Classification of authors for an automatic recommendation process for criminal responsibility

One problem in classifying tasks is the handling of features that characterize classes. When the list of features is long, a noise resistant algorithm of irrelevant features can be used, or these features can be reduced. Authorship attribution is a task that assigns an anonymous text to a subject on...

Full description

Autores:
amelec, viloria
Pineda Lezama, Omar Bonerge
Chang, Eduardo
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7692
Acceso en línea:
https://hdl.handle.net/11323/7692
https://doi.org/10.1016/j.procs.2020.07.098
https://repositorio.cuc.edu.co/
Palabra clave:
Authorship attribution
Classification features
Noise resistant algorithms
Feature reduction
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_cf3bd75e72786408bbf6fd514d66edce
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7692
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Classification of authors for an automatic recommendation process for criminal responsibility
title Classification of authors for an automatic recommendation process for criminal responsibility
spellingShingle Classification of authors for an automatic recommendation process for criminal responsibility
Authorship attribution
Classification features
Noise resistant algorithms
Feature reduction
title_short Classification of authors for an automatic recommendation process for criminal responsibility
title_full Classification of authors for an automatic recommendation process for criminal responsibility
title_fullStr Classification of authors for an automatic recommendation process for criminal responsibility
title_full_unstemmed Classification of authors for an automatic recommendation process for criminal responsibility
title_sort Classification of authors for an automatic recommendation process for criminal responsibility
dc.creator.fl_str_mv amelec, viloria
Pineda Lezama, Omar Bonerge
Chang, Eduardo
dc.contributor.author.spa.fl_str_mv amelec, viloria
Pineda Lezama, Omar Bonerge
Chang, Eduardo
dc.subject.spa.fl_str_mv Authorship attribution
Classification features
Noise resistant algorithms
Feature reduction
topic Authorship attribution
Classification features
Noise resistant algorithms
Feature reduction
description One problem in classifying tasks is the handling of features that characterize classes. When the list of features is long, a noise resistant algorithm of irrelevant features can be used, or these features can be reduced. Authorship attribution is a task that assigns an anonymous text to a subject on a list of possible authors, has been widely addressed as an automatic text classification task. In it, n-grams can produce long lists of features even in small corpora. Despite this, there is a lack of research exposing the effects of using noise-resistant algorithms, reducing traits, or combining both options. This paper responds to this lack by using contributions to discussion forums related to organized crime. The results show that the classifiers evaluated, in general, benefit from feature reduction, and that, thanks to such reduction, even classical algorithms outperform state-of-the-art classifiers considered highly noise resistant.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-15T14:14:20Z
dc.date.available.none.fl_str_mv 2021-01-15T14:14:20Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1877-0509
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7692
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.procs.2020.07.098
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1877-0509
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7692
https://doi.org/10.1016/j.procs.2020.07.098
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Vorobeva, A. A. (2016, April). Examining the performance of classification algorithms for imbalanced data sets in web author identification. In 2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT) (pp. 385-390). IEEE.
[2] Rocha, A., Scheirer, W. J., Forstall, C. W., Cavalcante, T., Theophilo, A., Shen, B., ... & Stamatatos, E. (2016). Authorship attribution for social media forensics. IEEE Transactions on Information Forensics and Security, 12(1), 5-33.
[3] Rico-Sulayes, A. (2017). Reducing Vector Space Dimensionality in Automatic Classification for Authorship Attribution. Revista Científica de Ingeniería Electrónica, Automática y Comunicaciones, 38(3), 26-35.
[4] Win, K. N., Li, K., Chen, J., Viger, P. F., & Li, K. (2019). Fingerprint classification and identification algorithms for criminal investigation: A survey. Future Generation Computer Systems.
[5] Tarmizi, N., Saee, S., & Ibrahim, D. H. A. (2020). Author identification for under-resourced language Kadazandusun. Indonesian Journal of Electrical Engineering and Computer Science, 17(1), 248-255.
[6] Sun, S. (2019). Application of Fuzzy Image Restoration in Criminal Investigation. Journal of Visual Communication and Image Representation, 102704.
[7] Boenninghoff, B., Nickel, R. M., Zeiler, S., & Kolossa, D. (2019, May). Similarity learning for authorship verification in social media. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2457-2461). IEEE.
[8] Watson, D. (2019). Source Code Stylometry and Authorship Attribution for Open Source (Master's thesis, University of Waterloo).
[9] Juola, P., Milička, J., & Zemánek, P. (2018). Authorship and time attribution of Arabic texts using JGAAP. In Intelligent Natural Language Processing: Trends and Applications (pp. 325-349). Springer, Cham.
[10] Hannah-Moffat, K. (2019). Algorithmic risk governance: Big data analytics, race and information activism in criminal justice debates. Theoretical Criminology, 23(4), 453-470.
[11] Mutanen, T. P., Metsomaa, J., Liljander, S., & Ilmoniemi, R. J. (2018). Automatic and robust noise suppression in EEG and MEG: The SOUND algorithm. Neuroimage, 166, 135-151.
[12] Usha, A., & Thampi, S. M. (2017, December). Authorship Analysis of Social Media Contents Using Tone and Personality Features. In International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage (pp. 212-228). Springer, Cham.
[13] Hasanov, A., & Mukanova, B. (2017). Fourier Collocation Algorithm for identification of a spacewise dependent source in wave equation from Neumann-type measured data. Applied Numerical Mathematics, 111, 49-63.
[14] Reddy, T. R., Vardhan, B. V., & Reddy, P. V. (2016). A survey on authorship profiling techniques. International Journal of Applied Engineering Research, 11(5), 3092-3102.
[15] Sun, F., Gu, Y., Cao, Y., Lu, Q., Bai, Y., Li, L., ... & Li, T. (2019). Novel flexible pressure sensor combining with dynamic-time-warping algorithm for handwriting identification. Sensors and Actuators A: Physical, 293, 70-76.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050920317981
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d91985bd-24fe-4f9f-9a3c-3df99f122f25/download
https://repositorio.cuc.edu.co/bitstreams/8bd181a3-09fa-4c47-9e65-a8e1aa0e0e93/download
https://repositorio.cuc.edu.co/bitstreams/0920afe2-6eeb-4c3c-8cb0-191b55b1d482/download
https://repositorio.cuc.edu.co/bitstreams/6a9a8c31-3b1f-48dc-8d00-aa240831e2fa/download
https://repositorio.cuc.edu.co/bitstreams/1863f807-60bc-4844-a66b-91f23b89db50/download
bitstream.checksum.fl_str_mv 314cceb09500f844ab9266c503463a9c
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
92e0a4de9e0951f896807bebec6cb56f
69da7b9ead5053e2c8766a3970163592
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760820371062784
spelling amelec, viloriaPineda Lezama, Omar BonergeChang, Eduardo2021-01-15T14:14:20Z2021-01-15T14:14:20Z20201877-0509https://hdl.handle.net/11323/7692https://doi.org/10.1016/j.procs.2020.07.098Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/One problem in classifying tasks is the handling of features that characterize classes. When the list of features is long, a noise resistant algorithm of irrelevant features can be used, or these features can be reduced. Authorship attribution is a task that assigns an anonymous text to a subject on a list of possible authors, has been widely addressed as an automatic text classification task. In it, n-grams can produce long lists of features even in small corpora. Despite this, there is a lack of research exposing the effects of using noise-resistant algorithms, reducing traits, or combining both options. This paper responds to this lack by using contributions to discussion forums related to organized crime. The results show that the classifiers evaluated, in general, benefit from feature reduction, and that, thanks to such reduction, even classical algorithms outperform state-of-the-art classifiers considered highly noise resistant.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Pineda Lezama, Omar BonergeChang, Eduardoapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050920317981Authorship attributionClassification featuresNoise resistant algorithmsFeature reductionClassification of authors for an automatic recommendation process for criminal responsibilityArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Vorobeva, A. A. (2016, April). Examining the performance of classification algorithms for imbalanced data sets in web author identification. In 2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT) (pp. 385-390). IEEE.[2] Rocha, A., Scheirer, W. J., Forstall, C. W., Cavalcante, T., Theophilo, A., Shen, B., ... & Stamatatos, E. (2016). Authorship attribution for social media forensics. IEEE Transactions on Information Forensics and Security, 12(1), 5-33.[3] Rico-Sulayes, A. (2017). Reducing Vector Space Dimensionality in Automatic Classification for Authorship Attribution. Revista Científica de Ingeniería Electrónica, Automática y Comunicaciones, 38(3), 26-35.[4] Win, K. N., Li, K., Chen, J., Viger, P. F., & Li, K. (2019). Fingerprint classification and identification algorithms for criminal investigation: A survey. Future Generation Computer Systems.[5] Tarmizi, N., Saee, S., & Ibrahim, D. H. A. (2020). Author identification for under-resourced language Kadazandusun. Indonesian Journal of Electrical Engineering and Computer Science, 17(1), 248-255.[6] Sun, S. (2019). Application of Fuzzy Image Restoration in Criminal Investigation. Journal of Visual Communication and Image Representation, 102704.[7] Boenninghoff, B., Nickel, R. M., Zeiler, S., & Kolossa, D. (2019, May). Similarity learning for authorship verification in social media. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2457-2461). IEEE.[8] Watson, D. (2019). Source Code Stylometry and Authorship Attribution for Open Source (Master's thesis, University of Waterloo).[9] Juola, P., Milička, J., & Zemánek, P. (2018). Authorship and time attribution of Arabic texts using JGAAP. In Intelligent Natural Language Processing: Trends and Applications (pp. 325-349). Springer, Cham.[10] Hannah-Moffat, K. (2019). Algorithmic risk governance: Big data analytics, race and information activism in criminal justice debates. Theoretical Criminology, 23(4), 453-470.[11] Mutanen, T. P., Metsomaa, J., Liljander, S., & Ilmoniemi, R. J. (2018). Automatic and robust noise suppression in EEG and MEG: The SOUND algorithm. Neuroimage, 166, 135-151.[12] Usha, A., & Thampi, S. M. (2017, December). Authorship Analysis of Social Media Contents Using Tone and Personality Features. In International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage (pp. 212-228). Springer, Cham.[13] Hasanov, A., & Mukanova, B. (2017). Fourier Collocation Algorithm for identification of a spacewise dependent source in wave equation from Neumann-type measured data. Applied Numerical Mathematics, 111, 49-63.[14] Reddy, T. R., Vardhan, B. V., & Reddy, P. V. (2016). A survey on authorship profiling techniques. International Journal of Applied Engineering Research, 11(5), 3092-3102.[15] Sun, F., Gu, Y., Cao, Y., Lu, Q., Bai, Y., Li, L., ... & Li, T. (2019). Novel flexible pressure sensor combining with dynamic-time-warping algorithm for handwriting identification. Sensors and Actuators A: Physical, 293, 70-76.PublicationORIGINALClassification of authors for an automatic recommendation process for criminal responsibility.pdfClassification of authors for an automatic recommendation process for criminal responsibility.pdfapplication/pdf742990https://repositorio.cuc.edu.co/bitstreams/d91985bd-24fe-4f9f-9a3c-3df99f122f25/download314cceb09500f844ab9266c503463a9cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/8bd181a3-09fa-4c47-9e65-a8e1aa0e0e93/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/0920afe2-6eeb-4c3c-8cb0-191b55b1d482/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILClassification of authors for an automatic recommendation process for criminal responsibility.pdf.jpgClassification of authors for an automatic recommendation process for criminal responsibility.pdf.jpgimage/jpeg42840https://repositorio.cuc.edu.co/bitstreams/6a9a8c31-3b1f-48dc-8d00-aa240831e2fa/download92e0a4de9e0951f896807bebec6cb56fMD54TEXTClassification of authors for an automatic recommendation process for criminal responsibility.pdf.txtClassification of authors for an automatic recommendation process for criminal responsibility.pdf.txttext/plain26347https://repositorio.cuc.edu.co/bitstreams/1863f807-60bc-4844-a66b-91f23b89db50/download69da7b9ead5053e2c8766a3970163592MD5511323/7692oai:repositorio.cuc.edu.co:11323/76922024-09-17 12:50:26.24http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==