VIGHUB: a technology forecasting tool based on mining software repositories

Introduction— Academics, developers, and companies focused on technological development seek to know what exists and what is still missing in this field. One of the ways they use is the review of bibliographic sources (state-of-the art). In this sense, a tool was developed that allows the current st...

Full description

Autores:
Hidalgo-Suarez, Carlos Giovanny
Bucheli-Guerrero, Víctor Andrés
Ordoñez-Eraso, Hugo Armando
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9866
Acceso en línea:
https://hdl.handle.net/11323/9866
https://repositorio.cuc.edu.co/
Palabra clave:
Mining software repositories
Technology forecasting
State-of-the technique
GitHub
Technological maps
Minería de repositorios de software
Vigilancia tecnológica
Estado de la técnica
Mapas tecnológicos
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_cc9d030dbb90d2b35387ca2d4ffd7c3e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9866
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv VIGHUB: a technology forecasting tool based on mining software repositories
dc.title.translated.none.fl_str_mv VIGHUB: una herramienta de pronóstico tecnológico basada en minería de repositorios de software
title VIGHUB: a technology forecasting tool based on mining software repositories
spellingShingle VIGHUB: a technology forecasting tool based on mining software repositories
Mining software repositories
Technology forecasting
State-of-the technique
GitHub
Technological maps
Minería de repositorios de software
Vigilancia tecnológica
Estado de la técnica
Mapas tecnológicos
title_short VIGHUB: a technology forecasting tool based on mining software repositories
title_full VIGHUB: a technology forecasting tool based on mining software repositories
title_fullStr VIGHUB: a technology forecasting tool based on mining software repositories
title_full_unstemmed VIGHUB: a technology forecasting tool based on mining software repositories
title_sort VIGHUB: a technology forecasting tool based on mining software repositories
dc.creator.fl_str_mv Hidalgo-Suarez, Carlos Giovanny
Bucheli-Guerrero, Víctor Andrés
Ordoñez-Eraso, Hugo Armando
dc.contributor.author.none.fl_str_mv Hidalgo-Suarez, Carlos Giovanny
Bucheli-Guerrero, Víctor Andrés
Ordoñez-Eraso, Hugo Armando
dc.subject.proposal.eng.fl_str_mv Mining software repositories
Technology forecasting
State-of-the technique
GitHub
Technological maps
topic Mining software repositories
Technology forecasting
State-of-the technique
GitHub
Technological maps
Minería de repositorios de software
Vigilancia tecnológica
Estado de la técnica
Mapas tecnológicos
dc.subject.proposal.spa.fl_str_mv Minería de repositorios de software
Vigilancia tecnológica
Estado de la técnica
Mapas tecnológicos
description Introduction— Academics, developers, and companies focused on technological development seek to know what exists and what is still missing in this field. One of the ways they use is the review of bibliographic sources (state-of-the art). In this sense, a tool was developed that allows the current state to be identified semi-automatically. Objective— This article proposes a tool that extracts information from repositories hosted on GitHub. It analyzes the data using computational techniques and presents the results through visualizations that identify the field’s technological evolution studied through the most used programming languages, central repositories, and organizations. Method— A model based on Mining Software Repositories (MSR) is used, which integrates an architecture based on microservices, using different programming languages, which allowed the construction of the VigHub tool. The model focuses on four aspects— Selection of a topic, extraction of the data source, analysis of information using computational techniques, and finally, the results are communicated through visualizations. Results— The VigHub tool was available online to carry out 3 case studies. The first in the academy, where technologies, programming languages, users, and companies interested in developing VLE’s (Virtual Learning Environment) were identified from 2011 to 2021. The second and third were carried out by companies (industrial environment), which stated that using the VigHub tool supports data analysis and valuable results identification. Conclusions— A tool that allows identifying a part of the current state of technology could be a helpful tool for academics, developers, and companies, saving human resources, time, and possible repeated developments- --code reuse. The VigHub tool aims to support the construction of state-of-the-art. Its results are complementary to the traditional method.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-02-06T15:52:17Z
dc.date.available.none.fl_str_mv 2023-02-06T15:52:17Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv C. Hidalgo-Suarez, V. Bucheli-Guerrero & H. Ordoñez-Eraso, “VIGHUB: una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software”, INGE CUC, vol. 18, no. 1, pp. 83–94, 2022. DOI: http://doi.org/10.17981/ingecuc.18.1.2022.07
dc.identifier.issn.spa.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/9866
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.18.1.2022.07
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC – Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv C. Hidalgo-Suarez, V. Bucheli-Guerrero & H. Ordoñez-Eraso, “VIGHUB: una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software”, INGE CUC, vol. 18, no. 1, pp. 83–94, 2022. DOI: http://doi.org/10.17981/ingecuc.18.1.2022.07
0122-6517
10.17981/ingecuc.18.1.2022.07
2382-4700
Corporación Universidad de la Costa
REDICUC – Repositorio CUC
url https://hdl.handle.net/11323/9866
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
dc.relation.references.spa.fl_str_mv [1] A. Peralta & F. P. Romero, “Decision making from knowledge obtained after previous behavior analysis. Practical implementation to project management of software development,” Rev Cintex, vol. 20, no. 2, pp. 97–111, Nov. 2015. https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/26
[2] D. Güemes-Peña, C. López-Nozal, R. Marticorena-Sánchez & J. Maudes-Raedo, “Emerging topics in mining software repositories: Machine learning in software repositories and datasets”, Prog Artif Intell, vol. 7, no. 3, pp. 237–247, Mar. 2018. https://doi.org/10.1007/s13748-018-0147-7
[3] O. Meqdadi, N. Alhindawi, J. Alsakran, A. Saifan & H. Migdadi, “Mining software repositories for adaptive change commits using machine learning techniques,” Inf Softw Technol, vol. 109, pp. 80–91, May.2019. https://doi.org/10.1016/j.infsof.2019.01.008
[4] M. Garriga, “Towards a taxonomy of microservices architectures,” presented at International Conference on Software Engineering and Formal Methods, SEFM, TLS, FR, 27-29 Jun. 2018. https://doi. org/10.1007/978-3-319-74781-1_15
[5] K. Bakshi, “Microservices-based software architecture and approaches,” presented at Aerospace Conference Proceedings, IEEE, Big Sky, MT, 4-11 Mar. 2017. https://doi.org/10.1109/AERO.2017.7943959
[6] Y. San Juan & F. Romero, “Management, extraction and storing sources for technological watch and competitive intelligence,” presented at VIII Congreso Internacional de Tecnologías y Contenidos Multimedia, CITCM, HAB, CU, 19-23 Mar. 2018.
[7] M. A. Saied, A. Ouni, H. Sahraoui, R. G. Kula, K. Inoue & D. Lo, “Improving reusability of software libraries through usage pattern mining,” JSS, vol. 145, pp. 164–179, Nov. 2018. https://doi.org/10.1016/j. jss.2018.08.032
[8] R. Dyer, H. A. Nguyen, H. Rajan & T. N. Nguyen, “Boa: Ultra-large-scale software repository and source-code mining,” ACM Trans Softw Eng Methodol, vol. 25, no. 1, pp. 1–34, Dec. 2015. https://doi. org/10.1145/2803171
[9] F. Z. Sokol, M. F. Aniche & M. A. Gerosa, “MetricMiner: Supporting researchers in mining software repositories,” presented at 2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation, SCAM, EIN, NL, 22-23 Sept. 013. https://doi.org/10.1109/SCAM.2013.6648195
[10] C. M. Filho, “Kalibro: Uma ferramenta de configuração e interpretação de métricas de código-fonte,” Projeto de conclusão de curso, USP, SP, BR, 2009. https://www.ime.usp.br/~cef/mac499-09/monografias/ carlos-morais/Monografia.pdf
[11] D. S. Chawla, “The unsung heroes of scientific software,” Nature, vol. 529, no. 7584, pp. 115–116, Jan. 2016. https://doi.org/10.1038/529115a
[12] D. Spadini, M. Aniche & A. Bacchelli, “PyDriller: Python framework for mining software repositories,” presented at 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE, NYC, NY, USA, 4-9 Nov. 2018. https://doi.org/10.1145/3236024.3264598
[13] S. Dueñas, V. Cosentino, G. Robles & J. M. Gonzalez-Barahona, “Perceval: software project data at your will,” presented at 40th International Conference on Software Engineering: Companion, ICSE-Companion, GBG, SE, 27 May.-3 Jun. 018. https://ieeexplore.ieee.org/document/8449430
[14] J. J. Ramírez-Echeverry, F. Restrepo-Calle & F. A. González, “Uncode: interactive system for learning and automatic evaluation of computer programming skills”, presented at 10th International Conference on Education and New Learning Technologies, EDULEARN, PMI, ES, 2-4 Jul. 2018. https://doi. org/10.21125/edulearn.2018.1632
[15] E. Ortíz, “La evaluación del impacto científico en las investigaciones educativas a través de un estudio de caso,” REDIE, vol. 17, no. 2, pp. 89–100, May. 2015. https://www.scienceopen.com/document?vid=0de24d4cb9e3-4739-b394-346f7480b4fe
[16] A. Berges-García, J. M. Meneses-Chaus & J. F. Martínez-Ortega, “Methodology for evaluating functions and products for technology watch and competitive intelligence (TW/CI) and their implementation through web,” PEI, vol. 25, no. 1, pp. 103–113, Jan. 2016. https://doi.org/10.3145/epi.2016.ene.10
[17] SpaCy, “Industrial-Strength Natural Language Processing in Python,” Accessed: Oct. 18, 2019. [Online]. Available: https://spacy.io/
[18] Google Developers. “Google Charts.” Accessed: 2018. [Online]. Available: https://developers.google.com/ chart
[19] P. T. Goeser, F. G. Hamza-Lup, W. M. Johnson & D. Scharfer, “VIEW: A Virtual Interactive Webbased Learning Environment for Engineering,” AEEE, vol. 2, no. 3, pp. 1–24, Dec. 2011. https://doi. org/10.48550/arXiv.1811.07463
[20] WISE-Community, “WISE VLE,” Feb. 25, 2015. [Online]. Available: https://github.com/WISE-Community/WISE-VLE--Deprecated--
[21] F. Supriadi, M. Agreindra Helmiawan, Y. Y. Sofiyan & A. Guntara, “A Model of Virtual Learning Environments Using Micro-Lecture, MOODLE, and SLOODLE,” presented at 8th International Conference on Cyber and IT Service Management, CITSM, PGX, ID, 23-24 Dec. 020. https://doi.org/10.1109/CITSM50537.2020.9268785
[22] Knowm, “Proprioceptron,” Oct. 27, 2012. [Online]. Available: https://github.com/knowm/Proprioceptron
[23] Yjwong, “com.nuscomputing.ivlelapi,” Aug. 14, 2012. [Online]. Available: https://github.com/yjwong/com.nuscomputing.ivlelapi
[24] 40thieves, “WikiVLE,” Jun. 23, 2012. [Online]. Available: https://github.com/40thieves/WikiVLE
[25] Jbittencourt, “massinha,” Jul. 5, 2012. [Online]. Available: https://github.com/jbittencourt/massinha
[26] Conel, “moodle-1.9,” Aug. 20, 2012. [Online]. Available: https://github.com/conel/moodle-1.9
[27] Elkuku, “JDevAndLearn,” Jul. 28, 2012. [Online]. Available: https://github.com/elkuku/JDevAndLearn
[28] Champiewebfolio, “CloudPod,” Jan. 6, 2013. [Online]. Available: https://github.com/champiewebfolio/CloudPod
[29] RheoDesign, “AAVS-Beijing,” Oct. 23, 2013. [Online]. Available: https://github.com/RheoDesign/AAVSBeijing
[30] Roxolan, “vlemean,” Aug. 11, 2015. [Online]. Available: https://github.com/roxolan/vlemean
[31] luistp001, “LT-Autograder,” Sep. 16, 2012. [Online]. Available: https://github.com/luistp001/LT-Autograder
[32] StephenBergeron, “RubySoup,” Apr. 1, 2014. [Online]. Available: https://github.com/StephenBergeron/ RubySoup
[33] Deepapanwar, “vle,” Jun. 16, 2015. [Online]. Available: https://github.com/deepapanwar/vle
[34] Soyjun, “Implement-ODR-protocol,” Apr. 10, 2015. [Online]. Available: https://github.com/SOYJUN/Implement-ODR-protocol
[35] Brukmoon, “eduqo-vle,” Apr. 23, 2015. [Online]. Available: https://github.com/Brukmoon/eduqo-vle
[36] Sykonba, “PeerReviewSystem,” Nov. 2, 2015. [Online]. Available: https://github.com/Sykonba/PeerReviewSystem
[37] DavidStCox, “nlp-vle,” Apr. 10, 2017. [Online]. Available: https://github.com/DavidStCox/nlp-vle
[38] Lumeng, “univ-washington-machine-learning-python-virtualenv,” Dec. 3, 2017. [Online]. Available: https://github.com/lumeng/univ-washington-machine-learning-python-virtualenv
[39] Blosm-org, “blosm-core,” Sep. 30, 2017. [Online]. Available: https://github.com/blosm-org/blosm-core
[40] Cvgokhale, “Course-Completion-Rate-Prediction,” Jul. 16, 2017. [Online]. Available: https://github.com/ cvgokhale/Course-Completion-Rate-Prediction
[41] Victor-iyiola, “navigating-a-virtual-world-using-dynamic-programming,” Nov. 26, 2017. [Online]. Available: https://github.com/victor-iyiola/navigating-a-virtual-world-using-dynamic-programming
[42] Charvi5, “VirtualLearning-Analysis-Classification,” Apr. 4, 2018. [Online]. Available: https://github.com/charvi5/VirtualLearning-Analysis-Classification
[43] Viniciusvec, “hackops,” Mar. 2, 2018. [Online]. Available: https://github.com/viniciusvec/hackops
[44] Fernando24164, “breakfast_docker,” Feb. 2, 2018. [Online]. Available: https://github.com/fernando24164/ breakfast_docker
[45] pupilfirst, “pupilfirst,” Aug. 2, 2021. [Online]. Available: https://github.com/pupilfirst/pupilfirst
[46] tparisi, “LearningVirtualReality,” Mar. 4, 2016. [Online]. Available: https://github.com/tparisi/LearningVirtualReality
[47] Aayushi15061997, “Reinforcement_Learning_ThompsonSampling,” Jan 29, 2018. [Online]. Available: https://github.com/aayushi15061997/Reinforcement_Learning_ThompsonSampling
[48] The-Dank-Network, “TDVLE-API,” Mar. 23, 2019. [Online]. Available: https://github.com/The-DankNetwork/TDVLE-API
[49] C. G. Hidalgo, V. A. Bucheli, F. Restrepo-Calle & F. A. González, “A strategy based on technological maps for the identification of the state-of-the-art techniques in software development projects: Virtual judge projects as a case study,” in Communications in Computer and Information Science, C. J. Serrano & J. Martínez-Santos, Cham, CH: Springer, 2018, vol. 885, pp. 338–354. https://doi.org/10.1007/978-3- 319-98998-3_27
dc.relation.citationendpage.spa.fl_str_mv 94
dc.relation.citationstartpage.spa.fl_str_mv 83
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 18
dc.rights.spa.fl_str_mv Derechos de autor 2021 INGE CUC
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Derechos de autor 2021 INGE CUC
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/4065
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/60f0e6db-d9a0-4fb1-807f-ae2c4c6a046e/download
https://repositorio.cuc.edu.co/bitstreams/2f182390-5567-48db-b505-8c530ad15dcc/download
https://repositorio.cuc.edu.co/bitstreams/30c9510b-9a59-4d9d-9298-934ec3b247b0/download
https://repositorio.cuc.edu.co/bitstreams/424ba498-abb8-483d-80c4-4fa311f1c7c6/download
bitstream.checksum.fl_str_mv a9e539101916525d0e1f6a4346f62b68
2f9959eaf5b71fae44bbf9ec84150c7a
d095b1ab6749f0cffd9c4a3f9ce1718f
d70e1839005c41b270f861d52ecced2e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760703468470272
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Derechos de autor 2021 INGE CUChttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hidalgo-Suarez, Carlos GiovannyBucheli-Guerrero, Víctor AndrésOrdoñez-Eraso, Hugo Armando2023-02-06T15:52:17Z2023-02-06T15:52:17Z2022C. Hidalgo-Suarez, V. Bucheli-Guerrero & H. Ordoñez-Eraso, “VIGHUB: una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software”, INGE CUC, vol. 18, no. 1, pp. 83–94, 2022. DOI: http://doi.org/10.17981/ingecuc.18.1.2022.070122-6517https://hdl.handle.net/11323/986610.17981/ingecuc.18.1.2022.072382-4700Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/Introduction— Academics, developers, and companies focused on technological development seek to know what exists and what is still missing in this field. One of the ways they use is the review of bibliographic sources (state-of-the art). In this sense, a tool was developed that allows the current state to be identified semi-automatically. Objective— This article proposes a tool that extracts information from repositories hosted on GitHub. It analyzes the data using computational techniques and presents the results through visualizations that identify the field’s technological evolution studied through the most used programming languages, central repositories, and organizations. Method— A model based on Mining Software Repositories (MSR) is used, which integrates an architecture based on microservices, using different programming languages, which allowed the construction of the VigHub tool. The model focuses on four aspects— Selection of a topic, extraction of the data source, analysis of information using computational techniques, and finally, the results are communicated through visualizations. Results— The VigHub tool was available online to carry out 3 case studies. The first in the academy, where technologies, programming languages, users, and companies interested in developing VLE’s (Virtual Learning Environment) were identified from 2011 to 2021. The second and third were carried out by companies (industrial environment), which stated that using the VigHub tool supports data analysis and valuable results identification. Conclusions— A tool that allows identifying a part of the current state of technology could be a helpful tool for academics, developers, and companies, saving human resources, time, and possible repeated developments- --code reuse. The VigHub tool aims to support the construction of state-of-the-art. Its results are complementary to the traditional method.Introducción— Académicos, desarrolladores y empresas enfocadas en el desarrollo tecnológico, buscan conocer lo que ya existe y lo que aún falta en este campo. Una de las formas que utilizan, es realizar revisiones sobre fuentes bibliográficas (estado del arte). En este sentido, se desarrolló una herramienta que permite identificar el estado actual de una tecnología de forma semi-automática. Objetivo— Este artículo propone una herramienta que extrae información de repositorios alojados en GitHub. Analiza los datos utilizando técnicas computacionales y presenta los resultados a través de visualizaciones que identifican la evolución tecnológica del campo estudiado a través de los lenguajes de programación, principales, repositorios y organizaciones. Metodología— Se utiliza un modelo basado en Repositorios de Software de Minería (MSR), el cual integra una arquitectura basada en microservicios utilizando diferentes lenguajes de programación, lo que permitió la construcción de la herramienta VigHub. El modelo se centra en cuatro aspectos— selección de un tema tecnológico, extracción de la fuente de datos, análisis de la información mediante técnicas computacionales y finalmente, se muestran los resultados a través de visualizaciones. Resultados— Se dispuso la herramienta VigHub de manera online para realizar 3 casos de estudio. El primero en la academia, donde se identifico desde el año 2011 al 2021, las tecnologías, los lenguajes de programación, los usuarios y empresas interesadas en el desarrollo de VLE’s (Virtual Learning Environment). El segundo y tercero fueron ejecutados por empresas (ambiente industrial), que afirmaron que el uso de la herramienta VigHub, apoya tanto en el análisis de datos como en la identificación de resultados útiles. Conclusiones— Contar con una herramienta que a partir de una sola consulta permite identificar parte del estado actual de una tecnología, podría ser una herramienta útil para académicos, desarrolladores y empresas, que ahorrarían recursos humanos, tiempo y posibles desarrollos repetidos---reutilización de código. La herramienta VigHub pretende apoyar en la construcción de un estado de arte. Sus resultados son complementarios al método tradicional.12 páginasapplication/pdfengCorporación Universidad de la CostaColombiahttps://revistascientificas.cuc.edu.co/ingecuc/article/view/4065VIGHUB: a technology forecasting tool based on mining software repositoriesVIGHUB: una herramienta de pronóstico tecnológico basada en minería de repositorios de softwareArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85INGE CUC[1] A. Peralta & F. P. Romero, “Decision making from knowledge obtained after previous behavior analysis. Practical implementation to project management of software development,” Rev Cintex, vol. 20, no. 2, pp. 97–111, Nov. 2015. https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/26[2] D. Güemes-Peña, C. López-Nozal, R. Marticorena-Sánchez & J. Maudes-Raedo, “Emerging topics in mining software repositories: Machine learning in software repositories and datasets”, Prog Artif Intell, vol. 7, no. 3, pp. 237–247, Mar. 2018. https://doi.org/10.1007/s13748-018-0147-7[3] O. Meqdadi, N. Alhindawi, J. Alsakran, A. Saifan & H. Migdadi, “Mining software repositories for adaptive change commits using machine learning techniques,” Inf Softw Technol, vol. 109, pp. 80–91, May.2019. https://doi.org/10.1016/j.infsof.2019.01.008[4] M. Garriga, “Towards a taxonomy of microservices architectures,” presented at International Conference on Software Engineering and Formal Methods, SEFM, TLS, FR, 27-29 Jun. 2018. https://doi. org/10.1007/978-3-319-74781-1_15[5] K. Bakshi, “Microservices-based software architecture and approaches,” presented at Aerospace Conference Proceedings, IEEE, Big Sky, MT, 4-11 Mar. 2017. https://doi.org/10.1109/AERO.2017.7943959[6] Y. San Juan & F. Romero, “Management, extraction and storing sources for technological watch and competitive intelligence,” presented at VIII Congreso Internacional de Tecnologías y Contenidos Multimedia, CITCM, HAB, CU, 19-23 Mar. 2018.[7] M. A. Saied, A. Ouni, H. Sahraoui, R. G. Kula, K. Inoue & D. Lo, “Improving reusability of software libraries through usage pattern mining,” JSS, vol. 145, pp. 164–179, Nov. 2018. https://doi.org/10.1016/j. jss.2018.08.032[8] R. Dyer, H. A. Nguyen, H. Rajan & T. N. Nguyen, “Boa: Ultra-large-scale software repository and source-code mining,” ACM Trans Softw Eng Methodol, vol. 25, no. 1, pp. 1–34, Dec. 2015. https://doi. org/10.1145/2803171[9] F. Z. Sokol, M. F. Aniche & M. A. Gerosa, “MetricMiner: Supporting researchers in mining software repositories,” presented at 2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation, SCAM, EIN, NL, 22-23 Sept. 013. https://doi.org/10.1109/SCAM.2013.6648195[10] C. M. Filho, “Kalibro: Uma ferramenta de configuração e interpretação de métricas de código-fonte,” Projeto de conclusão de curso, USP, SP, BR, 2009. https://www.ime.usp.br/~cef/mac499-09/monografias/ carlos-morais/Monografia.pdf[11] D. S. Chawla, “The unsung heroes of scientific software,” Nature, vol. 529, no. 7584, pp. 115–116, Jan. 2016. https://doi.org/10.1038/529115a[12] D. Spadini, M. Aniche & A. Bacchelli, “PyDriller: Python framework for mining software repositories,” presented at 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE, NYC, NY, USA, 4-9 Nov. 2018. https://doi.org/10.1145/3236024.3264598[13] S. Dueñas, V. Cosentino, G. Robles & J. M. Gonzalez-Barahona, “Perceval: software project data at your will,” presented at 40th International Conference on Software Engineering: Companion, ICSE-Companion, GBG, SE, 27 May.-3 Jun. 018. https://ieeexplore.ieee.org/document/8449430[14] J. J. Ramírez-Echeverry, F. Restrepo-Calle & F. A. González, “Uncode: interactive system for learning and automatic evaluation of computer programming skills”, presented at 10th International Conference on Education and New Learning Technologies, EDULEARN, PMI, ES, 2-4 Jul. 2018. https://doi. org/10.21125/edulearn.2018.1632[15] E. Ortíz, “La evaluación del impacto científico en las investigaciones educativas a través de un estudio de caso,” REDIE, vol. 17, no. 2, pp. 89–100, May. 2015. https://www.scienceopen.com/document?vid=0de24d4cb9e3-4739-b394-346f7480b4fe[16] A. Berges-García, J. M. Meneses-Chaus & J. F. Martínez-Ortega, “Methodology for evaluating functions and products for technology watch and competitive intelligence (TW/CI) and their implementation through web,” PEI, vol. 25, no. 1, pp. 103–113, Jan. 2016. https://doi.org/10.3145/epi.2016.ene.10[17] SpaCy, “Industrial-Strength Natural Language Processing in Python,” Accessed: Oct. 18, 2019. [Online]. Available: https://spacy.io/[18] Google Developers. “Google Charts.” Accessed: 2018. [Online]. Available: https://developers.google.com/ chart[19] P. T. Goeser, F. G. Hamza-Lup, W. M. Johnson & D. Scharfer, “VIEW: A Virtual Interactive Webbased Learning Environment for Engineering,” AEEE, vol. 2, no. 3, pp. 1–24, Dec. 2011. https://doi. org/10.48550/arXiv.1811.07463[20] WISE-Community, “WISE VLE,” Feb. 25, 2015. [Online]. Available: https://github.com/WISE-Community/WISE-VLE--Deprecated--[21] F. Supriadi, M. Agreindra Helmiawan, Y. Y. Sofiyan & A. Guntara, “A Model of Virtual Learning Environments Using Micro-Lecture, MOODLE, and SLOODLE,” presented at 8th International Conference on Cyber and IT Service Management, CITSM, PGX, ID, 23-24 Dec. 020. https://doi.org/10.1109/CITSM50537.2020.9268785[22] Knowm, “Proprioceptron,” Oct. 27, 2012. [Online]. Available: https://github.com/knowm/Proprioceptron[23] Yjwong, “com.nuscomputing.ivlelapi,” Aug. 14, 2012. [Online]. Available: https://github.com/yjwong/com.nuscomputing.ivlelapi[24] 40thieves, “WikiVLE,” Jun. 23, 2012. [Online]. Available: https://github.com/40thieves/WikiVLE[25] Jbittencourt, “massinha,” Jul. 5, 2012. [Online]. Available: https://github.com/jbittencourt/massinha[26] Conel, “moodle-1.9,” Aug. 20, 2012. [Online]. Available: https://github.com/conel/moodle-1.9[27] Elkuku, “JDevAndLearn,” Jul. 28, 2012. [Online]. Available: https://github.com/elkuku/JDevAndLearn[28] Champiewebfolio, “CloudPod,” Jan. 6, 2013. [Online]. Available: https://github.com/champiewebfolio/CloudPod[29] RheoDesign, “AAVS-Beijing,” Oct. 23, 2013. [Online]. Available: https://github.com/RheoDesign/AAVSBeijing[30] Roxolan, “vlemean,” Aug. 11, 2015. [Online]. Available: https://github.com/roxolan/vlemean[31] luistp001, “LT-Autograder,” Sep. 16, 2012. [Online]. Available: https://github.com/luistp001/LT-Autograder[32] StephenBergeron, “RubySoup,” Apr. 1, 2014. [Online]. Available: https://github.com/StephenBergeron/ RubySoup[33] Deepapanwar, “vle,” Jun. 16, 2015. [Online]. Available: https://github.com/deepapanwar/vle[34] Soyjun, “Implement-ODR-protocol,” Apr. 10, 2015. [Online]. Available: https://github.com/SOYJUN/Implement-ODR-protocol[35] Brukmoon, “eduqo-vle,” Apr. 23, 2015. [Online]. Available: https://github.com/Brukmoon/eduqo-vle[36] Sykonba, “PeerReviewSystem,” Nov. 2, 2015. [Online]. Available: https://github.com/Sykonba/PeerReviewSystem[37] DavidStCox, “nlp-vle,” Apr. 10, 2017. [Online]. Available: https://github.com/DavidStCox/nlp-vle[38] Lumeng, “univ-washington-machine-learning-python-virtualenv,” Dec. 3, 2017. [Online]. Available: https://github.com/lumeng/univ-washington-machine-learning-python-virtualenv[39] Blosm-org, “blosm-core,” Sep. 30, 2017. [Online]. Available: https://github.com/blosm-org/blosm-core[40] Cvgokhale, “Course-Completion-Rate-Prediction,” Jul. 16, 2017. [Online]. Available: https://github.com/ cvgokhale/Course-Completion-Rate-Prediction[41] Victor-iyiola, “navigating-a-virtual-world-using-dynamic-programming,” Nov. 26, 2017. [Online]. Available: https://github.com/victor-iyiola/navigating-a-virtual-world-using-dynamic-programming[42] Charvi5, “VirtualLearning-Analysis-Classification,” Apr. 4, 2018. [Online]. Available: https://github.com/charvi5/VirtualLearning-Analysis-Classification[43] Viniciusvec, “hackops,” Mar. 2, 2018. [Online]. Available: https://github.com/viniciusvec/hackops[44] Fernando24164, “breakfast_docker,” Feb. 2, 2018. [Online]. Available: https://github.com/fernando24164/ breakfast_docker[45] pupilfirst, “pupilfirst,” Aug. 2, 2021. [Online]. Available: https://github.com/pupilfirst/pupilfirst[46] tparisi, “LearningVirtualReality,” Mar. 4, 2016. [Online]. Available: https://github.com/tparisi/LearningVirtualReality[47] Aayushi15061997, “Reinforcement_Learning_ThompsonSampling,” Jan 29, 2018. [Online]. Available: https://github.com/aayushi15061997/Reinforcement_Learning_ThompsonSampling[48] The-Dank-Network, “TDVLE-API,” Mar. 23, 2019. [Online]. Available: https://github.com/The-DankNetwork/TDVLE-API[49] C. G. Hidalgo, V. A. Bucheli, F. Restrepo-Calle & F. A. González, “A strategy based on technological maps for the identification of the state-of-the-art techniques in software development projects: Virtual judge projects as a case study,” in Communications in Computer and Information Science, C. J. Serrano & J. Martínez-Santos, Cham, CH: Springer, 2018, vol. 885, pp. 338–354. https://doi.org/10.1007/978-3- 319-98998-3_279483118Mining software repositoriesTechnology forecastingState-of-the techniqueGitHubTechnological mapsMinería de repositorios de softwareVigilancia tecnológicaEstado de la técnicaMapas tecnológicosPublicationORIGINALVIGHUB. una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software.pdfVIGHUB. una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software.pdfArtículoapplication/pdf689621https://repositorio.cuc.edu.co/bitstreams/60f0e6db-d9a0-4fb1-807f-ae2c4c6a046e/downloada9e539101916525d0e1f6a4346f62b68MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/2f182390-5567-48db-b505-8c530ad15dcc/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTVIGHUB. una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software.pdf.txtVIGHUB. una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software.pdf.txtExtracted texttext/plain44094https://repositorio.cuc.edu.co/bitstreams/30c9510b-9a59-4d9d-9298-934ec3b247b0/downloadd095b1ab6749f0cffd9c4a3f9ce1718fMD53THUMBNAILVIGHUB. una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software.pdf.jpgVIGHUB. una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software.pdf.jpgGenerated Thumbnailimage/jpeg13338https://repositorio.cuc.edu.co/bitstreams/424ba498-abb8-483d-80c4-4fa311f1c7c6/downloadd70e1839005c41b270f861d52ecced2eMD5411323/9866oai:repositorio.cuc.edu.co:11323/98662024-09-17 10:18:38.566https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos de autor 2021 INGE CUCopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=