Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles

The present work aims to develop a magnetic biocatalyst for customized production of nucleoside analogues using mutant His-tagged purine 2′-deoxyribosyltransferase from Trypanosoma brucei (TbPDTV11S) immobilized onto Ni2+ chelate magnetic iron oxide porous microparticles (MTbPDTV11S). Biochemical ch...

Full description

Autores:
Del Arco, Jon
Jordaan, Justin
Moral-Dardé, Verónica
Fernández-Lucas, Jesús
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5140
Acceso en línea:
http://hdl.handle.net/11323/5140
https://repositorio.cuc.edu.co/
Palabra clave:
Enzyme immobilization
Bioprocesses
Nucleoside analogues
2′-Deoxyribosyltransferases
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_ceed27d6ed67e15049f264bd75bafeab
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5140
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles
title Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles
spellingShingle Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles
Enzyme immobilization
Bioprocesses
Nucleoside analogues
2′-Deoxyribosyltransferases
title_short Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles
title_full Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles
title_fullStr Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles
title_full_unstemmed Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles
title_sort Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles
dc.creator.fl_str_mv Del Arco, Jon
Jordaan, Justin
Moral-Dardé, Verónica
Fernández-Lucas, Jesús
dc.contributor.author.spa.fl_str_mv Del Arco, Jon
Jordaan, Justin
Moral-Dardé, Verónica
Fernández-Lucas, Jesús
dc.subject.spa.fl_str_mv Enzyme immobilization
Bioprocesses
Nucleoside analogues
2′-Deoxyribosyltransferases
topic Enzyme immobilization
Bioprocesses
Nucleoside analogues
2′-Deoxyribosyltransferases
description The present work aims to develop a magnetic biocatalyst for customized production of nucleoside analogues using mutant His-tagged purine 2′-deoxyribosyltransferase from Trypanosoma brucei (TbPDTV11S) immobilized onto Ni2+ chelate magnetic iron oxide porous microparticles (MTbPDTV11S). Biochemical characterization revealed MTbPDTV11S5 as optimal candidate for further studies (10,552 IU g−1; retained activity 54% at 50 °C and pH 6.5). Interestingly, MTbPDTV11S5 displayed the highest activity value described up to date for an immobilized NDT. Moreover, MTbPDTV11S5 was successfully employed in the one-pot, one-step production of different therapeutic nucleoside analogues, such as cladribine or 2′-deoxy-2-fluoroadenosine, among others. Finally, MTbPDTV11S5 proved to be stable when stored at 50 °C for 8 h and pH 6.0 and reusable up to 10 times without negligible loss of activity in the enzymatic production of the antitumor prodrug 2′-deoxy-2-fluoroadenosine
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-08-09T15:55:20Z
dc.date.available.none.fl_str_mv 2019-08-09T15:55:20Z
dc.date.issued.none.fl_str_mv 2019-10
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/5140
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url http://hdl.handle.net/11323/5140
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://doi.org/10.1016/j.biortech.2019.121772
dc.relation.references.spa.fl_str_mv Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2014. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4, 1583–1600. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2015. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 33 (5), 435–456. Britos, C.N., Lapponi, M.J., Cappa, V.A., Rivero, C.W., Trelles, J.A., 2016. Biotransformation of halogenated nucleosides by immobilized Lactobacillus animalis 2′-N-deoxyribosyltransferase. J. Fluor. Chem. 186, 91–96. Crespo, N., Sánchez-Murcia, P.A., Gago, F., Cejudo-Sanches, J., Galmes, M.A., FernándezLucas, J., Mancheño, J.M., 2017. 2′-Deoxyribosyltransferase from Leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases. Appl. Microbiol. Biotechnol. 101 (19), 7187–7200. Del Arco, J., Sánchez-Murcia, P.A., Mancheño, J.M., Gago, F., Fernández-Lucas, J., 2018a. Characterization of an atypical, thermostable, organic solvent-and acid-tolerant 2′- deoxyribosyltransferase from Chroococcidiopsis thermalis. Appl. Microbiol. Biotechnol. 102 (16), 6947–6957. Del Arco, J., Martínez-Pascual, S., Clemente-Suárez, V.J., Corral, O.J., Jordaan, J., Hormigo, D., Perona, A., Fernández-Lucas, J., 2018b. One-pot, one-step production of dietary nucleotides by magnetic biocatalysts. Catalysts 8 (5), 184. Del Arco, J., Pérez, E., Naitow, H., Matsuura, Y., Kunishima, N., Fernández-Lucas, J., 2019. Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues. Bioresour. Technol. 276, 244–252. Fernández-Lucas, J., Acebal, C., Sinisterra, J.V., Arroyo, M., de la Mata, I., 2010. Lactobacillus reuteri 2′-deoxyribosyltransferase, a novel biocatalyst for tailoring of nucleosides. Appl. Environ. Microbiol. 76 (5), 1462–1470. Fernández-Lucas, J., Fresco-Taboada, A., Acebal, C., de la Mata, I., Arroyo, M., 2011. Enzymatic synthesis of nucleoside analogues using immobilized 2′-deoxyribosyltransferase from Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 91 (2), 317–327. Fernández-Lucas, J., Fresco-Taboada, A., de la Mata, I., Arroyo, M., 2012. One-step enzymatic synthesis of nucleosides from low water-soluble purine bases in non-conventional media. Bioresour. Technol. 115, 63–69. Fernández-Lucas, J., Harris, R., Mata-Casar, I., Heras, A., de la Mata, I., Arroyo, M., 2013. Magnetic chitosan beads for covalent immobilization of nucleoside 2′-deoxyribosyltransferase: application in nucleoside analogues synthesis. J. Ind. Microbiol. Biotechnol. 40 (9), 955–966. Fernández-Lucas, J., 2015. Multienzymatic synthesis of nucleic acid derivatives: a general perspective. Appl. Microbiol. Biotechnol. 99 (11), 4615–4627. Fresco-Taboada, A., de la Mata, I., Arroyo, M., Fernández-Lucas, J., 2013. New insights on nucleoside 2′-deoxyribosyltransferases: a versatile biocatalyst for one-pot one-step synthesis of nucleoside analogs. Appl. Microbiol. Biotechnol. 97 (9), 3773–3785. Fresco-Taboada, A., Serra, I., Fernández-Lucas, J., Acebal, C., Arroyo, M., Terreni, M., de la Mata, I., 2014. Nucleoside 2'-deoxyribosyltransferase from psychrophilic bacterium Bacillus psychrosaccharolyticus – preparation of an immobilized biocatalyst for the enzymatic synthesis of therapeutic nucleosides. Molecules 19 (8), 11231–11249. Fresco-Taboada, A., Serra, I., Arroyo, M., Fernández-Lucas, J., de la Mata, I., Terreni, M., 2016. Development of an immobilized biocatalyst based on Bacillus psychrosaccharolyticus NDT for the preparative synthesis of trifluridine and decytabine. Catal. Today 259, 197–204. Jordheim, L.P., Durantel, D., Zoulim, F., Dumontet, C., 2013. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 12 (6), 447–464. Méndez, M.B., Rivero, C.W., López-Gallego, F., Guisán, J.M., Trelles, J.A., 2018. Development of a high efficient biocatalyst by oriented covalent immobilization of a novel recombinant 2′-N-deoxyribosyltransferase from Lactobacillus animalis. J. Biotechnol. 270, 39–43. Parker, W., 2009. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 109, 2880–2893. https://doi.org/10.1021/ cr900028p. Pérez, E., Sánchez-Murcia, P.A., Jordaan, J., Blanco, M.D., Mancheño, J.M., Gago, F., Fernández-Lucas, J., 2018. Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-deoxyribosyltransferase from Trypanosoma brucei. Chem. Cat. Chem. 10 (19), 4406–4416. Rodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fernández-Lafuente, R., 2013. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 42 (15), 6290–6307. Santos, J.C.S., Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R.C., FernandezLafuente, R., 2015. Importance of the support properties for immobilization or purification of enzymes. Chem. Cat. Chem. 7 (16), 2413–2432. Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z., Chaloupkova, R., Damborsky, J., 2013. Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3 (12), 2823–2836.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/5140/1/Sustainable%20production%20of%20nucleoside%20analogues%20by%20a%20high-efficient%20purine%202%e2%80%b2-%20deoxyribosyltransferase%20immobilized%20onto%20Ni2%2b%20chelate%20magnetic%20microparticles.pdf
https://repositorio.cuc.edu.co/bitstream/11323/5140/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/5140/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/5140/5/Sustainable%20production%20of%20nucleoside%20analogues%20by%20a%20high-efficient%20purine%202%e2%80%b2-%20deoxyribosyltransferase%20immobilized%20onto%20Ni2%2b%20chelate%20magnetic%20microparticles.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/5140/6/Sustainable%20production%20of%20nucleoside%20analogues%20by%20a%20high-efficient%20purine%202%e2%80%b2-%20deoxyribosyltransferase%20immobilized%20onto%20Ni2%2b%20chelate%20magnetic%20microparticles.pdf.txt
bitstream.checksum.fl_str_mv 4d2635fe213158a0319947d1697e27c3
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
84f0b744627db74fabb16a8bf0ca8419
74e83830d11272ed603f91561eadc4be
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400227790487552
spelling Del Arco, Jon923cae3a1d238f02847617e53bdc6387Jordaan, Justin406cda6b514ffdd18ba17701827a23aeMoral-Dardé, Verónica04e03e3d832da9aca9cfdb01535d69cc300Fernández-Lucas, Jesús203a2ac57497988acae8aa40b528a49c2019-08-09T15:55:20Z2019-08-09T15:55:20Z2019-10http://hdl.handle.net/11323/5140Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present work aims to develop a magnetic biocatalyst for customized production of nucleoside analogues using mutant His-tagged purine 2′-deoxyribosyltransferase from Trypanosoma brucei (TbPDTV11S) immobilized onto Ni2+ chelate magnetic iron oxide porous microparticles (MTbPDTV11S). Biochemical characterization revealed MTbPDTV11S5 as optimal candidate for further studies (10,552 IU g−1; retained activity 54% at 50 °C and pH 6.5). Interestingly, MTbPDTV11S5 displayed the highest activity value described up to date for an immobilized NDT. Moreover, MTbPDTV11S5 was successfully employed in the one-pot, one-step production of different therapeutic nucleoside analogues, such as cladribine or 2′-deoxy-2-fluoroadenosine, among others. Finally, MTbPDTV11S5 proved to be stable when stored at 50 °C for 8 h and pH 6.0 and reusable up to 10 times without negligible loss of activity in the enzymatic production of the antitumor prodrug 2′-deoxy-2-fluoroadenosineengUniversidad de la Costahttps://doi.org/10.1016/j.biortech.2019.121772Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2014. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4, 1583–1600. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2015. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 33 (5), 435–456. Britos, C.N., Lapponi, M.J., Cappa, V.A., Rivero, C.W., Trelles, J.A., 2016. Biotransformation of halogenated nucleosides by immobilized Lactobacillus animalis 2′-N-deoxyribosyltransferase. J. Fluor. Chem. 186, 91–96. Crespo, N., Sánchez-Murcia, P.A., Gago, F., Cejudo-Sanches, J., Galmes, M.A., FernándezLucas, J., Mancheño, J.M., 2017. 2′-Deoxyribosyltransferase from Leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases. Appl. Microbiol. Biotechnol. 101 (19), 7187–7200. Del Arco, J., Sánchez-Murcia, P.A., Mancheño, J.M., Gago, F., Fernández-Lucas, J., 2018a. Characterization of an atypical, thermostable, organic solvent-and acid-tolerant 2′- deoxyribosyltransferase from Chroococcidiopsis thermalis. Appl. Microbiol. Biotechnol. 102 (16), 6947–6957. Del Arco, J., Martínez-Pascual, S., Clemente-Suárez, V.J., Corral, O.J., Jordaan, J., Hormigo, D., Perona, A., Fernández-Lucas, J., 2018b. One-pot, one-step production of dietary nucleotides by magnetic biocatalysts. Catalysts 8 (5), 184. Del Arco, J., Pérez, E., Naitow, H., Matsuura, Y., Kunishima, N., Fernández-Lucas, J., 2019. Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues. Bioresour. Technol. 276, 244–252. Fernández-Lucas, J., Acebal, C., Sinisterra, J.V., Arroyo, M., de la Mata, I., 2010. Lactobacillus reuteri 2′-deoxyribosyltransferase, a novel biocatalyst for tailoring of nucleosides. Appl. Environ. Microbiol. 76 (5), 1462–1470. Fernández-Lucas, J., Fresco-Taboada, A., Acebal, C., de la Mata, I., Arroyo, M., 2011. Enzymatic synthesis of nucleoside analogues using immobilized 2′-deoxyribosyltransferase from Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 91 (2), 317–327. Fernández-Lucas, J., Fresco-Taboada, A., de la Mata, I., Arroyo, M., 2012. One-step enzymatic synthesis of nucleosides from low water-soluble purine bases in non-conventional media. Bioresour. Technol. 115, 63–69. Fernández-Lucas, J., Harris, R., Mata-Casar, I., Heras, A., de la Mata, I., Arroyo, M., 2013. Magnetic chitosan beads for covalent immobilization of nucleoside 2′-deoxyribosyltransferase: application in nucleoside analogues synthesis. J. Ind. Microbiol. Biotechnol. 40 (9), 955–966. Fernández-Lucas, J., 2015. Multienzymatic synthesis of nucleic acid derivatives: a general perspective. Appl. Microbiol. Biotechnol. 99 (11), 4615–4627. Fresco-Taboada, A., de la Mata, I., Arroyo, M., Fernández-Lucas, J., 2013. New insights on nucleoside 2′-deoxyribosyltransferases: a versatile biocatalyst for one-pot one-step synthesis of nucleoside analogs. Appl. Microbiol. Biotechnol. 97 (9), 3773–3785. Fresco-Taboada, A., Serra, I., Fernández-Lucas, J., Acebal, C., Arroyo, M., Terreni, M., de la Mata, I., 2014. Nucleoside 2'-deoxyribosyltransferase from psychrophilic bacterium Bacillus psychrosaccharolyticus – preparation of an immobilized biocatalyst for the enzymatic synthesis of therapeutic nucleosides. Molecules 19 (8), 11231–11249. Fresco-Taboada, A., Serra, I., Arroyo, M., Fernández-Lucas, J., de la Mata, I., Terreni, M., 2016. Development of an immobilized biocatalyst based on Bacillus psychrosaccharolyticus NDT for the preparative synthesis of trifluridine and decytabine. Catal. Today 259, 197–204. Jordheim, L.P., Durantel, D., Zoulim, F., Dumontet, C., 2013. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 12 (6), 447–464. Méndez, M.B., Rivero, C.W., López-Gallego, F., Guisán, J.M., Trelles, J.A., 2018. Development of a high efficient biocatalyst by oriented covalent immobilization of a novel recombinant 2′-N-deoxyribosyltransferase from Lactobacillus animalis. J. Biotechnol. 270, 39–43. Parker, W., 2009. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 109, 2880–2893. https://doi.org/10.1021/ cr900028p. Pérez, E., Sánchez-Murcia, P.A., Jordaan, J., Blanco, M.D., Mancheño, J.M., Gago, F., Fernández-Lucas, J., 2018. Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-deoxyribosyltransferase from Trypanosoma brucei. Chem. Cat. Chem. 10 (19), 4406–4416. Rodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fernández-Lafuente, R., 2013. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 42 (15), 6290–6307. Santos, J.C.S., Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R.C., FernandezLafuente, R., 2015. Importance of the support properties for immobilization or purification of enzymes. Chem. Cat. Chem. 7 (16), 2413–2432. Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z., Chaloupkova, R., Damborsky, J., 2013. Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3 (12), 2823–2836.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Enzyme immobilizationBioprocessesNucleoside analogues2′-DeoxyribosyltransferasesSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticlesPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionORIGINALSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles.pdfSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles.pdfapplication/pdf185874https://repositorio.cuc.edu.co/bitstream/11323/5140/1/Sustainable%20production%20of%20nucleoside%20analogues%20by%20a%20high-efficient%20purine%202%e2%80%b2-%20deoxyribosyltransferase%20immobilized%20onto%20Ni2%2b%20chelate%20magnetic%20microparticles.pdf4d2635fe213158a0319947d1697e27c3MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/5140/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstream/11323/5140/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAILSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles.pdf.jpgSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles.pdf.jpgimage/jpeg40825https://repositorio.cuc.edu.co/bitstream/11323/5140/5/Sustainable%20production%20of%20nucleoside%20analogues%20by%20a%20high-efficient%20purine%202%e2%80%b2-%20deoxyribosyltransferase%20immobilized%20onto%20Ni2%2b%20chelate%20magnetic%20microparticles.pdf.jpg84f0b744627db74fabb16a8bf0ca8419MD55open accessTEXTSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles.pdf.txtSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles.pdf.txttext/plain1341https://repositorio.cuc.edu.co/bitstream/11323/5140/6/Sustainable%20production%20of%20nucleoside%20analogues%20by%20a%20high-efficient%20purine%202%e2%80%b2-%20deoxyribosyltransferase%20immobilized%20onto%20Ni2%2b%20chelate%20magnetic%20microparticles.pdf.txt74e83830d11272ed603f91561eadc4beMD56open access11323/5140oai:repositorio.cuc.edu.co:11323/51402023-12-14 17:09:53.398CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=