Sentiment analysis in twitter: Impact of morphological characteristics
This paper presents a series of experiments aimed at the sentiment analysis on texts posted in Twitter. In particular, several morphological characteristics are studied for the representation of texts in order to determine those that provide the best performance when detecting the emotional charge c...
- Autores:
-
Silva, Jesús
Cera Visbal, Juan Manuel
Vargas, Jesús
Pineda, Omar
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7295
- Acceso en línea:
- https://hdl.handle.net/11323/7295
https://repositorio.cuc.edu.co/
- Palabra clave:
- Morphological characteristics
Sentiment analysis
Twitter
Weka
- Rights
- closedAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_cda27614b13d826f53d3e1707d02c8d7 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7295 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sentiment analysis in twitter: Impact of morphological characteristics |
title |
Sentiment analysis in twitter: Impact of morphological characteristics |
spellingShingle |
Sentiment analysis in twitter: Impact of morphological characteristics Morphological characteristics Sentiment analysis Weka |
title_short |
Sentiment analysis in twitter: Impact of morphological characteristics |
title_full |
Sentiment analysis in twitter: Impact of morphological characteristics |
title_fullStr |
Sentiment analysis in twitter: Impact of morphological characteristics |
title_full_unstemmed |
Sentiment analysis in twitter: Impact of morphological characteristics |
title_sort |
Sentiment analysis in twitter: Impact of morphological characteristics |
dc.creator.fl_str_mv |
Silva, Jesús Cera Visbal, Juan Manuel Vargas, Jesús Pineda, Omar |
dc.contributor.author.spa.fl_str_mv |
Silva, Jesús Cera Visbal, Juan Manuel Vargas, Jesús Pineda, Omar |
dc.subject.spa.fl_str_mv |
Morphological characteristics Sentiment analysis Weka |
topic |
Morphological characteristics Sentiment analysis Weka |
description |
This paper presents a series of experiments aimed at the sentiment analysis on texts posted in Twitter. In particular, several morphological characteristics are studied for the representation of texts in order to determine those that provide the best performance when detecting the emotional charge contained in the Tweets. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-12T21:15:34Z |
dc.date.available.none.fl_str_mv |
2020-11-12T21:15:34Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.embargoEnd.none.fl_str_mv |
2021-06-19 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
21945357 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7295 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
21945357 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7295 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Zahra, K., Imran, M., Ostermann, F.O.: Automatic identification of eyewitness messages on Twitter during disasters. Inf. Process. Manag. 57(1), 102107 (2020) Kaul, A., Mittal, V., Chaudhary, M., Arora, A.: Persona classification of celebrity Twitter users. In: Digital and Social Media Marketing, pp. 109–125. Springer, Cham (2020) Motamedi, R., Jamshidi, S., Rejaie, R., Willinger, W.: Examining the evolution of the Twitter elite network. Soc. Netw. Anal. Mining 10(1), 1 (2020) Rodríguez-Ruiz, J., Mata-Sánchez, J.I., Monroy, R., Loyola-González, O., López-Cuevas, A.: A one-class classification approach for bot detection on Twitter. Comput. Secur. 91, 101715 (2020) Vásquez, C., Torres-Samuel, M., Viloria, A., Borrero, T.C., Varela, N., Lis-Gutiérrez, J.P., Gaitán-Angulo, M.: Visibility of research in universities: the triad product-researcher-institution. Case: Latin american countries. In: International Conference on Data Mining and Big Data, pp. 225–234. Springer, Cham, June 2018 Burnap, P., Williams, M.L.: Us and them: identifying cyber hate on Twitter across multiple protected characteristics. EPJ Data Sci. 5(1), 11 (2016) Luo, F., Cao, G., Mulligan, K., Li, X.: Explore spatiotemporal and demographic characteristics of human mobility via Twitter: a case study of Chicago. Appl. Geogr. 70, 11–25 (2016) Kabakuş, A.T., Şimşek, M.: An analysis of the characteristics of verified Twitter users. Sakarya Univ. J. Comput. Inf. Sci. 2(3), 180–186 (2019) Nguyen, Q.C., Brunisholz, K.D., Yu, W., McCullough, M., Hanson, H.A., Litchman, M.L., Li, F., Wan, Y., VanDerslice, J.A., Wen, M., Smith, K.R.: Twitter-derived neighborhood characteristics associated with obesity and diabetes. Sci. Rep. 7(1), 1–10 (2017) Gurajala, S., White, J.S., Hudson, B., Voter, B.R., Matthews, J.N.: Profile characteristics of fake Twitter accounts. Big Data Soc. 3(2), 2053951716674236 (2016) Chu, K.H., Majmundar, A., Allem, J.P., Soto, D.W., Cruz, T.B., Unger, J.B.: Tobacco use behaviors, attitudes, and demographic characteristics of tobacco opinion leaders and their followers: Twitter analysis. J. Med. Internet Res. 21(6), e12676 (2019) Agarwal, A., Toshniwal, D.: Face off: travel habits, road conditions and traffic city characteristics bared using Twitter. IEEE Access 7, 66536–66552 (2019) Kim, Y.H., Woo, H.J.: Exploring Spatiotemporal Characteristics of Twitter data Using Topic Modelling Techniques. Abstracts of the ICA, 1 (2019) Jamison, A.M., Broniatowski, D.A., Quinn, S.C.: Malicious actors on Twitter: a guide for public health researchers. Am. J. Public Health 109(5), 688–692 (2019) Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web visibility profiles of top100 Latin American universities. In: International Conference on Data Mining and Big Data, pp. 254–262. Springer, Cham, June 2018 Saeidi, M., Venerandi, A., Capra, L., Riedel, S.: Community Question Answering Platforms vs. Twitter for Predicting Characteristics of Urban Neighbourhoods. arXiv preprint arXiv:1701.04653 (2017) Silva, J., Varela, N., Ovallos-Gazabon, D., Palma, H.H., Cazallo-Antunez, A., Bilbao, O.R., Llinás, N.O., Lezama, O.B.P.: Data mining and social network analysis on Twitter. In: International Conference on Communication, Computing and Electronics Systems, pp. 401–408. Springer, Singapore (2020) Silva, J., Naveda, A.S., Suarez, R.G., Palma, H.H., Núñez, W.N.: Method for collecting relevant topics from Twitter supported by big data. In: Journal of Physics: Conference Series, vol. 1432, no. 1, p. 012094. IOP Publishing, January 2020 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Advances in Intelligent Systems and Computing |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089715269&doi=10.1007%2f978-3-030-53036-5_29&partnerID=40&md5=f59d26e93a8bd64ecb876d07f838daab |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/148514e8-98ae-4a20-bfd6-dcde42a0d119/download https://repositorio.cuc.edu.co/bitstreams/ef8ccc6f-bb1b-4929-bdfa-d791997b6d51/download https://repositorio.cuc.edu.co/bitstreams/dda1069c-5920-45de-a2ea-6325dcc9a3b9/download https://repositorio.cuc.edu.co/bitstreams/15408f2f-c7a3-4bc4-ad3c-02ccf571ea5f/download https://repositorio.cuc.edu.co/bitstreams/02d4b4d8-f491-410e-aa04-2358749b1965/download |
bitstream.checksum.fl_str_mv |
e1748d5af89163ec72de07b9520a112a 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 9df42c5b2c796e3dbdb6104a16f2aaca 4bfcc2f3a5d29392d498184f56ca5737 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760710515949568 |
spelling |
Silva, JesúsCera Visbal, Juan ManuelVargas, JesúsPineda, Omar2020-11-12T21:15:34Z2020-11-12T21:15:34Z20202021-06-1921945357https://hdl.handle.net/11323/7295Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents a series of experiments aimed at the sentiment analysis on texts posted in Twitter. In particular, several morphological characteristics are studied for the representation of texts in order to determine those that provide the best performance when detecting the emotional charge contained in the Tweets.Silva, JesúsCera Visbal, Juan Manuel-will be generated-orcid-0000-0003-0175-1845-600Vargas, JesúsPineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAdvances in Intelligent Systems and Computinghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089715269&doi=10.1007%2f978-3-030-53036-5_29&partnerID=40&md5=f59d26e93a8bd64ecb876d07f838daabMorphological characteristicsSentiment analysisTwitterWekaSentiment analysis in twitter: Impact of morphological characteristicsPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionZahra, K., Imran, M., Ostermann, F.O.: Automatic identification of eyewitness messages on Twitter during disasters. Inf. Process. Manag. 57(1), 102107 (2020)Kaul, A., Mittal, V., Chaudhary, M., Arora, A.: Persona classification of celebrity Twitter users. In: Digital and Social Media Marketing, pp. 109–125. Springer, Cham (2020)Motamedi, R., Jamshidi, S., Rejaie, R., Willinger, W.: Examining the evolution of the Twitter elite network. Soc. Netw. Anal. Mining 10(1), 1 (2020)Rodríguez-Ruiz, J., Mata-Sánchez, J.I., Monroy, R., Loyola-González, O., López-Cuevas, A.: A one-class classification approach for bot detection on Twitter. Comput. Secur. 91, 101715 (2020)Vásquez, C., Torres-Samuel, M., Viloria, A., Borrero, T.C., Varela, N., Lis-Gutiérrez, J.P., Gaitán-Angulo, M.: Visibility of research in universities: the triad product-researcher-institution. Case: Latin american countries. In: International Conference on Data Mining and Big Data, pp. 225–234. Springer, Cham, June 2018Burnap, P., Williams, M.L.: Us and them: identifying cyber hate on Twitter across multiple protected characteristics. EPJ Data Sci. 5(1), 11 (2016)Luo, F., Cao, G., Mulligan, K., Li, X.: Explore spatiotemporal and demographic characteristics of human mobility via Twitter: a case study of Chicago. Appl. Geogr. 70, 11–25 (2016)Kabakuş, A.T., Şimşek, M.: An analysis of the characteristics of verified Twitter users. Sakarya Univ. J. Comput. Inf. Sci. 2(3), 180–186 (2019)Nguyen, Q.C., Brunisholz, K.D., Yu, W., McCullough, M., Hanson, H.A., Litchman, M.L., Li, F., Wan, Y., VanDerslice, J.A., Wen, M., Smith, K.R.: Twitter-derived neighborhood characteristics associated with obesity and diabetes. Sci. Rep. 7(1), 1–10 (2017)Gurajala, S., White, J.S., Hudson, B., Voter, B.R., Matthews, J.N.: Profile characteristics of fake Twitter accounts. Big Data Soc. 3(2), 2053951716674236 (2016)Chu, K.H., Majmundar, A., Allem, J.P., Soto, D.W., Cruz, T.B., Unger, J.B.: Tobacco use behaviors, attitudes, and demographic characteristics of tobacco opinion leaders and their followers: Twitter analysis. J. Med. Internet Res. 21(6), e12676 (2019)Agarwal, A., Toshniwal, D.: Face off: travel habits, road conditions and traffic city characteristics bared using Twitter. IEEE Access 7, 66536–66552 (2019)Kim, Y.H., Woo, H.J.: Exploring Spatiotemporal Characteristics of Twitter data Using Topic Modelling Techniques. Abstracts of the ICA, 1 (2019)Jamison, A.M., Broniatowski, D.A., Quinn, S.C.: Malicious actors on Twitter: a guide for public health researchers. Am. J. Public Health 109(5), 688–692 (2019)Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web visibility profiles of top100 Latin American universities. In: International Conference on Data Mining and Big Data, pp. 254–262. Springer, Cham, June 2018Saeidi, M., Venerandi, A., Capra, L., Riedel, S.: Community Question Answering Platforms vs. Twitter for Predicting Characteristics of Urban Neighbourhoods. arXiv preprint arXiv:1701.04653 (2017)Silva, J., Varela, N., Ovallos-Gazabon, D., Palma, H.H., Cazallo-Antunez, A., Bilbao, O.R., Llinás, N.O., Lezama, O.B.P.: Data mining and social network analysis on Twitter. In: International Conference on Communication, Computing and Electronics Systems, pp. 401–408. Springer, Singapore (2020)Silva, J., Naveda, A.S., Suarez, R.G., Palma, H.H., Núñez, W.N.: Method for collecting relevant topics from Twitter supported by big data. In: Journal of Physics: Conference Series, vol. 1432, no. 1, p. 012094. IOP Publishing, January 2020PublicationORIGINALSENTIMENT ANALYSIS IN TWITTER IMPACT OF MORPHOLOGICAL CHARACTERISTICS.pdfSENTIMENT ANALYSIS IN TWITTER IMPACT OF MORPHOLOGICAL CHARACTERISTICS.pdfapplication/pdf5522https://repositorio.cuc.edu.co/bitstreams/148514e8-98ae-4a20-bfd6-dcde42a0d119/downloade1748d5af89163ec72de07b9520a112aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/ef8ccc6f-bb1b-4929-bdfa-d791997b6d51/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/dda1069c-5920-45de-a2ea-6325dcc9a3b9/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILSENTIMENT ANALYSIS IN TWITTER IMPACT OF MORPHOLOGICAL CHARACTERISTICS.pdf.jpgSENTIMENT ANALYSIS IN TWITTER IMPACT OF MORPHOLOGICAL CHARACTERISTICS.pdf.jpgimage/jpeg34646https://repositorio.cuc.edu.co/bitstreams/15408f2f-c7a3-4bc4-ad3c-02ccf571ea5f/download9df42c5b2c796e3dbdb6104a16f2aacaMD54TEXTSENTIMENT ANALYSIS IN TWITTER IMPACT OF MORPHOLOGICAL CHARACTERISTICS.pdf.txtSENTIMENT ANALYSIS IN TWITTER IMPACT OF MORPHOLOGICAL CHARACTERISTICS.pdf.txttext/plain576https://repositorio.cuc.edu.co/bitstreams/02d4b4d8-f491-410e-aa04-2358749b1965/download4bfcc2f3a5d29392d498184f56ca5737MD5511323/7295oai:repositorio.cuc.edu.co:11323/72952024-09-17 10:44:53.214http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |