Nanoparticles generated during volcanic rock exploitation: an overview

Nanoparticles (NPs) from the mining of volcanic rocks have been a matter of concern around the world because they can pose environmental and human health risks. The nanoparticles are pointed as opportunities of application in a large field of knowledge. The aim of this study is to provide an overvie...

Full description

Autores:
Gindri Ramos, Claudete
Silva Oliveira, Marcos Leandro
Fernández Pena, Merlys
Meriño Cantillo, Andrea
Lozano Ayarza, Liliana Patricia
Korchagin, Jackson
Campanhola Bortoluzzi, Edson
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8895
Acceso en línea:
https://hdl.handle.net/11323/8895
https://doi.org/10.1016/j.jece.2021.106441
https://repositorio.cuc.edu.co/
Palabra clave:
Health
Mining
Mineralogy
Nutrient
Sustainable agriculture
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_cd3c49a9a1770f4ede42e0d6caa32103
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8895
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Nanoparticles generated during volcanic rock exploitation: an overview
title Nanoparticles generated during volcanic rock exploitation: an overview
spellingShingle Nanoparticles generated during volcanic rock exploitation: an overview
Health
Mining
Mineralogy
Nutrient
Sustainable agriculture
title_short Nanoparticles generated during volcanic rock exploitation: an overview
title_full Nanoparticles generated during volcanic rock exploitation: an overview
title_fullStr Nanoparticles generated during volcanic rock exploitation: an overview
title_full_unstemmed Nanoparticles generated during volcanic rock exploitation: an overview
title_sort Nanoparticles generated during volcanic rock exploitation: an overview
dc.creator.fl_str_mv Gindri Ramos, Claudete
Silva Oliveira, Marcos Leandro
Fernández Pena, Merlys
Meriño Cantillo, Andrea
Lozano Ayarza, Liliana Patricia
Korchagin, Jackson
Campanhola Bortoluzzi, Edson
dc.contributor.author.spa.fl_str_mv Gindri Ramos, Claudete
Silva Oliveira, Marcos Leandro
Fernández Pena, Merlys
Meriño Cantillo, Andrea
Lozano Ayarza, Liliana Patricia
Korchagin, Jackson
Campanhola Bortoluzzi, Edson
dc.subject.spa.fl_str_mv Health
Mining
Mineralogy
Nutrient
Sustainable agriculture
topic Health
Mining
Mineralogy
Nutrient
Sustainable agriculture
description Nanoparticles (NPs) from the mining of volcanic rocks have been a matter of concern around the world because they can pose environmental and human health risks. The nanoparticles are pointed as opportunities of application in a large field of knowledge. The aim of this study is to provide an overview of scientific publications on the success rates of mineral nanoparticles, the use of soil remineralizers as an alternative for replacing highly soluble fertilizers and their potential risk to human health and the environment. Nanoparticles were successful used as a filter agent and may act as carrier agent of metals and molecules through the environment compartments; rock powder was used as a litho-fertilizer in nature or enriched with nutrients and pesticides for plant disease control. However, nanoparticles were also identified as particle promoting of human diseases. Finally, this work addresses nanoparticles derived from volcanic rock mining and highlights the relevance of developing cleaner procedures to minimize exposure to these materials and is therefore of direct relevance to both the volcanic rock mining and agriculture sector and health.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-23T19:15:56Z
dc.date.available.none.fl_str_mv 2021-11-23T19:15:56Z
dc.date.issued.none.fl_str_mv 2021
dc.date.embargoEnd.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2213-3437
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8895
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.jece.2021.106441
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2213-3437
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8895
https://doi.org/10.1016/j.jece.2021.106441
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] M.F. Hochella Jr., D.W. Mogk, J. Ranville, I.C. Allen, G.W. Luther, L.C. Marr, B.P. McGrail, M. Murayama, N.P. Qafoku, K.M. Rosso, N. Sahai, P.A. Schroeder, P. Vikesland, P. Westerhoff, Y. Yang Natural, incidental, and engineered nanomaterials and their impacts on the Earth system Science, 363 (2019), 10.1126/science.aau8299
[2] D.K. McDaniel, V.M. Ringel-Scaia, H.A. Morrison, S. Coutermarsh-Ott, M. Council-Troche, J.W. Angle, J.B. Perry, G. Davis, W. Leng, V. Minarchick, Y. Yang, B. Chen, S.W. Reece, D.A. Brown, T.E. Cecere, J.M. Brown, K.M. Gowdy, M.F. Hochella Jr., I.C. Allen Pulmonary exposure to Magnéli phase titanium suboxides results in significant macrophage abnormalities and decreased lung function Front. Immunol., 10 (2019), p. 2714, 10.3389/fimmu.2019.02714
[3] M.F. Hochella Jr., S.K. Lower, P.A. Maurice, R.L. Peen, N. Sahai, D.L. Sparks, B.S. Twining Nanominerals, mineral nanoparticles, and earth systems Science, 319 (2008), pp. 1631-1635, 10.1126/science.1141134
[4] W. Mahakham, A.K. Sarmah, S. Maensiri, P. Theerakulpisut Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles Sci. Rep., 7 (2016), pp. 1-21, 10.1038/s41598-017-08669-5
[5] P. Acharya, G.K. Jayaprakasha, K.M. Crosby, J.L. Jifon, B.S. Patil Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.) ACS Sustain. Chem. Eng., 7 (2019), pp. 14580-14590, 10.1021/acssuschemeng.9b02180
[6] N. Sundaria, M. Singh, P. Upreti, R.P. Chauhan, J.P. Jaiswal, A. Kumar Seed priming with Iron oxide nanoparticles triggers Iron acquisition and biofortification in wheat (Triticum aestivum L.) grains J. Plant Growth Regul., 38 (2019), pp. 122-131, 10.1007/s00344-018-9818-7
[7] K. Raja, R. Sowmya, R. Sudhagar, P.S. Moorthy, K. Govindaraju, K.S. Subramanian Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vignamungo) Mater. Lett., 235 (2019), pp. 164-167, 10.1016/j.matlet.2018.10.038
[8] R. Li, J. He, H. Xie, W. Wang, S.K. Bose, Y. Sun, H. Yin Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.) Int. J. Biol. Macromol., 126 (2019), pp. 91-100, 10.1016/j.ijbiomac.2018.12.118
[9] H. Abdel-Aziz Effect of priming with chitosan nanoparticles on germination, seedling growth and antioxidant enzymes of broad beans Int. J. Environ. Sci., 18 (2019), pp. 81-86, 10.12816/CAT.2019.28609
[10] M. Ali, J.M. Sobze, T.H. Pham, M. Nadeem, C. Liu, L. Galagedara, R. Thomas Carbon nanoparticles functionalized with carboxylic acid improved the germination and seedling vigor in upland boreal forest species Nanomaterials, 10 (2020), p. 176, 10.3390/nano10010176
[11] S.H. Theodoro, O.H. Leonardos Stonemeal: principles, potencial and perspective from Brazil T.J. Goreau, R.W. Larson, J. Campe (Eds.), Geotherapy: Innovative Methods of Soil Fertility Restoration, Carbon Sequestration and Reversing CO2 Increase, CRC Press, USA (2014), pp. 403-418
[12] C.G. Ramos, D. dos, S. de Medeiros, L. Gomez, L.F.S. Oliveira, I.A.H. Schneider, R.M. Kautzmann Evaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops Nat. Resour. Res., 29 (2019), pp. 1583-1600, 10.1007/s11053-019-09529-x
[13] A.C. Dalmora, C.G. Ramos, L.G. Plata, M.L. da Costa, R.M. Kautzmann, L.F.S. Oliveira Understanding the mobility of potential nutrients in rock mining by-products: an opportunity for more sustainable agriculture and mining Sci. Total Environ., 710 (2020), Article 136240, 10.1016/j.scitotenv.2019.136240
[14] C.C. Okolo, F.O.R. Akamigbo, P.I. Ezeaku, J.N. Nwite, J.C. Nwite, V.C. Ezeudo, J. Ene, E.P. Ukaegbu, O.N. Udegbunam, N.C. Eze Impact of open cast mine land use on soil physical properties in Enyigba, Southeastern Nigeria and the implication for sustainable land use management, Niger J. Soil Sci., 25 (2015), pp. 95-101
[15] N. Haque, T. Norgate Estimation of greenhouse gas emissions from ferroalloy production using life cycle assessment with particular reference to Australia J. Clean. Prod., 39 (2013), pp. 220-230, 10.1016/j.jclepro.2012.08.010
[16] M.S. Tonello, J. Korchagin, E.C. Bortoluzzi Environmental agate mining impacts and potential use of agate residue in rangeland J. Clean. Prod., 280 (2021), Article 124263, 10.1016/j.jclepro.2020.124263
[17] T. Norgate, N. Haque Energy and greenhouse gas impacts of mining and mineral processing operations J. Clean. Prod., 18 (2010), pp. 266-274, 10.1016/j.jclepro.2009.09.020
[18] W. Cornwall Catastrophic failures raise alarm about dams containing muddy mine wastes Science, 20 (2020), 10.1126/science.abe3917
[19] C.C. Okolo, T.D.T. Oyedotun, F.O.R. Akamigbo Open cast mining: threat to water quality in rural community of Enyigba in south-eastern Nigeria Appl. Water Sci., 8 (2018), p. 204, 10.1007/s13201-018-0849-9
[20] A. Cortés, L.F.S. Oliveira, V. Ferrari, S.R. Taffarel, G. Feijoo, M.T. Moreira Environmental assessment of viticulture waste valorisation through composting as a biofertilisation strategy for cereal and fruit crops Environ. Pollut., 264 (2020), Article 114794, 10.1016/j.envpol.2020.114794
[21] T.P. Souza, G. Watte, A.M. Gusso, R. Souza, J.D.S. Moreira, M.M. Knorst Silicosis prevalence and risk factors in semi-precious stone mining in Brazil Am. J. Ind. Med., 60 (2017), pp. 529-536, 10.1002/ajim.22719
[22] T.P. Souza, R. Souza, G. Watte, J.A. de Souza, J.D.S. Moreira, M.M. Knorst Lung function and functional exercise capacity in underground semi-precious stone mineworkers Work, 66 (2020), pp. 193-200, 10.3233/WOR-203163
[23] A.K. Patra, S. Gautam, P. Kumar Emissions and human health impact of particulate matter from surface mining operation—a review Environ. Technol. Innov., 5 (2016), pp. 233-249, 10.1016/j.eti.2016.04.002
[24] M. Chang, Y. Liu, C. Zhou, H. Che Hazard assessment of a catastrophic mine waste debris flow of Hou Gully, Shimian, China Eng. Geol., 275 (2020), Article 105733, 10.1016/j.enggeo.2020.105733
[25] A. Pompermaier, A.C.C.V. Varela, M. Fortuna, S. Mendonça-Soares, G. Koakoski, R. Aguirre, T.A. Oliveira, E. Sordi, D.F. Moterle, A.R. Pohl, V.C. Rech, E.C. Bortoluzzi, L.J.G. Barcellos, L.J.G Water and suspended sediment runoff from vineyard watersheds affecting the behavior and physiology of zebrafish Sci. Total Environ., 757 (2021), Article 143794, 10.1016/j.scitotenv.2020.143794
[26] S. Bai, Q. Hua, L.J. Cheng, Q.Y. Wang, T. Elwert Improve sustainability of stone mining region in developing countries based on cleaner production evaluation: methodology and a case study in Laizhou region of China J. Clean. Prod., 207 (2019), pp. 929-950, 10.1016/j.jclepro.2018.10.026
[27] H. Ritchie, M. Roser, CO₂ and Greenhouse Gas Emissions, 2020. 〈https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions〉.
[28] E.T. Asr, R. Kakaie, M. Ataei, M.R.T. Mohammadi A review of studies on sustainable development in mining life cycle J. Clean. Prod., 229 (2019), pp. 213-231, 10.1016/j.jclepro.2019.05.029
[29] J.A. Aznar-Sánchez, J.F. Velasco-Muñoz, L.J. Belmonte-Ureña, F. Manzano-Agugliaro Innovation and technology for sustainable mining activity: a worldwide research assessment J. Clean. Prod., 221 (2019), pp. 38-54, 10.1016/j.jclepro.2019.02.243
[30] M. Tost, M. Hitch, V. Chandurkar, P. Moser, S. Feiel The state of environmental sustainability considerations in mining J. Clean. Prod., 182 (2018), pp. 969-977, 10.1016/j.jclepro.2018.02.051
[31] D. Folle, R.A. Silva, J. Boita, D. Carissimo, I.A.H. Schneider Waste generation in agate processing: use of SiO2 as a support material for Fe3O4 Int. J. Struct. Civ. Eng. Res., 2 (2015), pp. 327-331
[32] F.S. Vilasbôas, C.R. Santos, I.A.H. Schneider Environmental issues on the industrial processing of raw agate Geomaterials, 7 (2017), pp. 13-24, 10.4236/gm.2017.71002
[33] L.M. Rosenstengel, L.A. Hartmann Geochemical stratigraphy of lavas and fault-block structures in the Ametista do Sul geode mining district, Paraná volcanic province, southern Brazil Ore Geol. Rev., 48 (2012), pp. 332-348, 10.1016/j.oregeorev.2012.05.003
[34] A.P. Nordin, J. Da Silva, C. De Souza, L.A.B. Niekraszewicz, J.F. Dias, J.F, K. Da Boit, M.L.S. Oliveira, I. Grivicich, A.L. Garcia, L.F.S. Oliveira, F.R. Da Silva In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage J. Hazard. Mater., 346 (2018), pp. 263-272, 10.1016/j.jhazmat.2017.12.026
[35] D.A.C. Manning How will minerals feed the world in 2050? Proc. Geol. Assoc., 126 (2015), pp. 14-17, 10.1016/j.pgeola.2014.12.005
[36] L. Dalacorte, P.A.V. Escosteguy, E.C. Bortoluzzi Sorption of copper and zinc from aqueous solution by metabasalt residue and its mineralogical behavior Water Air Soil Pollut., 230 (2019), p. 90, 10.1007/s11270-019-4141-x
[37] J. Korchagin, L. Caner, E.C. Bortoluzzi Variability of amethyst mining waste: a mineralogical and geochemical approach to evaluate the potential use in agriculture J. Clean. Prod., 210 (2019), pp. 749-758, 10.1016/j.jclepro.2018.11.039
[38] R. Miloš Distribution and origin of clay minerals during hydrothermal alteration of ore deposits M. Valášková, S. Martynkova (Eds.), Clay Minerals in Nature – Their Characterization, Modification and Application, 5, InTech (2012), p. 325, 10.5772/48312 Chapiter 5
[39] J. Korchagin, E.C. Bortoluzzi, D.F. Moterle, C. Petry, L. Caner Evidences of soil geochemistry and mineralogy changes caused by eucalyptus rhizosphere Catena, 175 (2019), pp. 132-143, 10.1016/j.catena.2018.12.001
[40] E.C. Bortoluzzi, D.R. Santos, M.A. Santanna, L. Caner Mineralogy and nutrient desorption of suspended sediments during a storm event J. Soils Sediment., 13 (2013), pp. 1093-1105, 10.1007/s11368-013-0692-4
[41] A.L. Duarte, K. Da Boit, M.L.S. Oliveira, E.C. Teixeira, I.L. Schneider, L.F. Silva Hazardous elements and amorphous nanoparticles in historical estuary coal mining area Geosci. Front., 10 (2019), pp. 927-939, 10.1016/j.gsf.2018.05.005
[42] J.C. Prata, J.P. da Costa, I. Lopes, A.C. Duarte, T. Rocha-Santos Environmental exposure to microplastics: an overview on possible human health effects Sci. Total Environ., 702 (2020), Article 134455, 10.1016/j.scitotenv.2019.134455
[43] Z.Y. Zhang, L. Huang, F. Liu, M.K. Wang, G.M. Ndzana, Z.J. Liu Transformation of clay minerals in nanoparticles of several zonal soils in China J. Soils Sediment., 19 (2019), pp. 211-220, 10.1007/s11368-018-2013-4
[44] M.S. Tonello, T.S. Hebner, R.W. Sterner, S. Brovold, T. Tiecher, E.C. Bortoluzzi, G.H. Merten Geochemistry and mineralogy of southwestern Lake Superior sediments with an emphasis on phosphorus lability J. Soils Sediment., 20 (2020), pp. 1060-1073, 10.1007/s11368-019-02420-5
[45] C.M. Cutruneo, M.L. Oliveira, C.R. War, J.C. Hower, I.A. de Brum, C.H. Sampaio, L.F. Silva A mineralogical and geochemical study of three Brazilian coal cleaning rejects: demonstration of electron beam applications Int. J. Coal Geol., 130 (2014), pp. 33-52, 10.1016/J.COAL.2014.05.009
[46] J. Wilcox, B. Wang, E. Rupp, R. Taggart, H. Hsu-Kim, M. Oliveira, C. Cutruneo, S. Taffarel, L.F. Silva, S. Hopps, G. Thomas, J. Hower Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: environmental processes recorded at the macro and nanometer scale Energy Fuel, 29 (2015), pp. 7168-7177, 10.1021/acs.energyfuels.5b02033
[47] L.T. Al-Hadede, S.A. Khaleel, S.K. Hasan Some applications of nanotechnology in agriculture Biochem. Cell. Arch., 20 (2020), pp. 1447-1454, 10.35124/bca.2020.20.1.1447
[48] A.C. Dalmora, C.G. Ramos, X. Querol, R.M. Kautzmann, M.L.S. Oliveira, S.R. Taffarel, T. Moreno, L.F.O. Silva Nanoparticulate mineral matter from basalt dust wastes Chemosphere, 144 (2016), pp. 2013-2017, 10.1016/j.chemosphere.2015.10.047
[49] L.F. Silva, X. Querol, K. Da Boit, S. Fdez-Ortiz De Vallejuelo, J.M. Madariaga Brazilian coal mining residues and sulphide oxidation by Fenton s reaction: an accelerated weathering procedure to evaluate possible environmental impact J. Hazard. Mater., 186 (2011), pp. 516-525, 10.1016/j.jhazmat.2010.11.032 ArticleDownload PDFView Record in ScopusGoogle Scholar
[50] L.F. Silva, M. Wollenschlager, M. Oliveira A preliminary study of coal mining drainage and environmental health in the Santa Catarina region, Brazil Environ. Geochem. Health, 33 (2011), pp. 55-65, 10.1007/s10653-010-9322-x
[51] L.F.O. Silva, M. Santosh, M. Schindler, J. Gasparotto, G.L. Dotto, M.L.S. Oliveira, M.F. Hochella Jr. Nanoparticles in fossil and mineral fuel sectors and their impact on environment and human health: a review and perspective Gondwana Res., 92 (2021), pp. 184-201, 10.1016/j.gr.2020.12.026 ArticleDownload PDFView Record in ScopusGoogle Scholar
[52] . Ribeiro, D. Flores, C. Ward, L.F.O. Silva Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal Sci. Total Environ., 408 (2010), pp. 6032-6041, 10.1016/j.scitotenv.2010.08.046
[53] B.K. Saikia, C.R. Ward, M.L. Oliveira, J.C. Hower, B.P. Baruah, M. Braga, L.F. Silva Geochemistry and nano-mineralogy of two medium-sulfur northeast Indian coals Int. J. Coal Geol., 121 (2014), pp. 26-34, 10.1016/j.coal.2013.11.007
[54] H. Wang, X. Li, Y. Chen, Z. Li, D.W. Hedding, W. Nel, J. Ji, J. Chen Geochemical behavior and potential health risk of heavy metals in basalt-derived agricultural soil and crops: a case study from Xuyi County, eastern China Sci. Total Environ., 729 (2020), Article 139058, 10.1016/j.scitotenv.2020.139058
[55] B. Ren, Y. Zhou, A.S. Hursthouse, R. Deng Research on the characteristics and mechanism of the cumulative release of antimony from an antimony smelting slag stacking area under rainfall leaching J. Anal. Methods Chem., 2017 (2017), pp. 1-8, 10.1155/2017/7206876
[56] Y. Zhou, B. Ren, A.S. Hursthouse, S. Zhou Antimony ore tailings: heavy metals, chemical speciation, and leaching characteristics Pollut. J. Environ. Stud., 28 (2019), pp. 485-495, 10.15244/pjoes/85006
[57] Z. Yang, Y. Li, Y. Ning, S. Yang, Y. Tang, Y. Zhang, X. Wang Effects of oxidant and particle size on uranium leaching from coal ash J. Radioanal. Nucl. Chem., 317 (2018), pp. 801-810, 10.1007/s10967-018-5963-5
[58] B. Liu, T. Peng, H. Sun Leaching behavior of U, Mn, Sr, and Pb from diferente particle-size fractions of uranium mill tailings Environ. Sci. Pollut. Res., 24 (2017), pp. 1-12, 10.1007/s11356-017-8921-9
[59] L.F.O. Silva, J.C. Hower, G.L. Dotto, M.L.S. Oliveira, D. Pinto Titanium nanoparticles in sedimented dust aggregates from urban children’s parks around coal ashes wastes Fuel, 285 (2021), Article 119162, 10.1016/j.fuel.2020.119162
[60] M.L. Oliveira, E.M.M. Flores, G.L. Dotto, A. Neckel, L.F.O. Silva Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): the protagonist of black crusts produced on historic buildings J. Clean. Prod., 278 (2021), Article 123982, 10.1016/j.jclepro.2020.123982
[61] C. Ward Analysis, origin and significance of mineral matter in coal: an updated review Int. J. Coal Geol., 165 (2016), pp. 1-27, 10.1016/j.coal.2016.07.014
[62] M.V. Permana, 2756-6044-2-Pb, Jurnal Dinamika Manajemen, 4 (2013), 115–131, [Online]. 〈https://journal.unnes.ac.id/nju/index.php/jdm〉.
[63] D.J. Beerling, J.R. Leake, S.P. Long, J.D. Scholes, J. Ton, P.N. Nelson, M. Bird, E. Kantzas, L.L. Taylor, B. Sarkar, M. Kelland, E. DeLucia, I. Kantola, C. Muller, G. Rau, J. Hamsen Farming with crops and rocks to address global climate, food and soil security Nat. Plants, 4 (2018), pp. 138-147, 10.1038/s41477-018-0108-y
[64] D.J. Beerling, E.P. Kantzas, M.R. Lomas Potential for large-scale CO2 removal via enhanced rock weathering with croplands Nature, 583 (2020), pp. 242-248, 10.1038/s41586-020-2448-9
[65] C.G. Ramos, A.G. de Mello, R.M. Kautzmann A preliminary study of acid volcanic rocks for stonemeal application Environ. Nanotechnol. Monit. Manag., 1–2 (2014), pp. 30-35, 10.1016/j.enmm.2014.03.002
[66] C.G. Ramos, J.C. Hower, E. Blanco, M.L.S. Oliveira, S.H. Theodoro Possibilities of using silicate rock powder: an overview Geosci. Front. (2021), Article 101185, 10.1016/j.gsf.2021.101185
[67] V. Martins, D.R.G. Silva, G. Marchi, M.C.A. Leite, E.D.S. Martins, A.S.F. Gonçalves, L.R.G. Guilherme Effect of alternative multinutrient sources on soil chemical properties Rev. Bras. Cienc. Solo, 39 (2015), pp. 194-204, 10.1590/01000683rbcs20150587
[68] V. Ferrari, S.R. Taffarel, E. Espinosa-Fuentes, M.L.S. Oliveira, B.K. Saikia, L.F.S. Oliveira Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers J. Clean. Prod., 208 (2019), pp. 297-306, 10.1016/j.jclepro.2018.10.032
[69] S.H. Theodoro, F.P. Medeiros, M. Ianniruberto, T.K.B. Jacobson Soil remineralization and recovery of degraded areas: an experience in the tropical region J. S. Am. Earth Sci., 107 (2020), p. 103014, 10.1016/j.jsames.2020.103014
[70] G.P. Gillman, D.C. Burkett, R.J. Coventry A laboratory study of application of basalt dust to highly weathered soils: effect on soil cation chemistry Aust. J. Soil Res., 39 (2001), pp. 799-811, 10.1071/SR00073
[71] G.P. Gillman, D.C. Burkett, R.J. Coventry Amending highly weathered soils with finely ground basalt rock J. Appl. Geochem., 17 (2002), pp. 987-1001, 10.1016/S0883-2927(02)00078-1
[72] W. Mushtaq, A. Shakeel, M.A. Fazili, I. Chakrabartty, M. Sevindik Pros and cons of nanotechnology K. Hakeem, T. Pirzadah (Eds.), Nanobiotechnology in Agriculture, Nanotechnology in the Life Sciences, Springer, Cham (2020), pp. 207-222, 10.1007/978-3-030-39978-8_13
[73] A. Ramezanian, A.S. Dahlin, C.D. Campbell, S. Hillier, B. Mannerstedt-Fogelfors, I. Öborn Addition of a volcanic rock dust to soils has no observable effects on plant yield and nutrient status or on soil microbial activity Plant Soil, 367 (2013), pp. 419-436, 10.1007/s11104-012-1474-2
[74] L. Gomez-Plata, C.G. Ramos, M.L. Silva Oliveira, L.F.Silva Oliveira Release kinetics of multi-nutrients from volcanic rock mining by-products: evidences for their use as a soil remineralizer J. Clean. Prod., 279 (2021), Article 123668, 10.1016/j.jclepro.2020.123668
[75] P.S. Bindraban, C.O. Dimkpa, J.C. White, F.A. Franklin, A. Melse-Boonstra, N. Koele, R. Pandey, J. Rodenburg, K. Senthilkumar, P. Demokritou, S. Schmidt Safeguarding human and planetary health demands a fertilizer sector transformation Plants People Planet, 2 (2020), pp. 302-309, 10.1002/ppp3.10098
[76] E.C. Bortoluzzi, C.A.S. Pérez, J.D. Ardisson, T. Tiecher, L. Caner Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils Appl. Clay Sci., 104 (2015), pp. 196-204, 10.1016/j.clay.2014.11.032
[77] A. Somavilla, L. Caner, E.C. Bortoluzzi, M.A. Santanna, D.R. dos Santos P-Legacy effect of soluble fertilizer added with limestone and phosphate rock on grassland soil in subtropical climate region Soil Tillage Res., 211 (2021), Article 105021, 10.1016/j.still.2021.105021
[78] P.S. Pavinato, M.R. Cherubin, A. Soltangheisi, G.C. Rocha, D.R. Chadwick, D.L. Jones Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil Sci. Rep., 10 (2020), p. 15615, 10.1038/s41598-020-72302-1
[79] P.S. Pavinato, M. Rodrigues, A. Soltangheisi, L.R. Sartor, P.J.A. Withers Effects of cover crops and phosphorus sources on maize yield, phosphorus uptake, and phosphorus use efficiency Agron. J., 109 (2017), pp. 1039-1047, 10.2134/agronj2016.06.0323
[80] M. Dutta, J. Saikia, S.R. Taffarel, F.B. Waanders, D. De Medeiros, C.M. Cutruneo, L.F.O. Silva, B.K. Saikia Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage Geosci. Front., 8 (2017), pp. 1285-1297, 10.1016/j.gsf.2016.11.014
[81] M. Dutta, N. Islam, S. Rabha, B. Narzary, M. Bordoloi, D. Saikia, L.F.O. Silva, B.K. Saikia Acid mine drainage in an Indian high-sulfur coal mining area: cytotoxicity assay and remediation study J. Hazard. Mater., 389 (2020), Article 121851, 10.1016/j.jhazmat.2019.121851
[82] A.D. Harley, R.J. Gilkes Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overview Nutr. Cycl. Agroecosyst., 56 (2000), pp. 11-36, 10.1023/A:1009859309453
[83] S.H. Theodoro, O.H. Leonardos The use of rocks to improve family agriculture in Brazil Acad. Bras. Cienc., 78 (2006), pp. 721-730, 10.1590/S0001-37652006000400008
[84] J.M.G. Nunes, R.M. Kautzmann, C. Oliveira Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil) J. Clean. Prod., 84 (2014), pp. 649-656, 10.1016/j.jclepro.2014.04.032
[85] M. Anda, J. Shamshuddin, C.I. Fauziah Improving chemical properties of a highly weathered soil using finely ground basalt rocks Catena, 124 (2015), pp. 147-161, 10.1016/j.catena.2014.09.012
[86] A.C. Dalmora, C.G. Ramos, M.L.S. Oliveira, L.F.S. Oliveira, I.A.H. Schneider, R.M. Kautzmann Application of andesite rock as a clean source of fertilizer for eucalyptus crop: evidence of sustainability J. Clean. Prod., 256 (2020), Article 120432, 10.1016/j.jclepro.2020.120432
[87] J.B. Gill Orogenic Andesites and Plate Tectonics Springer - Verlag, Berlin (1981)
[88] C. Coroneos, P. Hinsinger, R.J. Gilkes Granite powder as a source of potassium for plants: a glasshouse bioassay comparing two pasture species Fertil. Res., 45 (1995), pp. 143-152, 10.1007/BF00790664
[89] P.K. Pufahl, L.A. Groat Sedimentary and Igneous Phosphate Deposits: Formation and Exploration: An Invited Paper Econ. Geol., 112 (2017), pp. 483-516, 10.2113/econgeo.112.3.483
[90] A. Soltangheisi, A.P.B. Teles, L.R. Sartor, P.S. Pavinato Cover Cropping May Alter Legacy Phosphorus Dynamics Under Long-Term Fertilizer Addition Front. Environ. Sci., 8 (2020), 10.3389/fenvs.2020.00013
[91] D. Cordell, J.O. Drangert, S. White The story of phosphorus: Global food security and food for thought Glob. Environ. Change, 19 (2009), pp. 292-305, 10.1016/j.gloenvcha.2008.10.009
[92] A.E. Kateb, C. Stalder, A. Rüggeberg, C. Neururer, J.E. Spangenberg, S. Spezzaferri Impact of industrial phosphate waste discharge on the marine environment in the Gulf of Gabes (Tunisia) PLoS One, 13 (2018), Article e0197731, 10.1371/journal.pone.0197731
[93] A. Ditta How helpful is nanotechnology in agriculture? Adv. Nat. Sci.: Nanosci. Nanotechnol., 3 (2012), Article 033002, 10.1088/2043-6262/3/3/033002
[94] H. Brammer, F.O. Nachtergaele Implications of soil complexity for environmental monitoring Int. J. Environ. Sci., 72 (2015), pp. 56-73, 10.1080/00207233.2014.967509
[95] C.G. Ramos, X. Querol, M.L.S. Oliveira, K. Pires, R.M. Kautzmann, L.F.S. Oliveira A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer Sci. Total Environ., 512–513 (2015), pp. 371-380, 10.1016/j.scitotenv.2014.12.070
[96] C.G. Ramos, X. Querol, A.C. Dalmora, K.C.J. Pires, I.A.H. Shneider, L.F.S. Oliveira, R.M. Kautzmann Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer J. Clean. Prod., 142 (2017), pp. 2700-2706, 10.1016/j.jclepro.2016.11.006
[97] H. Li, K. Watanabe, X. Xi, K. Yonezu Geochemistry of volcanic rocks at zhaokalong iron-copper-polymetallic ore deposit, Qinghai Province, China: implications for the tectonic background Procedia Environ. Sci., 6 (2013), pp. 58-63, 10.1016/j.proeps.2013.01.008
[98] Y. Masuda, K.I. Aoki Trace element variations in the volcanic rocks from the Nasu zone, northeast Japan Earth Planet. Sci. Lett., 44 (1979), pp. 139-149, 10.1016/0012-821X(79)90014-1
[99] J. Ribeiro, K. Da boit, D. Flores, M.A. Kronbauer, L.F.O. Silva Extensive FE-SEM/EDS, HR-TEM/EDS and tof-sims studies of micron- to nanoparticles in anthracite fly ash Sci. Total Environ., 452–453 (2013), pp. 98-107, 10.1016/j.scitotenv.2013.02.010
[100] J. Ribeiro, S.R. Taffarel, C.H. Sampaio, D. Flores, L.F.O. Silva Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal Int. J. Coal Geol., 109–110 (2013), pp. 15-23, 10.1016/j.coal.2013.01.007
[101] S. Gautam, A.K. Patra, S.P. Sahu, M. Hitch Particulate matter pollution in opencast coal mining areas: a threat to human health and environment Int. J. Min. Reclam. Environ., 32 (2018), pp. 75-92, 10.1080/17480930.2016.1218110
[102] O. Ramírez, A.M. Sánchez de la Campa, F. Amato, L.F. Silva, J.D. de la Rosa Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity Sci. Total Environ., 652 (2019), pp. 434-446, 10.1016/j.scitotenv.2018.10.214
[103] M. Civeira, R. Pinheiro, A. Gredilla, S. De Vallejuelo, M. Oliveira, C. Ramos, S. Taffarel, R. Kautzmann, J. Madariaga, L.F. Silva The properties of the nano-minerals and hazardous elements: potential environmental impacts of Brazilian coal waste fire Sci. Total Environ., 544 (2016), pp. 892-900, 10.1016/j.scitotenv.2015.12.026
[104] G.E. Brown, G. Calas Environmental mineralogy – Understanding element behavior in ecosystems C. R. Geosci., 343 (2011), pp. 90-112, 10.1016/j.crte.2010.12.005
[105] B. Cerqueira, F.A. Vega, C. Serra, L.F.O. Silva, M.L. Andrade Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of Cu2+ and Cu2+/Pb2+ on a bt horizon surfaces J. Hazard. Mater., 195 (2011), pp. 422-431, 10.1016/j.jhazmat.2011.08.059
[106] B. Cerqueira, F.A. Vega, L.F.O. Silva, L. Andrade Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine Sci. Total Environ., 421–422 (2012), pp. 220-229, 10.1016/j.scitotenv.2012.01.055
[107] D. Lago, F.A. Veja, L.F. Silva, A. Luisa Lead distribution between soil geochemical phases and its fractionation in pb-treated soils Fresenius Environ. Bull., 23 (2014), p. 1025
[108] D. Arenas-Lago, F.A. Vega, L.F. Silva, M.L. Andrade Copper distribution in surface and subsurface soil horizons Environ. Sci. Pollut. Res., 21 (2014), pp. 10997-11008, 10.1007/s11356-014-3084-4
[109] Z. Asif, Z. Chen Environmental management in North American mining sector Environ. Sci. Pollut. Res., 23 (2016), pp. 167-179, 10.1007/s11356-015-5651-8
[110] H.I. Gomes, W.M. Mayes, M. Rogerson, D.I. Stewart, I.T. Burke Alkaline residues and the environment: a review of impacts, management practices and opportunities J. Clean. Prod., 112 (2016), pp. 3571-3582, 10.1016/j.jclepro.2015.09.111
[111] M.M.E.C.G.G.A. Tayebi-Khorami Re-thinking mining waste through an integrative approach led by circular economy aspirations Minerals, 9 (2019), p. 286, 10.3390/min9050286
[112] C.J. Chen, Y.C. Chuang, T.M. Lin, H.Y. Wu Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers Cancer Res., 45 (1985), pp. 5895-5899 View PDFView Record in ScopusGoogle Scholar
[113] M. Civeira, R. Pinheiro, A. Gredilla, S. De Vallejuelo, M. Oliveira, C. Ramos, S. Taffarel, R. Kautzmann, J. Madariaga, L.F. Silva The properties of the nano-minerals and hazardous elements: potential environmental impacts of Brazilian coal waste fire Sci. Total Environ., 544 (2016), pp. 892-900, 10.1016/j.scitotenv.2015.12.026
[114] J. Lin, D. Pan, S.J. Davis, Q. Zhang, K. He, C. Wang, D.G. Streets, D.J. Wuebbles, D. Guan China’s international trade and air pollution in the United States Proc. Natl. Acad. Sci. USA, 111 (2014), pp. 1736-1741, 10.1073/pnas.1312860111
[115] K. Martinello, M. Oliveira, F. Molossi, C. Ramos, E. Teixeira, R. Kautzmann, L.F. Silva Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing Sci. Total Environ., 470–471 (2014), pp. 444-452, 10.1016/j.scitotenv.2013.10.007 ArticleDownload PDFView Record in ScopusGoogle Scholar
[116] K. Martinello, J.C. Hower, D. Pinto, C.E. Schnorr, G.L. Dotto, M.L.S. Oliveira, C.G. Ramos Artisanal ceramic factories using wood combustion: a nanoparticles and human health study Geosci. Front. (2021), Article 101151, 10.1016/j.gsf.2021.10
[117] N. Islam, S. Rabha, L.F.O. Silva, B.K. Saikia Air quality and PM10-associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches Environ. Geochem. Health, 41 (2019), pp. 2039-2053, 10.1007/s10653-019-00256-z
[118] J. Gasparotto, K. Da, B. Martinello Coal as an energy source and its impacts on human health Energy Geosci., 2 (2020), pp. 113-120, 10.1016/j.engeos.2020.07.003
[119] I. Manisalidis, E. Stavropoulou, A. Stavropoulos, E. Bezirtzoglou Environmental and health impacts of air pollution: a review Front. Public Health, 8 (2020), p. 14, 10.3389/fpubh.2020.00014
[120] Ma.I.-W. Hendryx, A. Kestrel Increased risk of depression for people living in coal mining areas of central Appalachia Ecopsychology, 5 (2013), pp. 179-187, 10.1089/eco.2013.0029
[121] A.C. Joaquim, M. Lopes, L. Stangherlin, K. Castro, L.B. Ceretta, W.C. Longen, F. Ferraz, I.D.S. Perry Mental health in underground coal miners Arch. Environ. Occup. Health, 73 (2018), pp. 334-343, 10.1080/19338244.2017.1411329
[122] J.C. Rojas, N.E. Sánchez, I. Schneider, E.C. Teixeira, L.F.O. Silva Exposure to nanometric pollutants in primary schools: environmental implications Urban Clim., 27 (2019), pp. 412-419, 10.1016/j.uclim.2018.12.011
[123] B.S. Van Gosen, T.A. Blitz, G.S. Plumlee, G.P. Meeker, M.P. Pierson Geologic occurrences of erionite in the United States: an emerging national public health concern for respiratory disease Environ. Geochem. Health, 35 (2013), pp. 419-430, 10.1007/s10653-012-9504-9
[124] M. Carbone, Y.I. Baris, P. Bertino, B. Brass, S. Comertpay, A.U. Dogan, G. Gaudino, S. Jube, S. Kanodia, C.R. Partridge, H.I. Pass, Z.S. Rivera, I. Steele, M. Tuncer, S. Way, H. Yang, A. Miller Erionite exposure in North Dakota and Turkish villages with mesothelioma Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 13618-13623, 10.1073/pnas.1105887108
[125] R. Matassa, G. Familiari, M. Relucenti, E. Battaglione, C. Downing, A. Pacella, G. Cametti, P. Ballirano A deep look into erionite fibres: an electron microscopy investigation of their self-assembly Sci. Rep., 5 (2015), p. 16757, 10.1038/srep16757
[126] C. Marshall, D.J. Large, N.G. Heavens Coal-derived rates of atmospheric dust deposition during the Permian Gondwana Res., 31 (2016), pp. 20-29, 10.1016/J.GR.2015.10.002
[127] A.U. Dogan, M. Dogan, J.A. Hoskins Erionite series minerals: mineralogical and carcinogenic properties Environ. Geochem. Health, 30 (2008), pp. 367-381, 10.1007/s10653-008-9165-x
[128] B.K. Saikia, C.R. Ward, M.L. Oliveira, J.C. Hower, F. De Leao, M.N. Johnston, L.F. Silva Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): a multi-faceted analytical approach Int. J. Coal Geol., 137 (2015), pp. 19-37, 10.1016/j.coal.2014.11.002 ArticleDownload PDFView Record in ScopusGoogle Scholar
[129] M. Intawongse, J.R. Dean Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract Food Addit. Contam., 23 (2006), pp. 36-48, 10.1080/02652030500387554
[130] N.E. Sánchez-Peña, J.L. Narváez-Semanate, D. Pabón-Patiño, J.E. Fernández-Mera, M.L. Oliveira, K. Da Boit, B. Tutikian, T. Crissien, D. Pinto, I. Serrano, C. Ayala, A. Duarte, J. Ruiz, L.F. Silva Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: experimental evidence Chemosphere, 191 (2018), pp. 1048-1055, 10.1016/j.chemosphere.2017.08.127
[131] R. Mohajer, M.H. Salehi, J. Mohammadi, M.H. Emami, T. Azarm, The status of lead and cadmium in soils of high prevalenct gastrointestinal cancer region of Isfahan, J. Res. Med. Sci., 18, 210–214.
[132] D.C. Zamberlan, P.T. Halmenschelager, L.F.O. Silva, J.B.T. da Rocha Copper decreases associative learning and memory in Drosophila melanogaster Sci. Total Environ., 710 (2020), Article 135306, 10.1016/j.scitotenv.2019.135306
[133] H. Morillas, C. García-Florentino, I. Marcaida, M. Maguregui, G. Arana, L.F. Silva, J. Madariaga In-situ analytical study of bricks exposed to marine environment using hand-held X-ray fluorescence spectrometry and related laboratory techniques Spectrochim. Acta Part B At. Spectrosc., 146 (2018), pp. 28-35, 10.1016/j.sab.2018.04.020
[134] H. Morillas, P. Vazquez, M. Maguregui, I. Marcaida, L.F. Silva Composition and porosity study of original and restoration materials included in a coastal historical construction Constr. Build. Mater., 178 (2018), pp. 384-392, 10.1016/j.conbuildmat.2018.05.168
[135] M.L. Oliveira, K. Da Boit, I. Schneider, E. Teixeira, T. Crissien, L.F. Silva Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies J. Clean. Prod., 188 (2018), pp. 662-669, 10.1016/j.jclepro.2018.04.050
[136] M. Oliveira, M. Izquierdo, X. Querol, R.N. Lieberman, B.K. Saikia, L.F.O. Silva Nanoparticles from construction wastes: a problem to health and the environment J. Clean. Prod., 219 (2019), pp. 236-243, 10.1016/j.jclepro.2019.02.096
[137] M.L.S. Oliveira, D. Pinto, B.F. Tutikian, K. Da Boit, B.K. Saikia, L.F.O. Silva Pollution from uncontrolled coal fires: continuous gaseous emissions and nanoparticles from coal mining industry J. Clean. Prod., 215 (2019), pp. 1140-1148, 10.1016/j.jclepro.2019.01.169
[138] M.L. Oliveira, B.K. Saikia, K. da Boit, D. Pinto, B.F. Tutikian, L.F. Silva River dynamics and nanopaticles formation: a comprehensive study on the nanoparticle geochemistry of suspended sediments in the Magdalena River, Caribbean Industrial Area J. Clean. Prod., 213 (2019), pp. 819-824, 10.1016/j.jclepro.2018.12.230
[139] I. Gestoso, E. Cacabelos, P. Ramalhosa, J. Canning-Clode Plasticrusts: a new potential threat in the Anthropocene’s rocky shores Sci. Total Environ., 687 (2019), pp. 413-415, 10.1016/j.scitotenv.2019.06.123
[140] I.L. Schneider, E.C. Teixeira, G.L. Dotto, D. Pinto, C.X. Yang, L.F.S. Silva Geochemical study of submicron particulate matter (PM1) in a metropolitan area Geosci. Front. (2020), Article 101130, 10.1016/j.gsf.2020.12.011
[141] C.N. Waters, J. Zalasiewicz, C. Summerhayes, A.D. Barnosky, C. Poirier, A. Gałuszka, A. Cearreta, M. Edgeworth, E.C. Ellis, M. Ellis, C. Jeandel, R. Leinfelder, J.R. McNeill, D.D. Richter, W. Steffen, J. Syvitski, D. Vidas, M. Wagreich, M. Williams, A. Zhisheng, J. Grinevald, E. Odada, N. Oreskes, A.P. Wolfe The Anthropocene is functionally and stratigraphically distinct from the Holocene Science, 351 (2016), Article aad2622
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Journal of Environmental Chemical Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2213343721014184#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/38909063-158e-4da4-a0ba-92103dc5b180/download
https://repositorio.cuc.edu.co/bitstreams/51372390-5951-47d4-a445-26a758bfed6a/download
https://repositorio.cuc.edu.co/bitstreams/bd60e6d6-d28f-4fd6-a7a1-0d895246740c/download
https://repositorio.cuc.edu.co/bitstreams/a490d033-f3d6-4300-b171-391bc1c77035/download
https://repositorio.cuc.edu.co/bitstreams/35d9b611-82a6-47d3-ad7e-9b8dfc56ae19/download
bitstream.checksum.fl_str_mv fd5b2b570f563bad5bc0be429fc90ad6
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
7a43d3e5ebdc412923170c20571367c5
9730a6d511989985125c34d57895b737
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760693848834048
spelling Gindri Ramos, ClaudeteSilva Oliveira, Marcos LeandroFernández Pena, MerlysMeriño Cantillo, AndreaLozano Ayarza, Liliana PatriciaKorchagin, JacksonCampanhola Bortoluzzi, Edson2021-11-23T19:15:56Z2021-11-23T19:15:56Z202120232213-3437https://hdl.handle.net/11323/8895https://doi.org/10.1016/j.jece.2021.106441Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Nanoparticles (NPs) from the mining of volcanic rocks have been a matter of concern around the world because they can pose environmental and human health risks. The nanoparticles are pointed as opportunities of application in a large field of knowledge. The aim of this study is to provide an overview of scientific publications on the success rates of mineral nanoparticles, the use of soil remineralizers as an alternative for replacing highly soluble fertilizers and their potential risk to human health and the environment. Nanoparticles were successful used as a filter agent and may act as carrier agent of metals and molecules through the environment compartments; rock powder was used as a litho-fertilizer in nature or enriched with nutrients and pesticides for plant disease control. However, nanoparticles were also identified as particle promoting of human diseases. Finally, this work addresses nanoparticles derived from volcanic rock mining and highlights the relevance of developing cleaner procedures to minimize exposure to these materials and is therefore of direct relevance to both the volcanic rock mining and agriculture sector and health.Gindri Ramos, Claudete-will be generated-orcid-0000-0003-2172-8052-600Silva Oliveira, Marcos LeandroFernández Pena, MerlysMeriño Cantillo, AndreaLozano Ayarza, Liliana Patricia-will be generated-orcid-0000-0001-5186-2864-600Korchagin, JacksonCampanhola Bortoluzzi, Edson-will be generated-orcid-0000-0002-0967-0057-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Environmental Chemical Engineeringhttps://www.sciencedirect.com/science/article/pii/S2213343721014184#!HealthMiningMineralogyNutrientSustainable agricultureNanoparticles generated during volcanic rock exploitation: an overviewPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] M.F. Hochella Jr., D.W. Mogk, J. Ranville, I.C. Allen, G.W. Luther, L.C. Marr, B.P. McGrail, M. Murayama, N.P. Qafoku, K.M. Rosso, N. Sahai, P.A. Schroeder, P. Vikesland, P. Westerhoff, Y. Yang Natural, incidental, and engineered nanomaterials and their impacts on the Earth system Science, 363 (2019), 10.1126/science.aau8299[2] D.K. McDaniel, V.M. Ringel-Scaia, H.A. Morrison, S. Coutermarsh-Ott, M. Council-Troche, J.W. Angle, J.B. Perry, G. Davis, W. Leng, V. Minarchick, Y. Yang, B. Chen, S.W. Reece, D.A. Brown, T.E. Cecere, J.M. Brown, K.M. Gowdy, M.F. Hochella Jr., I.C. Allen Pulmonary exposure to Magnéli phase titanium suboxides results in significant macrophage abnormalities and decreased lung function Front. Immunol., 10 (2019), p. 2714, 10.3389/fimmu.2019.02714[3] M.F. Hochella Jr., S.K. Lower, P.A. Maurice, R.L. Peen, N. Sahai, D.L. Sparks, B.S. Twining Nanominerals, mineral nanoparticles, and earth systems Science, 319 (2008), pp. 1631-1635, 10.1126/science.1141134[4] W. Mahakham, A.K. Sarmah, S. Maensiri, P. Theerakulpisut Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles Sci. Rep., 7 (2016), pp. 1-21, 10.1038/s41598-017-08669-5[5] P. Acharya, G.K. Jayaprakasha, K.M. Crosby, J.L. Jifon, B.S. Patil Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.) ACS Sustain. Chem. Eng., 7 (2019), pp. 14580-14590, 10.1021/acssuschemeng.9b02180[6] N. Sundaria, M. Singh, P. Upreti, R.P. Chauhan, J.P. Jaiswal, A. Kumar Seed priming with Iron oxide nanoparticles triggers Iron acquisition and biofortification in wheat (Triticum aestivum L.) grains J. Plant Growth Regul., 38 (2019), pp. 122-131, 10.1007/s00344-018-9818-7[7] K. Raja, R. Sowmya, R. Sudhagar, P.S. Moorthy, K. Govindaraju, K.S. Subramanian Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vignamungo) Mater. Lett., 235 (2019), pp. 164-167, 10.1016/j.matlet.2018.10.038[8] R. Li, J. He, H. Xie, W. Wang, S.K. Bose, Y. Sun, H. Yin Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.) Int. J. Biol. Macromol., 126 (2019), pp. 91-100, 10.1016/j.ijbiomac.2018.12.118[9] H. Abdel-Aziz Effect of priming with chitosan nanoparticles on germination, seedling growth and antioxidant enzymes of broad beans Int. J. Environ. Sci., 18 (2019), pp. 81-86, 10.12816/CAT.2019.28609[10] M. Ali, J.M. Sobze, T.H. Pham, M. Nadeem, C. Liu, L. Galagedara, R. Thomas Carbon nanoparticles functionalized with carboxylic acid improved the germination and seedling vigor in upland boreal forest species Nanomaterials, 10 (2020), p. 176, 10.3390/nano10010176[11] S.H. Theodoro, O.H. Leonardos Stonemeal: principles, potencial and perspective from Brazil T.J. Goreau, R.W. Larson, J. Campe (Eds.), Geotherapy: Innovative Methods of Soil Fertility Restoration, Carbon Sequestration and Reversing CO2 Increase, CRC Press, USA (2014), pp. 403-418[12] C.G. Ramos, D. dos, S. de Medeiros, L. Gomez, L.F.S. Oliveira, I.A.H. Schneider, R.M. Kautzmann Evaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops Nat. Resour. Res., 29 (2019), pp. 1583-1600, 10.1007/s11053-019-09529-x[13] A.C. Dalmora, C.G. Ramos, L.G. Plata, M.L. da Costa, R.M. Kautzmann, L.F.S. Oliveira Understanding the mobility of potential nutrients in rock mining by-products: an opportunity for more sustainable agriculture and mining Sci. Total Environ., 710 (2020), Article 136240, 10.1016/j.scitotenv.2019.136240[14] C.C. Okolo, F.O.R. Akamigbo, P.I. Ezeaku, J.N. Nwite, J.C. Nwite, V.C. Ezeudo, J. Ene, E.P. Ukaegbu, O.N. Udegbunam, N.C. Eze Impact of open cast mine land use on soil physical properties in Enyigba, Southeastern Nigeria and the implication for sustainable land use management, Niger J. Soil Sci., 25 (2015), pp. 95-101[15] N. Haque, T. Norgate Estimation of greenhouse gas emissions from ferroalloy production using life cycle assessment with particular reference to Australia J. Clean. Prod., 39 (2013), pp. 220-230, 10.1016/j.jclepro.2012.08.010[16] M.S. Tonello, J. Korchagin, E.C. Bortoluzzi Environmental agate mining impacts and potential use of agate residue in rangeland J. Clean. Prod., 280 (2021), Article 124263, 10.1016/j.jclepro.2020.124263[17] T. Norgate, N. Haque Energy and greenhouse gas impacts of mining and mineral processing operations J. Clean. Prod., 18 (2010), pp. 266-274, 10.1016/j.jclepro.2009.09.020[18] W. Cornwall Catastrophic failures raise alarm about dams containing muddy mine wastes Science, 20 (2020), 10.1126/science.abe3917[19] C.C. Okolo, T.D.T. Oyedotun, F.O.R. Akamigbo Open cast mining: threat to water quality in rural community of Enyigba in south-eastern Nigeria Appl. Water Sci., 8 (2018), p. 204, 10.1007/s13201-018-0849-9[20] A. Cortés, L.F.S. Oliveira, V. Ferrari, S.R. Taffarel, G. Feijoo, M.T. Moreira Environmental assessment of viticulture waste valorisation through composting as a biofertilisation strategy for cereal and fruit crops Environ. Pollut., 264 (2020), Article 114794, 10.1016/j.envpol.2020.114794[21] T.P. Souza, G. Watte, A.M. Gusso, R. Souza, J.D.S. Moreira, M.M. Knorst Silicosis prevalence and risk factors in semi-precious stone mining in Brazil Am. J. Ind. Med., 60 (2017), pp. 529-536, 10.1002/ajim.22719[22] T.P. Souza, R. Souza, G. Watte, J.A. de Souza, J.D.S. Moreira, M.M. Knorst Lung function and functional exercise capacity in underground semi-precious stone mineworkers Work, 66 (2020), pp. 193-200, 10.3233/WOR-203163[23] A.K. Patra, S. Gautam, P. Kumar Emissions and human health impact of particulate matter from surface mining operation—a review Environ. Technol. Innov., 5 (2016), pp. 233-249, 10.1016/j.eti.2016.04.002[24] M. Chang, Y. Liu, C. Zhou, H. Che Hazard assessment of a catastrophic mine waste debris flow of Hou Gully, Shimian, China Eng. Geol., 275 (2020), Article 105733, 10.1016/j.enggeo.2020.105733[25] A. Pompermaier, A.C.C.V. Varela, M. Fortuna, S. Mendonça-Soares, G. Koakoski, R. Aguirre, T.A. Oliveira, E. Sordi, D.F. Moterle, A.R. Pohl, V.C. Rech, E.C. Bortoluzzi, L.J.G. Barcellos, L.J.G Water and suspended sediment runoff from vineyard watersheds affecting the behavior and physiology of zebrafish Sci. Total Environ., 757 (2021), Article 143794, 10.1016/j.scitotenv.2020.143794[26] S. Bai, Q. Hua, L.J. Cheng, Q.Y. Wang, T. Elwert Improve sustainability of stone mining region in developing countries based on cleaner production evaluation: methodology and a case study in Laizhou region of China J. Clean. Prod., 207 (2019), pp. 929-950, 10.1016/j.jclepro.2018.10.026[27] H. Ritchie, M. Roser, CO₂ and Greenhouse Gas Emissions, 2020. 〈https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions〉.[28] E.T. Asr, R. Kakaie, M. Ataei, M.R.T. Mohammadi A review of studies on sustainable development in mining life cycle J. Clean. Prod., 229 (2019), pp. 213-231, 10.1016/j.jclepro.2019.05.029[29] J.A. Aznar-Sánchez, J.F. Velasco-Muñoz, L.J. Belmonte-Ureña, F. Manzano-Agugliaro Innovation and technology for sustainable mining activity: a worldwide research assessment J. Clean. Prod., 221 (2019), pp. 38-54, 10.1016/j.jclepro.2019.02.243[30] M. Tost, M. Hitch, V. Chandurkar, P. Moser, S. Feiel The state of environmental sustainability considerations in mining J. Clean. Prod., 182 (2018), pp. 969-977, 10.1016/j.jclepro.2018.02.051[31] D. Folle, R.A. Silva, J. Boita, D. Carissimo, I.A.H. Schneider Waste generation in agate processing: use of SiO2 as a support material for Fe3O4 Int. J. Struct. Civ. Eng. Res., 2 (2015), pp. 327-331[32] F.S. Vilasbôas, C.R. Santos, I.A.H. Schneider Environmental issues on the industrial processing of raw agate Geomaterials, 7 (2017), pp. 13-24, 10.4236/gm.2017.71002[33] L.M. Rosenstengel, L.A. Hartmann Geochemical stratigraphy of lavas and fault-block structures in the Ametista do Sul geode mining district, Paraná volcanic province, southern Brazil Ore Geol. Rev., 48 (2012), pp. 332-348, 10.1016/j.oregeorev.2012.05.003[34] A.P. Nordin, J. Da Silva, C. De Souza, L.A.B. Niekraszewicz, J.F. Dias, J.F, K. Da Boit, M.L.S. Oliveira, I. Grivicich, A.L. Garcia, L.F.S. Oliveira, F.R. Da Silva In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage J. Hazard. Mater., 346 (2018), pp. 263-272, 10.1016/j.jhazmat.2017.12.026[35] D.A.C. Manning How will minerals feed the world in 2050? Proc. Geol. Assoc., 126 (2015), pp. 14-17, 10.1016/j.pgeola.2014.12.005[36] L. Dalacorte, P.A.V. Escosteguy, E.C. Bortoluzzi Sorption of copper and zinc from aqueous solution by metabasalt residue and its mineralogical behavior Water Air Soil Pollut., 230 (2019), p. 90, 10.1007/s11270-019-4141-x[37] J. Korchagin, L. Caner, E.C. Bortoluzzi Variability of amethyst mining waste: a mineralogical and geochemical approach to evaluate the potential use in agriculture J. Clean. Prod., 210 (2019), pp. 749-758, 10.1016/j.jclepro.2018.11.039[38] R. Miloš Distribution and origin of clay minerals during hydrothermal alteration of ore deposits M. Valášková, S. Martynkova (Eds.), Clay Minerals in Nature – Their Characterization, Modification and Application, 5, InTech (2012), p. 325, 10.5772/48312 Chapiter 5[39] J. Korchagin, E.C. Bortoluzzi, D.F. Moterle, C. Petry, L. Caner Evidences of soil geochemistry and mineralogy changes caused by eucalyptus rhizosphere Catena, 175 (2019), pp. 132-143, 10.1016/j.catena.2018.12.001[40] E.C. Bortoluzzi, D.R. Santos, M.A. Santanna, L. Caner Mineralogy and nutrient desorption of suspended sediments during a storm event J. Soils Sediment., 13 (2013), pp. 1093-1105, 10.1007/s11368-013-0692-4[41] A.L. Duarte, K. Da Boit, M.L.S. Oliveira, E.C. Teixeira, I.L. Schneider, L.F. Silva Hazardous elements and amorphous nanoparticles in historical estuary coal mining area Geosci. Front., 10 (2019), pp. 927-939, 10.1016/j.gsf.2018.05.005[42] J.C. Prata, J.P. da Costa, I. Lopes, A.C. Duarte, T. Rocha-Santos Environmental exposure to microplastics: an overview on possible human health effects Sci. Total Environ., 702 (2020), Article 134455, 10.1016/j.scitotenv.2019.134455[43] Z.Y. Zhang, L. Huang, F. Liu, M.K. Wang, G.M. Ndzana, Z.J. Liu Transformation of clay minerals in nanoparticles of several zonal soils in China J. Soils Sediment., 19 (2019), pp. 211-220, 10.1007/s11368-018-2013-4[44] M.S. Tonello, T.S. Hebner, R.W. Sterner, S. Brovold, T. Tiecher, E.C. Bortoluzzi, G.H. Merten Geochemistry and mineralogy of southwestern Lake Superior sediments with an emphasis on phosphorus lability J. Soils Sediment., 20 (2020), pp. 1060-1073, 10.1007/s11368-019-02420-5[45] C.M. Cutruneo, M.L. Oliveira, C.R. War, J.C. Hower, I.A. de Brum, C.H. Sampaio, L.F. Silva A mineralogical and geochemical study of three Brazilian coal cleaning rejects: demonstration of electron beam applications Int. J. Coal Geol., 130 (2014), pp. 33-52, 10.1016/J.COAL.2014.05.009[46] J. Wilcox, B. Wang, E. Rupp, R. Taggart, H. Hsu-Kim, M. Oliveira, C. Cutruneo, S. Taffarel, L.F. Silva, S. Hopps, G. Thomas, J. Hower Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: environmental processes recorded at the macro and nanometer scale Energy Fuel, 29 (2015), pp. 7168-7177, 10.1021/acs.energyfuels.5b02033[47] L.T. Al-Hadede, S.A. Khaleel, S.K. Hasan Some applications of nanotechnology in agriculture Biochem. Cell. Arch., 20 (2020), pp. 1447-1454, 10.35124/bca.2020.20.1.1447[48] A.C. Dalmora, C.G. Ramos, X. Querol, R.M. Kautzmann, M.L.S. Oliveira, S.R. Taffarel, T. Moreno, L.F.O. Silva Nanoparticulate mineral matter from basalt dust wastes Chemosphere, 144 (2016), pp. 2013-2017, 10.1016/j.chemosphere.2015.10.047[49] L.F. Silva, X. Querol, K. Da Boit, S. Fdez-Ortiz De Vallejuelo, J.M. Madariaga Brazilian coal mining residues and sulphide oxidation by Fenton s reaction: an accelerated weathering procedure to evaluate possible environmental impact J. Hazard. Mater., 186 (2011), pp. 516-525, 10.1016/j.jhazmat.2010.11.032 ArticleDownload PDFView Record in ScopusGoogle Scholar[50] L.F. Silva, M. Wollenschlager, M. Oliveira A preliminary study of coal mining drainage and environmental health in the Santa Catarina region, Brazil Environ. Geochem. Health, 33 (2011), pp. 55-65, 10.1007/s10653-010-9322-x[51] L.F.O. Silva, M. Santosh, M. Schindler, J. Gasparotto, G.L. Dotto, M.L.S. Oliveira, M.F. Hochella Jr. Nanoparticles in fossil and mineral fuel sectors and their impact on environment and human health: a review and perspective Gondwana Res., 92 (2021), pp. 184-201, 10.1016/j.gr.2020.12.026 ArticleDownload PDFView Record in ScopusGoogle Scholar[52] . Ribeiro, D. Flores, C. Ward, L.F.O. Silva Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal Sci. Total Environ., 408 (2010), pp. 6032-6041, 10.1016/j.scitotenv.2010.08.046[53] B.K. Saikia, C.R. Ward, M.L. Oliveira, J.C. Hower, B.P. Baruah, M. Braga, L.F. Silva Geochemistry and nano-mineralogy of two medium-sulfur northeast Indian coals Int. J. Coal Geol., 121 (2014), pp. 26-34, 10.1016/j.coal.2013.11.007[54] H. Wang, X. Li, Y. Chen, Z. Li, D.W. Hedding, W. Nel, J. Ji, J. Chen Geochemical behavior and potential health risk of heavy metals in basalt-derived agricultural soil and crops: a case study from Xuyi County, eastern China Sci. Total Environ., 729 (2020), Article 139058, 10.1016/j.scitotenv.2020.139058[55] B. Ren, Y. Zhou, A.S. Hursthouse, R. Deng Research on the characteristics and mechanism of the cumulative release of antimony from an antimony smelting slag stacking area under rainfall leaching J. Anal. Methods Chem., 2017 (2017), pp. 1-8, 10.1155/2017/7206876[56] Y. Zhou, B. Ren, A.S. Hursthouse, S. Zhou Antimony ore tailings: heavy metals, chemical speciation, and leaching characteristics Pollut. J. Environ. Stud., 28 (2019), pp. 485-495, 10.15244/pjoes/85006[57] Z. Yang, Y. Li, Y. Ning, S. Yang, Y. Tang, Y. Zhang, X. Wang Effects of oxidant and particle size on uranium leaching from coal ash J. Radioanal. Nucl. Chem., 317 (2018), pp. 801-810, 10.1007/s10967-018-5963-5[58] B. Liu, T. Peng, H. Sun Leaching behavior of U, Mn, Sr, and Pb from diferente particle-size fractions of uranium mill tailings Environ. Sci. Pollut. Res., 24 (2017), pp. 1-12, 10.1007/s11356-017-8921-9[59] L.F.O. Silva, J.C. Hower, G.L. Dotto, M.L.S. Oliveira, D. Pinto Titanium nanoparticles in sedimented dust aggregates from urban children’s parks around coal ashes wastes Fuel, 285 (2021), Article 119162, 10.1016/j.fuel.2020.119162[60] M.L. Oliveira, E.M.M. Flores, G.L. Dotto, A. Neckel, L.F.O. Silva Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): the protagonist of black crusts produced on historic buildings J. Clean. Prod., 278 (2021), Article 123982, 10.1016/j.jclepro.2020.123982[61] C. Ward Analysis, origin and significance of mineral matter in coal: an updated review Int. J. Coal Geol., 165 (2016), pp. 1-27, 10.1016/j.coal.2016.07.014[62] M.V. Permana, 2756-6044-2-Pb, Jurnal Dinamika Manajemen, 4 (2013), 115–131, [Online]. 〈https://journal.unnes.ac.id/nju/index.php/jdm〉.[63] D.J. Beerling, J.R. Leake, S.P. Long, J.D. Scholes, J. Ton, P.N. Nelson, M. Bird, E. Kantzas, L.L. Taylor, B. Sarkar, M. Kelland, E. DeLucia, I. Kantola, C. Muller, G. Rau, J. Hamsen Farming with crops and rocks to address global climate, food and soil security Nat. Plants, 4 (2018), pp. 138-147, 10.1038/s41477-018-0108-y[64] D.J. Beerling, E.P. Kantzas, M.R. Lomas Potential for large-scale CO2 removal via enhanced rock weathering with croplands Nature, 583 (2020), pp. 242-248, 10.1038/s41586-020-2448-9[65] C.G. Ramos, A.G. de Mello, R.M. Kautzmann A preliminary study of acid volcanic rocks for stonemeal application Environ. Nanotechnol. Monit. Manag., 1–2 (2014), pp. 30-35, 10.1016/j.enmm.2014.03.002[66] C.G. Ramos, J.C. Hower, E. Blanco, M.L.S. Oliveira, S.H. Theodoro Possibilities of using silicate rock powder: an overview Geosci. Front. (2021), Article 101185, 10.1016/j.gsf.2021.101185[67] V. Martins, D.R.G. Silva, G. Marchi, M.C.A. Leite, E.D.S. Martins, A.S.F. Gonçalves, L.R.G. Guilherme Effect of alternative multinutrient sources on soil chemical properties Rev. Bras. Cienc. Solo, 39 (2015), pp. 194-204, 10.1590/01000683rbcs20150587[68] V. Ferrari, S.R. Taffarel, E. Espinosa-Fuentes, M.L.S. Oliveira, B.K. Saikia, L.F.S. Oliveira Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers J. Clean. Prod., 208 (2019), pp. 297-306, 10.1016/j.jclepro.2018.10.032[69] S.H. Theodoro, F.P. Medeiros, M. Ianniruberto, T.K.B. Jacobson Soil remineralization and recovery of degraded areas: an experience in the tropical region J. S. Am. Earth Sci., 107 (2020), p. 103014, 10.1016/j.jsames.2020.103014[70] G.P. Gillman, D.C. Burkett, R.J. Coventry A laboratory study of application of basalt dust to highly weathered soils: effect on soil cation chemistry Aust. J. Soil Res., 39 (2001), pp. 799-811, 10.1071/SR00073[71] G.P. Gillman, D.C. Burkett, R.J. Coventry Amending highly weathered soils with finely ground basalt rock J. Appl. Geochem., 17 (2002), pp. 987-1001, 10.1016/S0883-2927(02)00078-1[72] W. Mushtaq, A. Shakeel, M.A. Fazili, I. Chakrabartty, M. Sevindik Pros and cons of nanotechnology K. Hakeem, T. Pirzadah (Eds.), Nanobiotechnology in Agriculture, Nanotechnology in the Life Sciences, Springer, Cham (2020), pp. 207-222, 10.1007/978-3-030-39978-8_13[73] A. Ramezanian, A.S. Dahlin, C.D. Campbell, S. Hillier, B. Mannerstedt-Fogelfors, I. Öborn Addition of a volcanic rock dust to soils has no observable effects on plant yield and nutrient status or on soil microbial activity Plant Soil, 367 (2013), pp. 419-436, 10.1007/s11104-012-1474-2[74] L. Gomez-Plata, C.G. Ramos, M.L. Silva Oliveira, L.F.Silva Oliveira Release kinetics of multi-nutrients from volcanic rock mining by-products: evidences for their use as a soil remineralizer J. Clean. Prod., 279 (2021), Article 123668, 10.1016/j.jclepro.2020.123668[75] P.S. Bindraban, C.O. Dimkpa, J.C. White, F.A. Franklin, A. Melse-Boonstra, N. Koele, R. Pandey, J. Rodenburg, K. Senthilkumar, P. Demokritou, S. Schmidt Safeguarding human and planetary health demands a fertilizer sector transformation Plants People Planet, 2 (2020), pp. 302-309, 10.1002/ppp3.10098[76] E.C. Bortoluzzi, C.A.S. Pérez, J.D. Ardisson, T. Tiecher, L. Caner Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils Appl. Clay Sci., 104 (2015), pp. 196-204, 10.1016/j.clay.2014.11.032[77] A. Somavilla, L. Caner, E.C. Bortoluzzi, M.A. Santanna, D.R. dos Santos P-Legacy effect of soluble fertilizer added with limestone and phosphate rock on grassland soil in subtropical climate region Soil Tillage Res., 211 (2021), Article 105021, 10.1016/j.still.2021.105021[78] P.S. Pavinato, M.R. Cherubin, A. Soltangheisi, G.C. Rocha, D.R. Chadwick, D.L. Jones Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil Sci. Rep., 10 (2020), p. 15615, 10.1038/s41598-020-72302-1[79] P.S. Pavinato, M. Rodrigues, A. Soltangheisi, L.R. Sartor, P.J.A. Withers Effects of cover crops and phosphorus sources on maize yield, phosphorus uptake, and phosphorus use efficiency Agron. J., 109 (2017), pp. 1039-1047, 10.2134/agronj2016.06.0323[80] M. Dutta, J. Saikia, S.R. Taffarel, F.B. Waanders, D. De Medeiros, C.M. Cutruneo, L.F.O. Silva, B.K. Saikia Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage Geosci. Front., 8 (2017), pp. 1285-1297, 10.1016/j.gsf.2016.11.014[81] M. Dutta, N. Islam, S. Rabha, B. Narzary, M. Bordoloi, D. Saikia, L.F.O. Silva, B.K. Saikia Acid mine drainage in an Indian high-sulfur coal mining area: cytotoxicity assay and remediation study J. Hazard. Mater., 389 (2020), Article 121851, 10.1016/j.jhazmat.2019.121851[82] A.D. Harley, R.J. Gilkes Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overview Nutr. Cycl. Agroecosyst., 56 (2000), pp. 11-36, 10.1023/A:1009859309453[83] S.H. Theodoro, O.H. Leonardos The use of rocks to improve family agriculture in Brazil Acad. Bras. Cienc., 78 (2006), pp. 721-730, 10.1590/S0001-37652006000400008[84] J.M.G. Nunes, R.M. Kautzmann, C. Oliveira Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil) J. Clean. Prod., 84 (2014), pp. 649-656, 10.1016/j.jclepro.2014.04.032[85] M. Anda, J. Shamshuddin, C.I. Fauziah Improving chemical properties of a highly weathered soil using finely ground basalt rocks Catena, 124 (2015), pp. 147-161, 10.1016/j.catena.2014.09.012[86] A.C. Dalmora, C.G. Ramos, M.L.S. Oliveira, L.F.S. Oliveira, I.A.H. Schneider, R.M. Kautzmann Application of andesite rock as a clean source of fertilizer for eucalyptus crop: evidence of sustainability J. Clean. Prod., 256 (2020), Article 120432, 10.1016/j.jclepro.2020.120432[87] J.B. Gill Orogenic Andesites and Plate Tectonics Springer - Verlag, Berlin (1981)[88] C. Coroneos, P. Hinsinger, R.J. Gilkes Granite powder as a source of potassium for plants: a glasshouse bioassay comparing two pasture species Fertil. Res., 45 (1995), pp. 143-152, 10.1007/BF00790664[89] P.K. Pufahl, L.A. Groat Sedimentary and Igneous Phosphate Deposits: Formation and Exploration: An Invited Paper Econ. Geol., 112 (2017), pp. 483-516, 10.2113/econgeo.112.3.483[90] A. Soltangheisi, A.P.B. Teles, L.R. Sartor, P.S. Pavinato Cover Cropping May Alter Legacy Phosphorus Dynamics Under Long-Term Fertilizer Addition Front. Environ. Sci., 8 (2020), 10.3389/fenvs.2020.00013[91] D. Cordell, J.O. Drangert, S. White The story of phosphorus: Global food security and food for thought Glob. Environ. Change, 19 (2009), pp. 292-305, 10.1016/j.gloenvcha.2008.10.009[92] A.E. Kateb, C. Stalder, A. Rüggeberg, C. Neururer, J.E. Spangenberg, S. Spezzaferri Impact of industrial phosphate waste discharge on the marine environment in the Gulf of Gabes (Tunisia) PLoS One, 13 (2018), Article e0197731, 10.1371/journal.pone.0197731[93] A. Ditta How helpful is nanotechnology in agriculture? Adv. Nat. Sci.: Nanosci. Nanotechnol., 3 (2012), Article 033002, 10.1088/2043-6262/3/3/033002[94] H. Brammer, F.O. Nachtergaele Implications of soil complexity for environmental monitoring Int. J. Environ. Sci., 72 (2015), pp. 56-73, 10.1080/00207233.2014.967509[95] C.G. Ramos, X. Querol, M.L.S. Oliveira, K. Pires, R.M. Kautzmann, L.F.S. Oliveira A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer Sci. Total Environ., 512–513 (2015), pp. 371-380, 10.1016/j.scitotenv.2014.12.070[96] C.G. Ramos, X. Querol, A.C. Dalmora, K.C.J. Pires, I.A.H. Shneider, L.F.S. Oliveira, R.M. Kautzmann Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer J. Clean. Prod., 142 (2017), pp. 2700-2706, 10.1016/j.jclepro.2016.11.006[97] H. Li, K. Watanabe, X. Xi, K. Yonezu Geochemistry of volcanic rocks at zhaokalong iron-copper-polymetallic ore deposit, Qinghai Province, China: implications for the tectonic background Procedia Environ. Sci., 6 (2013), pp. 58-63, 10.1016/j.proeps.2013.01.008[98] Y. Masuda, K.I. Aoki Trace element variations in the volcanic rocks from the Nasu zone, northeast Japan Earth Planet. Sci. Lett., 44 (1979), pp. 139-149, 10.1016/0012-821X(79)90014-1[99] J. Ribeiro, K. Da boit, D. Flores, M.A. Kronbauer, L.F.O. Silva Extensive FE-SEM/EDS, HR-TEM/EDS and tof-sims studies of micron- to nanoparticles in anthracite fly ash Sci. Total Environ., 452–453 (2013), pp. 98-107, 10.1016/j.scitotenv.2013.02.010[100] J. Ribeiro, S.R. Taffarel, C.H. Sampaio, D. Flores, L.F.O. Silva Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal Int. J. Coal Geol., 109–110 (2013), pp. 15-23, 10.1016/j.coal.2013.01.007[101] S. Gautam, A.K. Patra, S.P. Sahu, M. Hitch Particulate matter pollution in opencast coal mining areas: a threat to human health and environment Int. J. Min. Reclam. Environ., 32 (2018), pp. 75-92, 10.1080/17480930.2016.1218110[102] O. Ramírez, A.M. Sánchez de la Campa, F. Amato, L.F. Silva, J.D. de la Rosa Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity Sci. Total Environ., 652 (2019), pp. 434-446, 10.1016/j.scitotenv.2018.10.214[103] M. Civeira, R. Pinheiro, A. Gredilla, S. De Vallejuelo, M. Oliveira, C. Ramos, S. Taffarel, R. Kautzmann, J. Madariaga, L.F. Silva The properties of the nano-minerals and hazardous elements: potential environmental impacts of Brazilian coal waste fire Sci. Total Environ., 544 (2016), pp. 892-900, 10.1016/j.scitotenv.2015.12.026[104] G.E. Brown, G. Calas Environmental mineralogy – Understanding element behavior in ecosystems C. R. Geosci., 343 (2011), pp. 90-112, 10.1016/j.crte.2010.12.005[105] B. Cerqueira, F.A. Vega, C. Serra, L.F.O. Silva, M.L. Andrade Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of Cu2+ and Cu2+/Pb2+ on a bt horizon surfaces J. Hazard. Mater., 195 (2011), pp. 422-431, 10.1016/j.jhazmat.2011.08.059[106] B. Cerqueira, F.A. Vega, L.F.O. Silva, L. Andrade Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine Sci. Total Environ., 421–422 (2012), pp. 220-229, 10.1016/j.scitotenv.2012.01.055[107] D. Lago, F.A. Veja, L.F. Silva, A. Luisa Lead distribution between soil geochemical phases and its fractionation in pb-treated soils Fresenius Environ. Bull., 23 (2014), p. 1025[108] D. Arenas-Lago, F.A. Vega, L.F. Silva, M.L. Andrade Copper distribution in surface and subsurface soil horizons Environ. Sci. Pollut. Res., 21 (2014), pp. 10997-11008, 10.1007/s11356-014-3084-4[109] Z. Asif, Z. Chen Environmental management in North American mining sector Environ. Sci. Pollut. Res., 23 (2016), pp. 167-179, 10.1007/s11356-015-5651-8[110] H.I. Gomes, W.M. Mayes, M. Rogerson, D.I. Stewart, I.T. Burke Alkaline residues and the environment: a review of impacts, management practices and opportunities J. Clean. Prod., 112 (2016), pp. 3571-3582, 10.1016/j.jclepro.2015.09.111[111] M.M.E.C.G.G.A. Tayebi-Khorami Re-thinking mining waste through an integrative approach led by circular economy aspirations Minerals, 9 (2019), p. 286, 10.3390/min9050286[112] C.J. Chen, Y.C. Chuang, T.M. Lin, H.Y. Wu Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers Cancer Res., 45 (1985), pp. 5895-5899 View PDFView Record in ScopusGoogle Scholar[113] M. Civeira, R. Pinheiro, A. Gredilla, S. De Vallejuelo, M. Oliveira, C. Ramos, S. Taffarel, R. Kautzmann, J. Madariaga, L.F. Silva The properties of the nano-minerals and hazardous elements: potential environmental impacts of Brazilian coal waste fire Sci. Total Environ., 544 (2016), pp. 892-900, 10.1016/j.scitotenv.2015.12.026[114] J. Lin, D. Pan, S.J. Davis, Q. Zhang, K. He, C. Wang, D.G. Streets, D.J. Wuebbles, D. Guan China’s international trade and air pollution in the United States Proc. Natl. Acad. Sci. USA, 111 (2014), pp. 1736-1741, 10.1073/pnas.1312860111[115] K. Martinello, M. Oliveira, F. Molossi, C. Ramos, E. Teixeira, R. Kautzmann, L.F. Silva Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing Sci. Total Environ., 470–471 (2014), pp. 444-452, 10.1016/j.scitotenv.2013.10.007 ArticleDownload PDFView Record in ScopusGoogle Scholar[116] K. Martinello, J.C. Hower, D. Pinto, C.E. Schnorr, G.L. Dotto, M.L.S. Oliveira, C.G. Ramos Artisanal ceramic factories using wood combustion: a nanoparticles and human health study Geosci. Front. (2021), Article 101151, 10.1016/j.gsf.2021.10[117] N. Islam, S. Rabha, L.F.O. Silva, B.K. Saikia Air quality and PM10-associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches Environ. Geochem. Health, 41 (2019), pp. 2039-2053, 10.1007/s10653-019-00256-z[118] J. Gasparotto, K. Da, B. Martinello Coal as an energy source and its impacts on human health Energy Geosci., 2 (2020), pp. 113-120, 10.1016/j.engeos.2020.07.003[119] I. Manisalidis, E. Stavropoulou, A. Stavropoulos, E. Bezirtzoglou Environmental and health impacts of air pollution: a review Front. Public Health, 8 (2020), p. 14, 10.3389/fpubh.2020.00014[120] Ma.I.-W. Hendryx, A. Kestrel Increased risk of depression for people living in coal mining areas of central Appalachia Ecopsychology, 5 (2013), pp. 179-187, 10.1089/eco.2013.0029[121] A.C. Joaquim, M. Lopes, L. Stangherlin, K. Castro, L.B. Ceretta, W.C. Longen, F. Ferraz, I.D.S. Perry Mental health in underground coal miners Arch. Environ. Occup. Health, 73 (2018), pp. 334-343, 10.1080/19338244.2017.1411329[122] J.C. Rojas, N.E. Sánchez, I. Schneider, E.C. Teixeira, L.F.O. Silva Exposure to nanometric pollutants in primary schools: environmental implications Urban Clim., 27 (2019), pp. 412-419, 10.1016/j.uclim.2018.12.011[123] B.S. Van Gosen, T.A. Blitz, G.S. Plumlee, G.P. Meeker, M.P. Pierson Geologic occurrences of erionite in the United States: an emerging national public health concern for respiratory disease Environ. Geochem. Health, 35 (2013), pp. 419-430, 10.1007/s10653-012-9504-9[124] M. Carbone, Y.I. Baris, P. Bertino, B. Brass, S. Comertpay, A.U. Dogan, G. Gaudino, S. Jube, S. Kanodia, C.R. Partridge, H.I. Pass, Z.S. Rivera, I. Steele, M. Tuncer, S. Way, H. Yang, A. Miller Erionite exposure in North Dakota and Turkish villages with mesothelioma Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 13618-13623, 10.1073/pnas.1105887108[125] R. Matassa, G. Familiari, M. Relucenti, E. Battaglione, C. Downing, A. Pacella, G. Cametti, P. Ballirano A deep look into erionite fibres: an electron microscopy investigation of their self-assembly Sci. Rep., 5 (2015), p. 16757, 10.1038/srep16757[126] C. Marshall, D.J. Large, N.G. Heavens Coal-derived rates of atmospheric dust deposition during the Permian Gondwana Res., 31 (2016), pp. 20-29, 10.1016/J.GR.2015.10.002[127] A.U. Dogan, M. Dogan, J.A. Hoskins Erionite series minerals: mineralogical and carcinogenic properties Environ. Geochem. Health, 30 (2008), pp. 367-381, 10.1007/s10653-008-9165-x[128] B.K. Saikia, C.R. Ward, M.L. Oliveira, J.C. Hower, F. De Leao, M.N. Johnston, L.F. Silva Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): a multi-faceted analytical approach Int. J. Coal Geol., 137 (2015), pp. 19-37, 10.1016/j.coal.2014.11.002 ArticleDownload PDFView Record in ScopusGoogle Scholar[129] M. Intawongse, J.R. Dean Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract Food Addit. Contam., 23 (2006), pp. 36-48, 10.1080/02652030500387554[130] N.E. Sánchez-Peña, J.L. Narváez-Semanate, D. Pabón-Patiño, J.E. Fernández-Mera, M.L. Oliveira, K. Da Boit, B. Tutikian, T. Crissien, D. Pinto, I. Serrano, C. Ayala, A. Duarte, J. Ruiz, L.F. Silva Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: experimental evidence Chemosphere, 191 (2018), pp. 1048-1055, 10.1016/j.chemosphere.2017.08.127[131] R. Mohajer, M.H. Salehi, J. Mohammadi, M.H. Emami, T. Azarm, The status of lead and cadmium in soils of high prevalenct gastrointestinal cancer region of Isfahan, J. Res. Med. Sci., 18, 210–214.[132] D.C. Zamberlan, P.T. Halmenschelager, L.F.O. Silva, J.B.T. da Rocha Copper decreases associative learning and memory in Drosophila melanogaster Sci. Total Environ., 710 (2020), Article 135306, 10.1016/j.scitotenv.2019.135306[133] H. Morillas, C. García-Florentino, I. Marcaida, M. Maguregui, G. Arana, L.F. Silva, J. Madariaga In-situ analytical study of bricks exposed to marine environment using hand-held X-ray fluorescence spectrometry and related laboratory techniques Spectrochim. Acta Part B At. Spectrosc., 146 (2018), pp. 28-35, 10.1016/j.sab.2018.04.020[134] H. Morillas, P. Vazquez, M. Maguregui, I. Marcaida, L.F. Silva Composition and porosity study of original and restoration materials included in a coastal historical construction Constr. Build. Mater., 178 (2018), pp. 384-392, 10.1016/j.conbuildmat.2018.05.168[135] M.L. Oliveira, K. Da Boit, I. Schneider, E. Teixeira, T. Crissien, L.F. Silva Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies J. Clean. Prod., 188 (2018), pp. 662-669, 10.1016/j.jclepro.2018.04.050[136] M. Oliveira, M. Izquierdo, X. Querol, R.N. Lieberman, B.K. Saikia, L.F.O. Silva Nanoparticles from construction wastes: a problem to health and the environment J. Clean. Prod., 219 (2019), pp. 236-243, 10.1016/j.jclepro.2019.02.096[137] M.L.S. Oliveira, D. Pinto, B.F. Tutikian, K. Da Boit, B.K. Saikia, L.F.O. Silva Pollution from uncontrolled coal fires: continuous gaseous emissions and nanoparticles from coal mining industry J. Clean. Prod., 215 (2019), pp. 1140-1148, 10.1016/j.jclepro.2019.01.169[138] M.L. Oliveira, B.K. Saikia, K. da Boit, D. Pinto, B.F. Tutikian, L.F. Silva River dynamics and nanopaticles formation: a comprehensive study on the nanoparticle geochemistry of suspended sediments in the Magdalena River, Caribbean Industrial Area J. Clean. Prod., 213 (2019), pp. 819-824, 10.1016/j.jclepro.2018.12.230[139] I. Gestoso, E. Cacabelos, P. Ramalhosa, J. Canning-Clode Plasticrusts: a new potential threat in the Anthropocene’s rocky shores Sci. Total Environ., 687 (2019), pp. 413-415, 10.1016/j.scitotenv.2019.06.123[140] I.L. Schneider, E.C. Teixeira, G.L. Dotto, D. Pinto, C.X. Yang, L.F.S. Silva Geochemical study of submicron particulate matter (PM1) in a metropolitan area Geosci. Front. (2020), Article 101130, 10.1016/j.gsf.2020.12.011[141] C.N. Waters, J. Zalasiewicz, C. Summerhayes, A.D. Barnosky, C. Poirier, A. Gałuszka, A. Cearreta, M. Edgeworth, E.C. Ellis, M. Ellis, C. Jeandel, R. Leinfelder, J.R. McNeill, D.D. Richter, W. Steffen, J. Syvitski, D. Vidas, M. Wagreich, M. Williams, A. Zhisheng, J. Grinevald, E. Odada, N. Oreskes, A.P. Wolfe The Anthropocene is functionally and stratigraphically distinct from the Holocene Science, 351 (2016), Article aad2622PublicationORIGINALNanoparticles generated during volcanic rock exploitation.pdfNanoparticles generated during volcanic rock exploitation.pdfapplication/pdf73619https://repositorio.cuc.edu.co/bitstreams/38909063-158e-4da4-a0ba-92103dc5b180/downloadfd5b2b570f563bad5bc0be429fc90ad6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/51372390-5951-47d4-a445-26a758bfed6a/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/bd60e6d6-d28f-4fd6-a7a1-0d895246740c/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILNanoparticles generated during volcanic rock exploitation.pdf.jpgNanoparticles generated during volcanic rock exploitation.pdf.jpgimage/jpeg50551https://repositorio.cuc.edu.co/bitstreams/a490d033-f3d6-4300-b171-391bc1c77035/download7a43d3e5ebdc412923170c20571367c5MD54TEXTNanoparticles generated during volcanic rock exploitation.pdf.txtNanoparticles generated during volcanic rock exploitation.pdf.txttext/plain1525https://repositorio.cuc.edu.co/bitstreams/35d9b611-82a6-47d3-ad7e-9b8dfc56ae19/download9730a6d511989985125c34d57895b737MD5511323/8895oai:repositorio.cuc.edu.co:11323/88952024-09-17 10:14:17.664http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==