Adsorption of rare earth elements (Ce3+, La3+, and Nd3+) and recovery from phosphogypsum leachate using a novel ZSM-5 zeolite

ZSM-5 zeolite is a multifunctional material highly efficient for adsorbing ions. Our ZSM-5 was synthesized by employing a nucleating gel as a structure-directing agent, followed by homogenization and hydrothermal treatment. The as-prepared ZSM-5 was physicochemically characterized to assess its prop...

Full description

Autores:
Dotto, Guilherme Luiz
Pinto, Diana
Silva Oliveira, Luis Felipe
Grimm, Alejandro
Rizwan Khan, Mohammad
Ahmad, Naushad
de Brum, Irineu A.S.
Mikkola, Jyri-Pekka
Simoes dos Reis, Glaydson
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13308
Acceso en línea:
https://hdl.handle.net/11323/13308
https://repositorio.cuc.edu.co/
Palabra clave:
Microporous zeolite
Adsorption of rare earth elements
Ion-exchange mechanism
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
Description
Summary:ZSM-5 zeolite is a multifunctional material highly efficient for adsorbing ions. Our ZSM-5 was synthesized by employing a nucleating gel as a structure-directing agent, followed by homogenization and hydrothermal treatment. The as-prepared ZSM-5 was physicochemically characterized to assess its properties. Next, the as-prepared zeolite was employed as an adsorbent to remove rare earth elements, REEs from synthetic solutions and real phosphogypsum leachate under batch mode operation. As expected, the ZSM-5 adsorbent was discovered to be highly microporous with abundant surface functionalities, which could positively impact REE adsorption. The adsorption data indicated a high affinity between ZSM-5 and all three REEs with rapid kinetics and high adsorption capacities. The modeling study suggested that the adsorption kinetic data were well fitted by Avrami-fractional order, and Liu described the equilibrium data. The maximum adsorption capacity for Ce3+, La3+, and Nd3+ were 99.42 mg g−1, 96.43 mg g−1, 118.10 mg g−1, respectively. Further, the thermodynamic analysis revealed that the interaction between ZSM-5 and Ce3+, La3+, and Nd3+ was favorable, spontaneous, and endothermic. The efficiency of ZSM-5 adsorbent was also studied in recovering several REEs from leachate of phosphogypsum wastes, and the data results proved its potency to do so. The findings reported in this work support the idea that ZSM-5 can be successfully used as an adsorbent to recover REEs from synthetic and real samples.