Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles
The present work aims to develop a magnetic biocatalyst for customized production of nucleoside analogues using mutant His-tagged purine 2′-deoxyribosyltransferase from Trypanosoma brucei (TbPDTV11S) immobilized onto Ni2+ chelate magnetic iron oxide porous microparticles (MTbPDTV11S). Biochemical ch...
- Autores:
-
Del Arco, Jon
Jordaan, Justin
Moral-Dardé, Verónica
Fernández-Lucas, Jesús
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5140
- Acceso en línea:
- https://hdl.handle.net/11323/5140
https://repositorio.cuc.edu.co/
- Palabra clave:
- Enzyme immobilization
Bioprocesses
Nucleoside analogues
2′-Deoxyribosyltransferases
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_ceed27d6ed67e15049f264bd75bafeab |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5140 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles |
title |
Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles |
spellingShingle |
Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles Enzyme immobilization Bioprocesses Nucleoside analogues 2′-Deoxyribosyltransferases |
title_short |
Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles |
title_full |
Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles |
title_fullStr |
Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles |
title_full_unstemmed |
Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles |
title_sort |
Sustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles |
dc.creator.fl_str_mv |
Del Arco, Jon Jordaan, Justin Moral-Dardé, Verónica Fernández-Lucas, Jesús |
dc.contributor.author.spa.fl_str_mv |
Del Arco, Jon Jordaan, Justin Moral-Dardé, Verónica Fernández-Lucas, Jesús |
dc.subject.spa.fl_str_mv |
Enzyme immobilization Bioprocesses Nucleoside analogues 2′-Deoxyribosyltransferases |
topic |
Enzyme immobilization Bioprocesses Nucleoside analogues 2′-Deoxyribosyltransferases |
description |
The present work aims to develop a magnetic biocatalyst for customized production of nucleoside analogues using mutant His-tagged purine 2′-deoxyribosyltransferase from Trypanosoma brucei (TbPDTV11S) immobilized onto Ni2+ chelate magnetic iron oxide porous microparticles (MTbPDTV11S). Biochemical characterization revealed MTbPDTV11S5 as optimal candidate for further studies (10,552 IU g−1; retained activity 54% at 50 °C and pH 6.5). Interestingly, MTbPDTV11S5 displayed the highest activity value described up to date for an immobilized NDT. Moreover, MTbPDTV11S5 was successfully employed in the one-pot, one-step production of different therapeutic nucleoside analogues, such as cladribine or 2′-deoxy-2-fluoroadenosine, among others. Finally, MTbPDTV11S5 proved to be stable when stored at 50 °C for 8 h and pH 6.0 and reusable up to 10 times without negligible loss of activity in the enzymatic production of the antitumor prodrug 2′-deoxy-2-fluoroadenosine |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-08-09T15:55:20Z |
dc.date.available.none.fl_str_mv |
2019-08-09T15:55:20Z |
dc.date.issued.none.fl_str_mv |
2019-10 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5140 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/5140 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.1016/j.biortech.2019.121772 |
dc.relation.references.spa.fl_str_mv |
Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2014. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4, 1583–1600. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2015. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 33 (5), 435–456. Britos, C.N., Lapponi, M.J., Cappa, V.A., Rivero, C.W., Trelles, J.A., 2016. Biotransformation of halogenated nucleosides by immobilized Lactobacillus animalis 2′-N-deoxyribosyltransferase. J. Fluor. Chem. 186, 91–96. Crespo, N., Sánchez-Murcia, P.A., Gago, F., Cejudo-Sanches, J., Galmes, M.A., FernándezLucas, J., Mancheño, J.M., 2017. 2′-Deoxyribosyltransferase from Leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases. Appl. Microbiol. Biotechnol. 101 (19), 7187–7200. Del Arco, J., Sánchez-Murcia, P.A., Mancheño, J.M., Gago, F., Fernández-Lucas, J., 2018a. Characterization of an atypical, thermostable, organic solvent-and acid-tolerant 2′- deoxyribosyltransferase from Chroococcidiopsis thermalis. Appl. Microbiol. Biotechnol. 102 (16), 6947–6957. Del Arco, J., Martínez-Pascual, S., Clemente-Suárez, V.J., Corral, O.J., Jordaan, J., Hormigo, D., Perona, A., Fernández-Lucas, J., 2018b. One-pot, one-step production of dietary nucleotides by magnetic biocatalysts. Catalysts 8 (5), 184. Del Arco, J., Pérez, E., Naitow, H., Matsuura, Y., Kunishima, N., Fernández-Lucas, J., 2019. Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues. Bioresour. Technol. 276, 244–252. Fernández-Lucas, J., Acebal, C., Sinisterra, J.V., Arroyo, M., de la Mata, I., 2010. Lactobacillus reuteri 2′-deoxyribosyltransferase, a novel biocatalyst for tailoring of nucleosides. Appl. Environ. Microbiol. 76 (5), 1462–1470. Fernández-Lucas, J., Fresco-Taboada, A., Acebal, C., de la Mata, I., Arroyo, M., 2011. Enzymatic synthesis of nucleoside analogues using immobilized 2′-deoxyribosyltransferase from Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 91 (2), 317–327. Fernández-Lucas, J., Fresco-Taboada, A., de la Mata, I., Arroyo, M., 2012. One-step enzymatic synthesis of nucleosides from low water-soluble purine bases in non-conventional media. Bioresour. Technol. 115, 63–69. Fernández-Lucas, J., Harris, R., Mata-Casar, I., Heras, A., de la Mata, I., Arroyo, M., 2013. Magnetic chitosan beads for covalent immobilization of nucleoside 2′-deoxyribosyltransferase: application in nucleoside analogues synthesis. J. Ind. Microbiol. Biotechnol. 40 (9), 955–966. Fernández-Lucas, J., 2015. Multienzymatic synthesis of nucleic acid derivatives: a general perspective. Appl. Microbiol. Biotechnol. 99 (11), 4615–4627. Fresco-Taboada, A., de la Mata, I., Arroyo, M., Fernández-Lucas, J., 2013. New insights on nucleoside 2′-deoxyribosyltransferases: a versatile biocatalyst for one-pot one-step synthesis of nucleoside analogs. Appl. Microbiol. Biotechnol. 97 (9), 3773–3785. Fresco-Taboada, A., Serra, I., Fernández-Lucas, J., Acebal, C., Arroyo, M., Terreni, M., de la Mata, I., 2014. Nucleoside 2'-deoxyribosyltransferase from psychrophilic bacterium Bacillus psychrosaccharolyticus – preparation of an immobilized biocatalyst for the enzymatic synthesis of therapeutic nucleosides. Molecules 19 (8), 11231–11249. Fresco-Taboada, A., Serra, I., Arroyo, M., Fernández-Lucas, J., de la Mata, I., Terreni, M., 2016. Development of an immobilized biocatalyst based on Bacillus psychrosaccharolyticus NDT for the preparative synthesis of trifluridine and decytabine. Catal. Today 259, 197–204. Jordheim, L.P., Durantel, D., Zoulim, F., Dumontet, C., 2013. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 12 (6), 447–464. Méndez, M.B., Rivero, C.W., López-Gallego, F., Guisán, J.M., Trelles, J.A., 2018. Development of a high efficient biocatalyst by oriented covalent immobilization of a novel recombinant 2′-N-deoxyribosyltransferase from Lactobacillus animalis. J. Biotechnol. 270, 39–43. Parker, W., 2009. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 109, 2880–2893. https://doi.org/10.1021/ cr900028p. Pérez, E., Sánchez-Murcia, P.A., Jordaan, J., Blanco, M.D., Mancheño, J.M., Gago, F., Fernández-Lucas, J., 2018. Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-deoxyribosyltransferase from Trypanosoma brucei. Chem. Cat. Chem. 10 (19), 4406–4416. Rodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fernández-Lafuente, R., 2013. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 42 (15), 6290–6307. Santos, J.C.S., Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R.C., FernandezLafuente, R., 2015. Importance of the support properties for immobilization or purification of enzymes. Chem. Cat. Chem. 7 (16), 2413–2432. Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z., Chaloupkova, R., Damborsky, J., 2013. Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3 (12), 2823–2836. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/471b35f6-75c5-47e4-8e47-636dff258dda/download https://repositorio.cuc.edu.co/bitstreams/7fccac21-ca3d-48cd-ad0a-0ecc1fc82874/download https://repositorio.cuc.edu.co/bitstreams/a0304ec1-c031-4230-b7cd-cee119d25764/download https://repositorio.cuc.edu.co/bitstreams/8d861dd5-3b36-4ac9-98ba-a162185ef10a/download https://repositorio.cuc.edu.co/bitstreams/6e09e9c6-fe0c-4bc5-9024-706e9dc28f39/download |
bitstream.checksum.fl_str_mv |
4d2635fe213158a0319947d1697e27c3 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 84f0b744627db74fabb16a8bf0ca8419 74e83830d11272ed603f91561eadc4be |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166850865790976 |
spelling |
Del Arco, JonJordaan, JustinMoral-Dardé, VerónicaFernández-Lucas, Jesús2019-08-09T15:55:20Z2019-08-09T15:55:20Z2019-10https://hdl.handle.net/11323/5140Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present work aims to develop a magnetic biocatalyst for customized production of nucleoside analogues using mutant His-tagged purine 2′-deoxyribosyltransferase from Trypanosoma brucei (TbPDTV11S) immobilized onto Ni2+ chelate magnetic iron oxide porous microparticles (MTbPDTV11S). Biochemical characterization revealed MTbPDTV11S5 as optimal candidate for further studies (10,552 IU g−1; retained activity 54% at 50 °C and pH 6.5). Interestingly, MTbPDTV11S5 displayed the highest activity value described up to date for an immobilized NDT. Moreover, MTbPDTV11S5 was successfully employed in the one-pot, one-step production of different therapeutic nucleoside analogues, such as cladribine or 2′-deoxy-2-fluoroadenosine, among others. Finally, MTbPDTV11S5 proved to be stable when stored at 50 °C for 8 h and pH 6.0 and reusable up to 10 times without negligible loss of activity in the enzymatic production of the antitumor prodrug 2′-deoxy-2-fluoroadenosineDel Arco, JonJordaan, JustinMoral-Dardé, VerónicaFernández-Lucas, JesúsengUniversidad de la Costahttps://doi.org/10.1016/j.biortech.2019.121772Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2014. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4, 1583–1600. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2015. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 33 (5), 435–456. Britos, C.N., Lapponi, M.J., Cappa, V.A., Rivero, C.W., Trelles, J.A., 2016. Biotransformation of halogenated nucleosides by immobilized Lactobacillus animalis 2′-N-deoxyribosyltransferase. J. Fluor. Chem. 186, 91–96. Crespo, N., Sánchez-Murcia, P.A., Gago, F., Cejudo-Sanches, J., Galmes, M.A., FernándezLucas, J., Mancheño, J.M., 2017. 2′-Deoxyribosyltransferase from Leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases. Appl. Microbiol. Biotechnol. 101 (19), 7187–7200. Del Arco, J., Sánchez-Murcia, P.A., Mancheño, J.M., Gago, F., Fernández-Lucas, J., 2018a. Characterization of an atypical, thermostable, organic solvent-and acid-tolerant 2′- deoxyribosyltransferase from Chroococcidiopsis thermalis. Appl. Microbiol. Biotechnol. 102 (16), 6947–6957. Del Arco, J., Martínez-Pascual, S., Clemente-Suárez, V.J., Corral, O.J., Jordaan, J., Hormigo, D., Perona, A., Fernández-Lucas, J., 2018b. One-pot, one-step production of dietary nucleotides by magnetic biocatalysts. Catalysts 8 (5), 184. Del Arco, J., Pérez, E., Naitow, H., Matsuura, Y., Kunishima, N., Fernández-Lucas, J., 2019. Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues. Bioresour. Technol. 276, 244–252. Fernández-Lucas, J., Acebal, C., Sinisterra, J.V., Arroyo, M., de la Mata, I., 2010. Lactobacillus reuteri 2′-deoxyribosyltransferase, a novel biocatalyst for tailoring of nucleosides. Appl. Environ. Microbiol. 76 (5), 1462–1470. Fernández-Lucas, J., Fresco-Taboada, A., Acebal, C., de la Mata, I., Arroyo, M., 2011. Enzymatic synthesis of nucleoside analogues using immobilized 2′-deoxyribosyltransferase from Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 91 (2), 317–327. Fernández-Lucas, J., Fresco-Taboada, A., de la Mata, I., Arroyo, M., 2012. One-step enzymatic synthesis of nucleosides from low water-soluble purine bases in non-conventional media. Bioresour. Technol. 115, 63–69. Fernández-Lucas, J., Harris, R., Mata-Casar, I., Heras, A., de la Mata, I., Arroyo, M., 2013. Magnetic chitosan beads for covalent immobilization of nucleoside 2′-deoxyribosyltransferase: application in nucleoside analogues synthesis. J. Ind. Microbiol. Biotechnol. 40 (9), 955–966. Fernández-Lucas, J., 2015. Multienzymatic synthesis of nucleic acid derivatives: a general perspective. Appl. Microbiol. Biotechnol. 99 (11), 4615–4627. Fresco-Taboada, A., de la Mata, I., Arroyo, M., Fernández-Lucas, J., 2013. New insights on nucleoside 2′-deoxyribosyltransferases: a versatile biocatalyst for one-pot one-step synthesis of nucleoside analogs. Appl. Microbiol. Biotechnol. 97 (9), 3773–3785. Fresco-Taboada, A., Serra, I., Fernández-Lucas, J., Acebal, C., Arroyo, M., Terreni, M., de la Mata, I., 2014. Nucleoside 2'-deoxyribosyltransferase from psychrophilic bacterium Bacillus psychrosaccharolyticus – preparation of an immobilized biocatalyst for the enzymatic synthesis of therapeutic nucleosides. Molecules 19 (8), 11231–11249. Fresco-Taboada, A., Serra, I., Arroyo, M., Fernández-Lucas, J., de la Mata, I., Terreni, M., 2016. Development of an immobilized biocatalyst based on Bacillus psychrosaccharolyticus NDT for the preparative synthesis of trifluridine and decytabine. Catal. Today 259, 197–204. Jordheim, L.P., Durantel, D., Zoulim, F., Dumontet, C., 2013. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 12 (6), 447–464. Méndez, M.B., Rivero, C.W., López-Gallego, F., Guisán, J.M., Trelles, J.A., 2018. Development of a high efficient biocatalyst by oriented covalent immobilization of a novel recombinant 2′-N-deoxyribosyltransferase from Lactobacillus animalis. J. Biotechnol. 270, 39–43. Parker, W., 2009. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 109, 2880–2893. https://doi.org/10.1021/ cr900028p. Pérez, E., Sánchez-Murcia, P.A., Jordaan, J., Blanco, M.D., Mancheño, J.M., Gago, F., Fernández-Lucas, J., 2018. Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-deoxyribosyltransferase from Trypanosoma brucei. Chem. Cat. Chem. 10 (19), 4406–4416. Rodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fernández-Lafuente, R., 2013. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 42 (15), 6290–6307. Santos, J.C.S., Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R.C., FernandezLafuente, R., 2015. Importance of the support properties for immobilization or purification of enzymes. Chem. Cat. Chem. 7 (16), 2413–2432. Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z., Chaloupkova, R., Damborsky, J., 2013. Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3 (12), 2823–2836.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Enzyme immobilizationBioprocessesNucleoside analogues2′-DeoxyribosyltransferasesSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticlesPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles.pdfSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles.pdfapplication/pdf185874https://repositorio.cuc.edu.co/bitstreams/471b35f6-75c5-47e4-8e47-636dff258dda/download4d2635fe213158a0319947d1697e27c3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/7fccac21-ca3d-48cd-ad0a-0ecc1fc82874/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/a0304ec1-c031-4230-b7cd-cee119d25764/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles.pdf.jpgSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles.pdf.jpgimage/jpeg40825https://repositorio.cuc.edu.co/bitstreams/8d861dd5-3b36-4ac9-98ba-a162185ef10a/download84f0b744627db74fabb16a8bf0ca8419MD55TEXTSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles.pdf.txtSustainable production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles.pdf.txttext/plain1341https://repositorio.cuc.edu.co/bitstreams/6e09e9c6-fe0c-4bc5-9024-706e9dc28f39/download74e83830d11272ed603f91561eadc4beMD5611323/5140oai:repositorio.cuc.edu.co:11323/51402024-09-17 14:18:03.023http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |