New types of locally connected spaces via clopen set

In this paper, we define and study a new type of connected spaces called λco-connected space. It is remarkable that the class of λ-connected spaces is a subclass of the class of λco-connected spaces. We discuss some characterizations and properties of λco-connected spaces, λco components and λco-loc...

Full description

Autores:
ROSAS, ENNIS
namiq, sarhad
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8261
Acceso en línea:
https://hdl.handle.net/11323/8261
https://doi.org/10.22199/issn.0717-6279-4198
https://repositorio.cuc.edu.co/
Palabra clave:
λco-connected spaces
λco-components
λco-locally connected spaces
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_cf275f555c91e89c51f43c1080e0758f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8261
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv New types of locally connected spaces via clopen set
title New types of locally connected spaces via clopen set
spellingShingle New types of locally connected spaces via clopen set
λco-connected spaces
λco-components
λco-locally connected spaces
title_short New types of locally connected spaces via clopen set
title_full New types of locally connected spaces via clopen set
title_fullStr New types of locally connected spaces via clopen set
title_full_unstemmed New types of locally connected spaces via clopen set
title_sort New types of locally connected spaces via clopen set
dc.creator.fl_str_mv ROSAS, ENNIS
namiq, sarhad
dc.contributor.author.spa.fl_str_mv ROSAS, ENNIS
namiq, sarhad
dc.subject.spa.fl_str_mv λco-connected spaces
λco-components
λco-locally connected spaces
topic λco-connected spaces
λco-components
λco-locally connected spaces
description In this paper, we define and study a new type of connected spaces called λco-connected space. It is remarkable that the class of λ-connected spaces is a subclass of the class of λco-connected spaces. We discuss some characterizations and properties of λco-connected spaces, λco components and λco-locally connected spaces.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-13T22:49:09Z
dc.date.available.none.fl_str_mv 2021-05-13T22:49:09Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0717-6279
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8261
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.22199/issn.0717-6279-4198
0716-0917
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0717-6279
0716-0917
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8261
https://doi.org/10.22199/issn.0717-6279-4198
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1]C. Dorsett, “Semi-connectedness”, Indianjournalofmechanicmathe-matics, vol. 17, no. 1, pp. 57-63, 1979.
[2]A. B. Khalaf and S. F. Namiq, “λ-open sets and λ-separation axioms in topological spaces”, Journalofadvancedstudiesintopology, vol. 4, no. 1, pp. 150-158, 2013.
[3]N. Levine, “Semi-open sets and semi-continuity in topological spaces”, Theamericanmathematicalmonthly, vol. 70, no. 1, pp. 36-41, 1963, doi: 10.1080/00029890.1963.11990039
[4]S. F. Namiq, "New types of continuity and separation axiom based ope- ration in topological spaces", MSc Thesis, University of Sulaimani, 2011.
[5]S. F. Namiq, “λco-open sets and topological properties”, Submit.
[6]S. F. Namiq, “λ-connected spaces via λ-open sets”, JournalofGarmianUniversity, vol. 7, pp. 165-178, 2015.
[7]S. F. Namiq, “λsc-open sets and topological properties”, JournalofGar-mianUniversity, 2014. [On line]. Available: https://bit.ly/3tucwua
[8]M. H. Stone, “Applications of the theory of boolean rings to general topology”, TransactionsoftheAmericanMathematicalSociety, vol. 41, no. 3, pp. 375–375, Mar. 1937, doi: 10.1090/S0002-9947-1937- 1501905-7
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Proyecciones
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4198
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/59f48b5b-2ebc-463f-aa56-5d1f930ef106/download
https://repositorio.cuc.edu.co/bitstreams/a31008ed-a59d-491b-bb14-b93583c33ece/download
https://repositorio.cuc.edu.co/bitstreams/daa7acae-509b-4141-8276-c582df22f94e/download
https://repositorio.cuc.edu.co/bitstreams/13640f4f-c756-49ec-a977-cbba1d9feaa5/download
https://repositorio.cuc.edu.co/bitstreams/4ae42d8b-9ba7-45be-9c8d-ab9a4c862fb5/download
bitstream.checksum.fl_str_mv 439404878e305888a68734e864e7e376
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
d04b82b4a9e008e14c251af039939828
33f4f15a16a9843faf6a25d4f387b6fd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760794855014400
spelling ROSAS, ENNISnamiq, sarhad2021-05-13T22:49:09Z2021-05-13T22:49:09Z20210717-6279https://hdl.handle.net/11323/8261https://doi.org/10.22199/issn.0717-6279-41980716-0917Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this paper, we define and study a new type of connected spaces called λco-connected space. It is remarkable that the class of λ-connected spaces is a subclass of the class of λco-connected spaces. We discuss some characterizations and properties of λco-connected spaces, λco components and λco-locally connected spaces.ROSAS, ENNIS-will be generated-orcid-0000-0001-8123-9344-600namiq, sarhad-will be generated-orcid-0000-0001-8747-2542-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Proyeccioneshttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4198λco-connected spacesλco-componentsλco-locally connected spacesNew types of locally connected spaces via clopen setArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1]C. Dorsett, “Semi-connectedness”, Indianjournalofmechanicmathe-matics, vol. 17, no. 1, pp. 57-63, 1979.[2]A. B. Khalaf and S. F. Namiq, “λ-open sets and λ-separation axioms in topological spaces”, Journalofadvancedstudiesintopology, vol. 4, no. 1, pp. 150-158, 2013.[3]N. Levine, “Semi-open sets and semi-continuity in topological spaces”, Theamericanmathematicalmonthly, vol. 70, no. 1, pp. 36-41, 1963, doi: 10.1080/00029890.1963.11990039[4]S. F. Namiq, "New types of continuity and separation axiom based ope- ration in topological spaces", MSc Thesis, University of Sulaimani, 2011.[5]S. F. Namiq, “λco-open sets and topological properties”, Submit.[6]S. F. Namiq, “λ-connected spaces via λ-open sets”, JournalofGarmianUniversity, vol. 7, pp. 165-178, 2015.[7]S. F. Namiq, “λsc-open sets and topological properties”, JournalofGar-mianUniversity, 2014. [On line]. Available: https://bit.ly/3tucwua[8]M. H. Stone, “Applications of the theory of boolean rings to general topology”, TransactionsoftheAmericanMathematicalSociety, vol. 41, no. 3, pp. 375–375, Mar. 1937, doi: 10.1090/S0002-9947-1937- 1501905-7PublicationORIGINALNew types of locally connected spaces via clopen set.pdfNew types of locally connected spaces via clopen set.pdfapplication/pdf1935473https://repositorio.cuc.edu.co/bitstreams/59f48b5b-2ebc-463f-aa56-5d1f930ef106/download439404878e305888a68734e864e7e376MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a31008ed-a59d-491b-bb14-b93583c33ece/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/daa7acae-509b-4141-8276-c582df22f94e/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILNew types of locally connected spaces via clopen set.pdf.jpgNew types of locally connected spaces via clopen set.pdf.jpgimage/jpeg43980https://repositorio.cuc.edu.co/bitstreams/13640f4f-c756-49ec-a977-cbba1d9feaa5/downloadd04b82b4a9e008e14c251af039939828MD54TEXTNew types of locally connected spaces via clopen set.pdf.txtNew types of locally connected spaces via clopen set.pdf.txttext/plain9https://repositorio.cuc.edu.co/bitstreams/4ae42d8b-9ba7-45be-9c8d-ab9a4c862fb5/download33f4f15a16a9843faf6a25d4f387b6fdMD5511323/8261oai:repositorio.cuc.edu.co:11323/82612024-09-17 12:44:29.586http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==