learning,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 4079–4086. [76] J. Wen and Z. Wang, ‘‘Sensor-based adaptive activity recognition with dynamically available sensors,’’ Neurocomputing, vol. 218, pp. 307–317, Dec. 2016, doi: 10.1016/j.neucom.2016.08.077. [77] D. Acharjee, A. Mukherjee, J. K. Mandal, and N. Mukherjee, ‘‘Activity recognition system using inbuilt sensors of smart mobile phone and minimizing feature vectors,’’ in Microsystem Technologies. Berlin, Germany: Springer-Verlag, 2015, doi: 10.1007/s00542-015-2551-2. [78] Y.-J. Kim, Y. Kim, J. Ahn, and D. Kim, ‘‘Integrating hidden Markov models based on mixture-of-templates and k-NN2 ensemble for activity recognition,’’ in Proc. 23rd Int. Conf. Pattern Recognit. (ICPR), Dec. 2016, pp. 1636–1641. [79] B. Bruno, F. Mastrogiovanni, and A. Sgorbissa, ‘‘A public domain dataset for ADL recognition using wrist-placed accelerometers,’’ in Proc. 23rd IEEE Int. Symp. Robot Hum. Interact. Commun., Aug. 2014, pp. 738–743, [80] O. Banos et al., ‘‘Design, implementation and validation of a novel open framework for agile development of mobile health applications,’’ BioMed. Eng. OnLine, vol. 14, nos. S2–S6, pp. 1–20, 2015. [81] S. A. Khowaja, B. N. Yahya, and S.-L. Lee, ‘‘Hierarchical classification method based on selective learning of slacked hierarchy for activity recognition systems,’’ Expert Syst. Appl., vol. 88, pp. 165–177, Dec. 2017, doi: 10.1016/j.eswa.2017.06.040. [82] S. Ha and S. Choi, ‘‘Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2016, pp. 381–388. [83] J. Saives, C. Pianon, and G. Faraut, ‘‘Activity discovery and detection of behavioral deviations of an inhabitant from binary sensors,’’ IEEE Trans. Autom. Sci. Eng., vol. 12, no. 4, pp. 1211–1224, Oct. 2015, doi: 10.1109/TASE.2015.2471842. [84] D. I. Kim and E. Martinson, ‘‘Human centric spatial affordances for improving human activity recognition,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 725–730, doi: 10.1109/IROS.2016.7759132. [85] A. K. Ramakrishnan, D. Preuveneers, and Y. Berbers, ‘‘A loosely coupled and distributed Bayesian framework for multi-context recognition in dynamic ubiquitous environments,’’ in Proc. IEEE 10th Int. Conf. Ubiquitous Intell. Comput. and IEEE 10th Int. Conf. Autonomic Trusted Comput., Dec. 2013, pp. 270–277, doi: 10.1109/UIC-ATC.2013.66. [86] R. Fallahzadeh and H. Ghasemzadeh, ‘‘Personalization without user interruption: Boosting activity recognition in new subjects using unlabeled data,’’ in Proc. ACM/IEEE 8th Int. Conf. Cyber-Phys. Syst. (ICCPS), Apr. 2017, pp. 293–302, doi: 10.1145/3055004.3055015. [87] A. S. Billis et al., ‘‘A decision-support framework for promoting independent living and ageing well,’’ IEEE J. Biomed. Health Inform., vol. 19, no. 1, pp. 199–209, Jan. 2015, doi: 10.1109/JBHI.2014.2336757. [88] E. E. Stone and M. Skubic, ‘‘Mapping kinect-based in-home gait speed to TUG time: A methodology to facilitate clinical interpretation,’’ in Proc. 7th Int. Conf. Pervasive Comput. Technol. Healthcare Workshops, May 2013, pp. 57–64, doi: 10.4108/icst.pervasivehealth.2013.252097. [89] S. Basterrech and V. K. Ojha, ‘‘Temporal learning using echo state network for human activity recognition,’’ in Proc. 3rd Eur. Netw. Intell. Conf. (ENIC), Sep. 2016, pp. 217–223, doi: 10.1109/ENIC.2016.039. [90] Y.-H. Chen, C.-H. Lu, K.-C. Hsu, L.-C. Fu, Y.-J. Yeh, and L.-C. Kuo, ‘‘Preference model assisted activity recognition learning in a smart home environment,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2009, pp. 4657–4662, doi: 10.1109/IROS.2009.5353937. [91] J. Soulas, P. Lenca, and A. Thépaut, ‘‘Unsupervised discovery of activities of daily living characterized by their periodicity and variability,’’ Eng. Appl. Artif. Intell., vol. 45, pp. 90–102, Oct. 2015, doi: 10.1016/j.engappai.2015.06.006. [92] M. Ros, M. Delgado, A. Vila, H. Hagras, and A. Bilgin, ‘‘A fuzzy logic approach for learning daily human activities in an ambient intelligent environment,’’ in Proc. IEEE Int. Conf. Fuzzy Syst., Jun. 2012, pp. 1–8, doi: 10.1109/FUZZ-IEEE.2012.6250770. [93] J. Kavya and M. Geetha, ‘‘An FSM based methodology for interleaved and concurrent activity recognition,’’ in Proc. Int. Conf. Adv. Comput., Commun. Informat. (ICACCI), Sep. 2016, pp. 994–999, doi: 10.1109/ICACCI.2016.7732174. [94] Y.-P. Huang and S.-R. Chen, ‘‘A fuzzy approach to discriminating heartbeat types and detecting arrhythmia,’’ in Proc. Int. Conf. Fuzzy Theory Appl., Nov. 2012, pp. 327–332, doi: 10.1109/iFUZZY.2012.6409725. [95] N. Pathak, N. Roy, and A. Biswas, ‘‘Iterative signal separation assisted energy disaggregation,’’ in Proc. 6th Int. Green Sustain. Comput. Conf. (IGSC), Dec. 2015, pp. 1–8, doi: 10.1109/IGCC.2015.7393701. [96] G. Acampora and A. Vitiello, ‘‘Interoperable neuro-fuzzy services for emotion-aware ambient intelligence,’’ Neurocomputing, vol. 122, pp. 3–12, Dec. 2013, doi: 10.1016/j.neucom.2013.01.046. [97] J. Shell and S. Coupland, ‘‘Improved decision making using fuzzy temporal relationships within intelligent assisted living environments,’’ in Proc. 7th Int. Conf. Intell. Environ., Jul. 2011, pp. 149–156, doi: 10.1109/IE.2011.30. [98] N. Oukrich, A. Maach, E. Sabri, E. Mabrouk, and K. Bouchard, ‘‘Activity recognition using back-propagation algorithm and minimum redundancy feature selection method,’’ in Proc. 4th IEEE Int. Colloq. Inf. Sci. Technol. (CiSt), Oct. 2016, pp. 818–823, doi: 10.1109/CIST.2016.7805000. [99] S. Soviany and S. Puscoci, ‘‘A hierarchical decision system for human behavioral recognition,’’ in Proc. 7th Int. Conf. Electron., Comput. Artif. Intell. (ECAI), Jun. 2015, pp. S-79–S-84, doi: 10.1109/ ECAI.2015.7301165. [100] K. Bouchard et al., ‘‘Unsupervised spatial data mining for smart homes,’’ in Proc. IEEE Int. Conf. Data Mining Workshop (ICDMW), Nov. 2015, pp. 1433–1440, doi: 10.1109/ICDMW.2015.126. [101] H. Zheng, H. Wang, and N. Black, ‘‘Human activity detection in smart home environment with self-adaptive neural networks,’’ in Proc. IEEE Int. Conf. Netw., Sens. Control (ICNSC), Apr. 2008, pp. 1505–1510, doi: 10.1109/ICNSC.2008.4525459. [102] X. Zhang, G.-B. Kim, Y. Xia, and H.-Y. Bae, ‘‘Human activity recognition with trajectory data in multi-floor indoor environment,’’ in Proc. Int. Conf. Rough Sets Knowl. Technol., in Lecture Notes in Computer Science, Chengdu, China, vol. 7414. Berlin, Germany: Springer, 2012, pp. 257–266, doi: 10.1007/978-3-642-31900-6_33. [103] R. C. Kumar, S. S. Bharadwaj, B. N. Sumukha, and K. George, ‘‘Human activity recognition in cognitive environments using sequential ELM,’’ in Proc. 2nd Int. Conf. Cognit. Comput. Inf. Process. (CCIP), Aug. 2016, pp. 1–6. doi: 10.1109/CCIP.2016.7802880. [104] R. Kumar, I. Qamar, J. S. Virdi, and N. C. Krishnan, ‘‘Multi-label learning for activity recognition,’’ in Proc. Int. Conf. Intell. Environ., Jul. 2015, pp. 152–155, doi: 10.1109/IE.2015.32. [105] C. Bhadrachalam, T. Jyothi, and T. S. Indulekha, ‘‘New approaches for discovering unsupervised human activities by mining sensor data,’’ in Proc. Int. Conf. Comput. Netw. Commun. (CoCoNet), Dec. 2015, pp. 118–123, doi: 10.1109/CoCoNet.2015.7411176. [106] A. Aztiria, G. Farhadi, and H. Aghajan, ‘‘User behavior shift detection in ambient assisted living environments,’’ J. Med. Internet Res., vol. 1, no. 1, p. e6, Jan./Jun. 2013, doi: 10.2196/mhealth.2536. [107] L. G. Fahad, S. F. Tahir, and M. Rajarajan, ‘‘Activity recognition in smart homes using clustering based classification,’’ in Proc. 22nd Int. Conf. Pattern Recognit., Aug. 2014, pp. 1348–1353, doi: 10.1109/ICPR.2014.241. [108] E. Hoque and J. Stankovic, ‘‘AALO: Activity recognition in smart homes using active learning in the presence of overlapped activities,’’ in Proc. 6th Int. Conf. Pervasive Comput. Technol. Healthcare (PervasiveHealth) Workshops, May 2012, pp. 139–146, doi: 10.4108/icst.pervasivehealth.2012.248600.109] V. Ghasemi and A. K. Pouyan, ‘‘Activity recognition in smart homes using absolute temporal information in dynamic graphical models,’’ in Proc. 10th Asian Control Conf., May/Jun. 2015, pp. 1–6. [110] P. Kodeswaran, R. Kokku, M. Mallick, and S. Sen, ‘‘Demultiplexing activities of daily living in IoT enabled smarthomes,’’ in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9. [111] J. L. G. Ortega, L. Han, N. Whittacker, and N. Bowring, ‘‘A machinelearning based approach to model user occupancy and activity patterns for energy saving in buildings,’’ in Proc. Sci. Inf. Conf., London, U.K., Jul. 2015, pp. 474–482. [112] U. Avci and A. Passerini, ‘‘Improving activity recognition by segmental pattern mining,’’ in Proc. 8th IEEE Int. Conf. Pervasive Comput. Commun. Workshops, Mar. 2012, pp. 709–714. [113] H. Alemdar, T. L. M. van Kasteren, M. E. Niessen, A. Merentitis, and C. Ersoy, ‘‘A unified model for human behavior modeling using a hierarchy with a variable number of states,’’ in Proc. 22nd Int. Conf. Pattern Recognit., Aug. 2014, pp. 3804–3809, doi: 10.1109/ICPR.2014.653. [114] M. B. Abidine, B. Fergani, and L. Clavier, ‘‘Importance-weighted the imbalanced data for C-SVM classifier to human activity recognition,’’ in Proc. 8th Int. Workshop Syst., Signal Process. Appl. (WoSSPA), May 2013, pp. 330–335. [115] M. B. Abidine and B. Fergani, ‘‘Evaluating a new classification method using PCA to human activity recognition,’’ in Proc. Int. Conf. Comput. Med. Appl. (ICCMA), Jan. 2013, pp. 1–4. [116] X. Hong, C. D. Nugent, M. D. Mulvenna, S. Martin, S. Devlin, and J. G. Wallace, ‘‘Dynamic similarity-based activity detection and recognition within smart homes,’’ Int. J. Pervasive Comput. Commun., vol. 8, no. 3, pp. 264–278, 2012, doi: 10.1108/17427371211262653. [117] V. Ghasemi, A. A. Pouyan, and M. Sharifi, ‘‘Human activity recognition in smart homes based on a difference of convex programming problem,’’ KSII Trans. Internet Inf. Syst., vol. 11, no. 1, pp. 321–344, Jan. 2017, doi: 10.3837/tiis.2017.01.017. [118] F. A. Machot and H. C. Mayr, ‘‘Improving human activity recognition by smart windowing and spatio-temporal feature analysis,’’ in Proc. 9th ACM Int. Conf. Pervasive Technol. Rel. Assistive Environ., 2016, p. 56, doi: 10.1145/2910674.2910697. [119] F. A. Machot, H. C. Mayr, and S. Ranasinghe, ‘‘A windowing approach for activity recognition in sensor data streams,’’ in Proc. 8th Int. Conf. Ubiquitous Future Netw. (ICUFN), Jul. 2016, pp. 951–953. [120] A. De Paola et al., ‘‘An ambient intelligence system for assisted living,’’ in Proc. AEIT Int. Annu. Conf., Sep. 2017, pp. 1–6. [121] N. Yala, B. Fergani, and A. Fleury, ‘‘Feature extractionand incremental learning to improve activity recognition on streaming data,’’ in Proc. IEEE Int. Conf. Evolving Adapt. Intell. Syst. (EAIS), Dec. 2015, pp. 1–8. [122] R. Mohamed, T. Perumal, N. Sulaiman, N. Mustapha, and M. N. Razali, ‘‘Conflict resolution using enhanced label combination method for complex activity recognition in smart home environment,’’ in Proc. IEEE 6th Global Conf. Consum. Electron. (GCCE), Oct. 2017, pp. 1–3. [123] S. Ntalampiras and M. Roveri, ‘‘An incremental learning mechanism for human activity recognition,’’ in Proc. IEEE Symp. Ser. Comput. Intell., Dec. 2016, pp. 1–6. [124] C. A. Ronao and S.-B. Cho, ‘‘Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models,’’ in Proc. 10th Int. Conf. Natural Comput., Aug. 2014, pp. 681–686. [125] E. Garcia-Ceja and R. F. Brena, ‘‘An improved three-stage classifier for activity recognition,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 32, no. 1, p. 1860003, 2018, doi: 10.1142/S0218001418600030. [126] J. Cumin, G. Lefebvre, F. Ramparany, and J. L. Crowley, ‘‘Human activity recognition using place-based decision fusion in smart home,’’ Arch. Ouverte HAL, Tech. Rep., 2017. [127] G. Chetty and M. White, ‘‘Body sensor networks for human activity recognition,’’ in Proc. 3rd Int. Conf. Signal Process. Integr. Netw. (SPIN), Noida, India, Feb. 2016, pp. 660–665, doi: 10.1109/SPIN.2016.7566779. [128] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, ‘‘SMOTE: Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16, no. 1, pp. 321–357, 2002. [129] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, ‘‘Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine,’’ in Proc. Int. Workshop Ambient Assist. Living (IWAAL), Vitoria-Gasteiz, Spain, Dec. 2012, pp. 216–223. [130] E. de la Hoz, E. de la Hoz, A. Ortiz, J. Ortega, and A. Martínez-Álvarez, ‘‘Feature selection by multi-objective optimisation: Application to network anomaly detection by hierarchical selforganising maps,’’ Knowl.-Based Syst., vol. 71, pp. 322–338, Nov. 2014, doi: 10.1016/j.knosys.2014.08.013. [131] F. Mendoza, A. De-La-Hoz-Manotas, E. De-La-Hoz-Franco, and P. Ariza-Colpas, ‘‘Feature selection, learning metrics and dimension reduction in training and classification processes in intrusion detection systems,’’ J. Theor. Appl. Inf. Technol., vol. 82, no. 2, pp. 291–298, Dec. 2015. Accessed: Jul. 31, 2018. [Online]. Available: http://www.jatit.org/volumes/Vol82No2/12Vol82No2.pdf [132] E. De-La-Hoz-Franco, A. Ortiz, J. Ortega, E. De-La-Hoz-Correa, and F. Mendoza, ‘‘Implementation of an intrusion detection system based on self organizing map,’’ J. Theor. Appl. Inf. Technol., vol. 71, no. 3, pp. 324–334, Jan. 2015. Accessed: Jul. 31, 2018. [Online]. Available: http://www.jatit.org/volumes/Vol71No3/2Vol71No3.pdfPublicationORIGINALSensor-based datasets for human activity recognition - A systematic review of literature.pdfSensor-based datasets for human activity recognition - A systematic review of literature.pdfapplication/pdf10239788https://repositorio.cuc.edu.co/bitstreams/8cc6cd34-30a9-4c8f-b2cb-3f94bd2a8b57/download9fe1b4c033240cd87d8503c7ea0d3f0dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/968df68d-b9f7-4d42-8373-b316f72b61ba/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILSensor-based datasets for human activity recognition - A systematic review of literature.pdf.jpgSensor-based datasets for human activity recognition - A systematic review of literature.pdf.jpgimage/jpeg72752https://repositorio.cuc.edu.co/bitstreams/1f3e9ed3-0abd-43a1-b97d-18844443fe9e/downloadd37a69d389a487387c589e1457013b72MD54TEXTSensor-based datasets for human activity recognition - A systematic review of literature.pdf.txtSensor-based datasets for human activity recognition - A systematic review of literature.pdf.txttext/plain106537https://repositorio.cuc.edu.co/bitstreams/b4e207bc-5076-4ffe-b7b9-de2813a45394/download8bf861fe6581423d48fb24be7bb440d4MD5511323/1478oai:repositorio.cuc.edu.co:11323/14782024-09-17 14:05:12.886open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |