Conjeturación del teorema del valor medio para derivadas: Un acercamiento desde la detección de invariantes en dispositivos móviles con GeoGebra

Este artículo presenta los resultados de un proyecto de investigación cuyo objetivo fue describir el papel mediador de la aplicación móvil “Calculadora Gráfica” de GeoGebra sobre los procesos de conjeturación del teorema del valor medio para derivadas mediante la detección de invariantes a través de...

Full description

Autores:
Ballesteros-Ballesteros, Vladimir Alfonso
Rodríguez-Cardoso, Óscar Iván
Lozano-Forero, Sébastien
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/11321
Acceso en línea:
https://hdl.handle.net/11323/11321
https://doi.org/10.17981/cultedusoc.12.1.2021.05
Palabra clave:
Aprendizaje móvil
Conjeturación
GeoGebra
Teorema del valor medio para derivadas
Mobile learning
Conjecturing process
GeoGebra
Mean value theorem for derivatives
Rights
openAccess
License
CULTURA EDUCACIÓN Y SOCIEDAD - 2020
id RCUC2_cf21d862989ff3b1c6d11bed68a20ee3
oai_identifier_str oai:repositorio.cuc.edu.co:11323/11321
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Conjeturación del teorema del valor medio para derivadas: Un acercamiento desde la detección de invariantes en dispositivos móviles con GeoGebra
dc.title.translated.eng.fl_str_mv Conjecturing process for the mean value theorem for derivatives: An approach from the detection of invariants in mobile devices with GeoGebra
title Conjeturación del teorema del valor medio para derivadas: Un acercamiento desde la detección de invariantes en dispositivos móviles con GeoGebra
spellingShingle Conjeturación del teorema del valor medio para derivadas: Un acercamiento desde la detección de invariantes en dispositivos móviles con GeoGebra
Aprendizaje móvil
Conjeturación
GeoGebra
Teorema del valor medio para derivadas
Mobile learning
Conjecturing process
GeoGebra
Mean value theorem for derivatives
title_short Conjeturación del teorema del valor medio para derivadas: Un acercamiento desde la detección de invariantes en dispositivos móviles con GeoGebra
title_full Conjeturación del teorema del valor medio para derivadas: Un acercamiento desde la detección de invariantes en dispositivos móviles con GeoGebra
title_fullStr Conjeturación del teorema del valor medio para derivadas: Un acercamiento desde la detección de invariantes en dispositivos móviles con GeoGebra
title_full_unstemmed Conjeturación del teorema del valor medio para derivadas: Un acercamiento desde la detección de invariantes en dispositivos móviles con GeoGebra
title_sort Conjeturación del teorema del valor medio para derivadas: Un acercamiento desde la detección de invariantes en dispositivos móviles con GeoGebra
dc.creator.fl_str_mv Ballesteros-Ballesteros, Vladimir Alfonso
Rodríguez-Cardoso, Óscar Iván
Lozano-Forero, Sébastien
dc.contributor.author.spa.fl_str_mv Ballesteros-Ballesteros, Vladimir Alfonso
Rodríguez-Cardoso, Óscar Iván
Lozano-Forero, Sébastien
dc.subject.spa.fl_str_mv Aprendizaje móvil
Conjeturación
GeoGebra
Teorema del valor medio para derivadas
topic Aprendizaje móvil
Conjeturación
GeoGebra
Teorema del valor medio para derivadas
Mobile learning
Conjecturing process
GeoGebra
Mean value theorem for derivatives
dc.subject.eng.fl_str_mv Mobile learning
Conjecturing process
GeoGebra
Mean value theorem for derivatives
description Este artículo presenta los resultados de un proyecto de investigación cuyo objetivo fue describir el papel mediador de la aplicación móvil “Calculadora Gráfica” de GeoGebra sobre los procesos de conjeturación del teorema del valor medio para derivadas mediante la detección de invariantes a través de herramientas de arrastre, combinando geometría dinámica con cálculo infinitesimal. A través de un estudio de caso cualitativo, que involucró estudiantes de Ingeniería Aeronáutica, se dinamizaron los esfuerzos investigativos con el propósito de validar la hipótesis relacionada con una influencia positiva de una estrategia de aprendizaje móvil sobre el proceso de conjeturación en un curso de Cálculo Diferencial. Los resultados obtenidos permitieron evidenciar avances significativos en la conjeturación del teorema mencionado para la resolución de problemas en ingeniería y se discute cómo este tipo de recursos digitales, a través de un entorno de geometría dinámica en dispositivos móviles, puede servir como mediación para favorecer el aprendizaje del cálculo.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-01-01
dc.date.accessioned.none.fl_str_mv 2021-01-01 00:00:00
2024-04-09T19:55:04Z
dc.date.available.none.fl_str_mv 2021-01-01 00:00:00
2024-04-09T19:55:04Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2145-9258
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/11321
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/cultedusoc.12.1.2021.05
dc.identifier.doi.none.fl_str_mv 10.17981/cultedusoc.12.1.2021.05
dc.identifier.eissn.none.fl_str_mv 2389-7724
identifier_str_mv 2145-9258
10.17981/cultedusoc.12.1.2021.05
2389-7724
url https://hdl.handle.net/11323/11321
https://doi.org/10.17981/cultedusoc.12.1.2021.05
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Cultura Educación Sociedad
dc.relation.references.spa.fl_str_mv Abu-Al-Aish, A., Love, S., Hunaiti, Z. & Al-masaeed, S. (2014). Toward mobile learning deployment in higher education. International Journal of Mobile Learning and Organisation (IJMLO), 7(3/4), 253–276. https://doi.org/10.1504/IJMLO.2013.057165.
Akour, H. (2011). Determinants of mobile learning acceptance: An empirical investigation in higher education. [Ph.D. Dissertation]. Oklahoma State University, Small city, USA. Available: https://www.proquest.com/docview/610058264
Al-Emran, M., Mezhuyev, V. & Kamaludin, A. (2018). Technology Acceptance Model in M-learning context: A systematic review. Computers & Education, 125, 389–412. https://doi.org/10.1016/j.compedu.2018.06.008
Baccaglini-Frank, A. (2019). Dragging, instrumented abduction and evidence, in processes of conjecture generation in a dynamic geometry environment. ZDM Mathematics Education, 51, 779–791. https://doi.org/10.1007/s11858-019-01046-8
Boero, P., Fenaroli, G. & Guala, E. (2018). Mathematical Argumentation in Elementary Teacher Education: The Key Role of the Cultural Analysis of the Content. In: Stylianides A., Harel G. (eds), Advances in Mathematics Education Research on Proof and Proving, (pp. 49–67). Cham: Springer. https://doi.org/10.1007/978-3-319-70996-3₄
Cabri Geometry (versión 2.1.1) [software de geometría]. Grenoble: Cabrilog. Disponible en https://cabri.com/es/
Camargo, L., Samper, C. & Perry, P. (2007). Cabri’s role in the task of proving within the activity of building part of an axiomatic system. In: D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 571–580). Larnaca: CERME. Recuperado de http://funes.uniandes.edu.co/927/1/2007Pr-CamargoCabri.pdf
Cheema, S., Gulwani, S. & LaViola, J. (may, 2012). QuickDraw: improving drawing experience for geometric diagrams. In: J. Konstan, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1037–1064). Association for Computing Machinery, New York, United States. https://doi.org/10.1145/2207676.2208550
Creswell, J. W. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Thousand: Sage publications. Recuperado de http://www.drbrambedkarcollege.ac.in/sites/default/files/research-design-ceil.pdf
Crompton, H., Burke, D., Gregory, K. H. & Grabe, C. (2016). The use of mobile learning in science: A systematic review. Journal of Science Education and Technology, 25, 149–160. https://doi.org/10.1007/s10956-015-9597-x
Donaldson, R. L. (2011). Student acceptance of mobile learning. [Ph.D. Dissertation]. The Florida State University, Tallahassee, USA. Recuperado de https://fsu.digital.flvc.org/islandora/object/fsu%3A168891/datastream/PDF/view
Ehmann, M., Gerhauser, M., Miller, C. & Wassermann, A. (2013). Sketchometry and jsxgraph- dynamic geometry for mobile devices. South Bohemia Mathematical Letters, 21(1), 1–7. Recuperado de http://home.pf.jcu.cz/~upvvm/2013/sbornik/clanky/09_UPVM2013_Ehmann_et_al.pdf
Escuder, A. & Furner, J. M. (2011). The Impact of GeoGebra in Math Teacher’s Professional Development. In: International Conference on Technologies in Collegiate Mathematics (pp. 76–84). Denver: Pearson. Recuperado de http://archives.math.utk.edu/ICTCM/VOL23/S113/paper.pdf
Geogebra Calculadora Gráfica. (versión versión 6.0.619.0) [software de geometría]. Linz: ACGG. Disponible en https://www.geogebra.org/graphing?lang=es
Hamidi, H. & Chavoshi, A. (2018). Analysis of the essential factors for the adoption of mobile learning in higher education: A case study of students of the University of Technology. Telematics and Informatics, 35(4), 1053–1070. https://doi.org/10.1016/j.tele.2017.09.016
Hanna, G. (2018). Reflections on Proof as Explanation. In: Stylianides A., Harel G. (eds), Advances in Mathematics Education Research on Proof and Proving (pp. 3–18). Cham: Springer. https://doi.org/10.1007/978-3-319-70996-3₁
Hanna, G. (1995). Challenges to the importance of proof’. For the Learning of Mathematics 15(3), 42–49. Recuperado de https://flm-journal.org/Articles/7679867298F4CBEABE82D0ABEB5EC.pdf
Holmes, B. & Gardner, J. (2006). E-Learning (Concepts and practice). London: SAGE Publications. http://dx.doi.org/10.4135/9781446212585
Huang, Y. (2014). Empirical Analysis on Factors Impacting Mobile Learning Acceptance in Higher Engineering Education. [Doctoral dissertation]. University of Tennessee, Knoxville, USA. Recuperado de https://trace.tennessee.edu/cgi/viewcontent.cgi?article=3166&context=utk_graddiss
Joo-Nagata, J., Martinez, F., García-Bermejo, J., & García-Peñalvo, F. J. (2017). Augmented reality and pedestrian navigation through its implementation in m-learning and e-learning: Evaluation of an educational program in Chile. Computers & Education, 111, 1–17. https://doi.org/10.1016/j.compedu.2017.04.003
Karimi, S. (2016). Do learners’ characteristics matter? An exploration of mobile-learning adoption in self-directed learning. Computers in Human Behavior, 63, 769–776. https://doi.org/10.1016/j.chb.2016.06.014
Karunakaran, S. S. (2018). The Need for “Linearity” of Deductive Logic: An Examination of Expert and Novice Proving Processes. In: Stylianides A., Harel G. (eds), Advances in Mathematics Education Research on Proof and Proving (pp. 171–183). Cham: Springer. https://doi.org/10.1007/978-3-319-70996-3_12
Leung, A., Baccaglini-Frank, A. & Mariotti, M. A. (2013). Discernment in dynamic geometry environments. Educational Studies in Mathematics, 84(3), 439–460. https://doi.org/10.1007/s10649-013-9492-4
Majerek, D. (2014). Applications of GeoGebra for Teaching Mathematics. Advances in Science and Technology Research Journal, 8(24), 51–54. https://doi.org/10.12913/22998624/567
Mariotti, M. A. (2015). Transforming Images in a DGS: The semiotic potential of the dragging tool for introducing the notion of conditional statement. In: S. Rezat, M. Sebastian, A. Hattermann & Peter-Koop (Eds.), Transformation—A fundamental idea of mathematics education (pp. 155–172). New York: Springer. https://doi.org/10.1007/978-1-4614-3489-4₈
Mariotti, M. (2006). Prof and proving in mathematics education. In: A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 173–204). Rotterdam: Sense Publishers.
Mariotti, M. A. & Pedemonte, B. (2019). Intuition and proof in the solution of conjecturing problems’. ZDM, 51, 759–777. https://doi.org/10.1007/s11858-019-01059-3
Ozdamli, F. (2012). Pedagogical framework of m-learning. Procedia - Social and Behavioral Sciences, 31, 927–931. https://doi.org/10.1016/j.sbspro.2011.12.171
Pedemonte, B. (2018). How Can a Teacher Support Students in Constructing a Proof? Advances in Mathematics Education Research on Proof and Proving (pp. 115–129). Cham: Springer. https://doi.org/10.1007/978-3-319-70996-3₈
Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66(1), 23–41. https://doi.org/10.1007/s10649-006-9057-x
Pegrum, M. (2014). Agendas for Mobile Learning. In, M. Pegrum, Mobile learning: Languages, literacies and cultures (pp 4–16). UK. Springer. Recuperado de https://link.springer.com/chapter/10.1057/9781137309815₂
Rocha, H. (2019). Mathematical proof: from mathematics to school mathematics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2140), 1–12. https://doi.org/10.1098/rsta.2018.0045
Sánchez, J. C., Olmos, S. & Garcí-Peñalvo, F. (november, 2013). Mobile Learning: Tendencies and lines of research. In, F. García-Peñalvo (ed.), Proceedings of the first international conference on technological ecosystem for enhancing multiculturality (pp. 473–480). Association for Computing Machinery-ACM, New York, USA. https://doi.org/10.1145/2536536.2536609
Sánchez-Prieto, J. C., Olmos-Migueláñez, S. & García-Peñalvo, F. (2016). Informal tools in formal contexts: Development of a model to assess the acceptance of mobile technologies among teachers. Computers in Human Behavior, 55(Part A), 519–528. https://doi.org/10.1016/j.chb.2015.07.002
Selaković, M., Marinković, V. & Janičić, P. (2019). New dynamics in dynamic geometry: Dragging constructed points. Journal of Symbolic Computation, 97, 3–15. https://doi.org/10.1016/j.jsc.2018.12.002
Velichova, D. (2011). Interactive Maths with GeoGebra. International Journal of Emerging Technologies in Learning (IJET), 6(S1), 31–35. Available: https://online-journals.org/index.php/i-jet/article/view/1620
Wassie, Y. A. & Zergaw, G. A. (2019). Some of the Potential Affordances, Challenges and Limitations of Using GeoGebra in Mathematics Education. Eurasia Journal of Mathematics, Science and Technology Education, 15(8), 1–11. https://doi.org/10.29333/ejmste/108436
dc.relation.citationendpage.none.fl_str_mv 84
dc.relation.citationstartpage.none.fl_str_mv 63
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 12
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/2933/3112
https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/2933/3113
https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/2933/3114
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2021 : Cultura Educación y Sociedad
dc.rights.spa.fl_str_mv CULTURA EDUCACIÓN Y SOCIEDAD - 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CULTURA EDUCACIÓN Y SOCIEDAD - 2020
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
text/html
text/xml
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/view/2933
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/671addc4-83aa-4163-bac0-9b264b140ab7/download
bitstream.checksum.fl_str_mv 70677ef54fa4903c52bafa021248fa57
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760788538392576
spelling Ballesteros-Ballesteros, Vladimir AlfonsoRodríguez-Cardoso, Óscar IvánLozano-Forero, Sébastien2021-01-01 00:00:002024-04-09T19:55:04Z2021-01-01 00:00:002024-04-09T19:55:04Z2020-01-012145-9258https://hdl.handle.net/11323/11321https://doi.org/10.17981/cultedusoc.12.1.2021.0510.17981/cultedusoc.12.1.2021.052389-7724Este artículo presenta los resultados de un proyecto de investigación cuyo objetivo fue describir el papel mediador de la aplicación móvil “Calculadora Gráfica” de GeoGebra sobre los procesos de conjeturación del teorema del valor medio para derivadas mediante la detección de invariantes a través de herramientas de arrastre, combinando geometría dinámica con cálculo infinitesimal. A través de un estudio de caso cualitativo, que involucró estudiantes de Ingeniería Aeronáutica, se dinamizaron los esfuerzos investigativos con el propósito de validar la hipótesis relacionada con una influencia positiva de una estrategia de aprendizaje móvil sobre el proceso de conjeturación en un curso de Cálculo Diferencial. Los resultados obtenidos permitieron evidenciar avances significativos en la conjeturación del teorema mencionado para la resolución de problemas en ingeniería y se discute cómo este tipo de recursos digitales, a través de un entorno de geometría dinámica en dispositivos móviles, puede servir como mediación para favorecer el aprendizaje del cálculo.This article presents the results of a research project whose main objective was to describe the mediating role of GeoGebra’s “Graphing Calculator” mobile application on the conjecturing processes of the mean value theorem for derivatives by the use of some dragging tools, which combines dynamic geometry and infinitesimal calculus. By means of a qualitative case study, involving students from aeronautical engineering, research efforts were carried out looking forward to get evidence that allow the judgement of a hypothesis involving a positive influence of a mobile learning strategy on conjecturing processes in the context of a calculus course. The results obtained allowed us to conclude significant advances in the conjecturing process of the above-mentioned theorem for the solving-problems process in engineering. The discussion of how this type of digital resources, through a dynamic geometry environment in mobile devices, could favor the learning of calculus, is also addressed.application/pdftext/htmltext/xmlspaUniversidad de la CostaCULTURA EDUCACIÓN Y SOCIEDAD - 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/view/2933Aprendizaje móvilConjeturaciónGeoGebraTeorema del valor medio para derivadasMobile learningConjecturing processGeoGebraMean value theorem for derivativesConjeturación del teorema del valor medio para derivadas: Un acercamiento desde la detección de invariantes en dispositivos móviles con GeoGebraConjecturing process for the mean value theorem for derivatives: An approach from the detection of invariants in mobile devices with GeoGebraArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Cultura Educación SociedadAbu-Al-Aish, A., Love, S., Hunaiti, Z. & Al-masaeed, S. (2014). Toward mobile learning deployment in higher education. International Journal of Mobile Learning and Organisation (IJMLO), 7(3/4), 253–276. https://doi.org/10.1504/IJMLO.2013.057165.Akour, H. (2011). Determinants of mobile learning acceptance: An empirical investigation in higher education. [Ph.D. Dissertation]. Oklahoma State University, Small city, USA. Available: https://www.proquest.com/docview/610058264Al-Emran, M., Mezhuyev, V. & Kamaludin, A. (2018). Technology Acceptance Model in M-learning context: A systematic review. Computers & Education, 125, 389–412. https://doi.org/10.1016/j.compedu.2018.06.008Baccaglini-Frank, A. (2019). Dragging, instrumented abduction and evidence, in processes of conjecture generation in a dynamic geometry environment. ZDM Mathematics Education, 51, 779–791. https://doi.org/10.1007/s11858-019-01046-8Boero, P., Fenaroli, G. & Guala, E. (2018). Mathematical Argumentation in Elementary Teacher Education: The Key Role of the Cultural Analysis of the Content. In: Stylianides A., Harel G. (eds), Advances in Mathematics Education Research on Proof and Proving, (pp. 49–67). Cham: Springer. https://doi.org/10.1007/978-3-319-70996-3₄Cabri Geometry (versión 2.1.1) [software de geometría]. Grenoble: Cabrilog. Disponible en https://cabri.com/es/Camargo, L., Samper, C. & Perry, P. (2007). Cabri’s role in the task of proving within the activity of building part of an axiomatic system. In: D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 571–580). Larnaca: CERME. Recuperado de http://funes.uniandes.edu.co/927/1/2007Pr-CamargoCabri.pdfCheema, S., Gulwani, S. & LaViola, J. (may, 2012). QuickDraw: improving drawing experience for geometric diagrams. In: J. Konstan, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1037–1064). Association for Computing Machinery, New York, United States. https://doi.org/10.1145/2207676.2208550Creswell, J. W. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Thousand: Sage publications. Recuperado de http://www.drbrambedkarcollege.ac.in/sites/default/files/research-design-ceil.pdfCrompton, H., Burke, D., Gregory, K. H. & Grabe, C. (2016). The use of mobile learning in science: A systematic review. Journal of Science Education and Technology, 25, 149–160. https://doi.org/10.1007/s10956-015-9597-xDonaldson, R. L. (2011). Student acceptance of mobile learning. [Ph.D. Dissertation]. The Florida State University, Tallahassee, USA. Recuperado de https://fsu.digital.flvc.org/islandora/object/fsu%3A168891/datastream/PDF/viewEhmann, M., Gerhauser, M., Miller, C. & Wassermann, A. (2013). Sketchometry and jsxgraph- dynamic geometry for mobile devices. South Bohemia Mathematical Letters, 21(1), 1–7. Recuperado de http://home.pf.jcu.cz/~upvvm/2013/sbornik/clanky/09_UPVM2013_Ehmann_et_al.pdfEscuder, A. & Furner, J. M. (2011). The Impact of GeoGebra in Math Teacher’s Professional Development. In: International Conference on Technologies in Collegiate Mathematics (pp. 76–84). Denver: Pearson. Recuperado de http://archives.math.utk.edu/ICTCM/VOL23/S113/paper.pdfGeogebra Calculadora Gráfica. (versión versión 6.0.619.0) [software de geometría]. Linz: ACGG. Disponible en https://www.geogebra.org/graphing?lang=esHamidi, H. & Chavoshi, A. (2018). Analysis of the essential factors for the adoption of mobile learning in higher education: A case study of students of the University of Technology. Telematics and Informatics, 35(4), 1053–1070. https://doi.org/10.1016/j.tele.2017.09.016Hanna, G. (2018). Reflections on Proof as Explanation. In: Stylianides A., Harel G. (eds), Advances in Mathematics Education Research on Proof and Proving (pp. 3–18). Cham: Springer. https://doi.org/10.1007/978-3-319-70996-3₁Hanna, G. (1995). Challenges to the importance of proof’. For the Learning of Mathematics 15(3), 42–49. Recuperado de https://flm-journal.org/Articles/7679867298F4CBEABE82D0ABEB5EC.pdfHolmes, B. & Gardner, J. (2006). E-Learning (Concepts and practice). London: SAGE Publications. http://dx.doi.org/10.4135/9781446212585Huang, Y. (2014). Empirical Analysis on Factors Impacting Mobile Learning Acceptance in Higher Engineering Education. [Doctoral dissertation]. University of Tennessee, Knoxville, USA. Recuperado de https://trace.tennessee.edu/cgi/viewcontent.cgi?article=3166&context=utk_graddissJoo-Nagata, J., Martinez, F., García-Bermejo, J., & García-Peñalvo, F. J. (2017). Augmented reality and pedestrian navigation through its implementation in m-learning and e-learning: Evaluation of an educational program in Chile. Computers & Education, 111, 1–17. https://doi.org/10.1016/j.compedu.2017.04.003Karimi, S. (2016). Do learners’ characteristics matter? An exploration of mobile-learning adoption in self-directed learning. Computers in Human Behavior, 63, 769–776. https://doi.org/10.1016/j.chb.2016.06.014Karunakaran, S. S. (2018). The Need for “Linearity” of Deductive Logic: An Examination of Expert and Novice Proving Processes. In: Stylianides A., Harel G. (eds), Advances in Mathematics Education Research on Proof and Proving (pp. 171–183). Cham: Springer. https://doi.org/10.1007/978-3-319-70996-3_12Leung, A., Baccaglini-Frank, A. & Mariotti, M. A. (2013). Discernment in dynamic geometry environments. Educational Studies in Mathematics, 84(3), 439–460. https://doi.org/10.1007/s10649-013-9492-4Majerek, D. (2014). Applications of GeoGebra for Teaching Mathematics. Advances in Science and Technology Research Journal, 8(24), 51–54. https://doi.org/10.12913/22998624/567Mariotti, M. A. (2015). Transforming Images in a DGS: The semiotic potential of the dragging tool for introducing the notion of conditional statement. In: S. Rezat, M. Sebastian, A. Hattermann & Peter-Koop (Eds.), Transformation—A fundamental idea of mathematics education (pp. 155–172). New York: Springer. https://doi.org/10.1007/978-1-4614-3489-4₈Mariotti, M. (2006). Prof and proving in mathematics education. In: A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 173–204). Rotterdam: Sense Publishers.Mariotti, M. A. & Pedemonte, B. (2019). Intuition and proof in the solution of conjecturing problems’. ZDM, 51, 759–777. https://doi.org/10.1007/s11858-019-01059-3Ozdamli, F. (2012). Pedagogical framework of m-learning. Procedia - Social and Behavioral Sciences, 31, 927–931. https://doi.org/10.1016/j.sbspro.2011.12.171Pedemonte, B. (2018). How Can a Teacher Support Students in Constructing a Proof? Advances in Mathematics Education Research on Proof and Proving (pp. 115–129). Cham: Springer. https://doi.org/10.1007/978-3-319-70996-3₈Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66(1), 23–41. https://doi.org/10.1007/s10649-006-9057-xPegrum, M. (2014). Agendas for Mobile Learning. In, M. Pegrum, Mobile learning: Languages, literacies and cultures (pp 4–16). UK. Springer. Recuperado de https://link.springer.com/chapter/10.1057/9781137309815₂Rocha, H. (2019). Mathematical proof: from mathematics to school mathematics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2140), 1–12. https://doi.org/10.1098/rsta.2018.0045Sánchez, J. C., Olmos, S. & Garcí-Peñalvo, F. (november, 2013). Mobile Learning: Tendencies and lines of research. In, F. García-Peñalvo (ed.), Proceedings of the first international conference on technological ecosystem for enhancing multiculturality (pp. 473–480). Association for Computing Machinery-ACM, New York, USA. https://doi.org/10.1145/2536536.2536609Sánchez-Prieto, J. C., Olmos-Migueláñez, S. & García-Peñalvo, F. (2016). Informal tools in formal contexts: Development of a model to assess the acceptance of mobile technologies among teachers. Computers in Human Behavior, 55(Part A), 519–528. https://doi.org/10.1016/j.chb.2015.07.002Selaković, M., Marinković, V. & Janičić, P. (2019). New dynamics in dynamic geometry: Dragging constructed points. Journal of Symbolic Computation, 97, 3–15. https://doi.org/10.1016/j.jsc.2018.12.002Velichova, D. (2011). Interactive Maths with GeoGebra. International Journal of Emerging Technologies in Learning (IJET), 6(S1), 31–35. Available: https://online-journals.org/index.php/i-jet/article/view/1620Wassie, Y. A. & Zergaw, G. A. (2019). Some of the Potential Affordances, Challenges and Limitations of Using GeoGebra in Mathematics Education. Eurasia Journal of Mathematics, Science and Technology Education, 15(8), 1–11. https://doi.org/10.29333/ejmste/1084368463112https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/2933/3112https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/2933/3113https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/2933/3114Núm. 1 , Año 2021 : Cultura Educación y SociedadPublicationOREORE.xmltext/xml2851https://repositorio.cuc.edu.co/bitstreams/671addc4-83aa-4163-bac0-9b264b140ab7/download70677ef54fa4903c52bafa021248fa57MD5111323/11321oai:repositorio.cuc.edu.co:11323/113212024-09-17 11:09:41.327https://creativecommons.org/licenses/by-nc-nd/4.0/CULTURA EDUCACIÓN Y SOCIEDAD - 2020metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co