Multiannual shore morphodynamics of a cuspate foreland: Maspalomas (Gran Canaria, Canary Islands)

On a cuspate sandy foreland, the cycle of beach erosion and recovery is driven by the bi-directional approaches of wave climates, which also determine its specific shape. This work describes the seasonal morphodynamics of the Maspalomas natural cuspate foreland over a period of six years. This area,...

Full description

Autores:
Fontan Bouzas, Angela
Alcántara-Carrió, Javier
Albarracin, Silvia
Enes Baganha Baptista, Paulo Renato
Silva, Paulo
Portz, Luana
Manzolli, Rogerio Portantiolo
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5835
Acceso en línea:
https://hdl.handle.net/11323/5835
https://repositorio.cuc.edu.co/
Palabra clave:
Coast
Wave storm energy
Shoreline
Beach erosion
Beach recovery
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_cabf93fb66b54b1f3e40bd61ec4c460a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5835
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Multiannual shore morphodynamics of a cuspate foreland: Maspalomas (Gran Canaria, Canary Islands)
title Multiannual shore morphodynamics of a cuspate foreland: Maspalomas (Gran Canaria, Canary Islands)
spellingShingle Multiannual shore morphodynamics of a cuspate foreland: Maspalomas (Gran Canaria, Canary Islands)
Coast
Wave storm energy
Shoreline
Beach erosion
Beach recovery
title_short Multiannual shore morphodynamics of a cuspate foreland: Maspalomas (Gran Canaria, Canary Islands)
title_full Multiannual shore morphodynamics of a cuspate foreland: Maspalomas (Gran Canaria, Canary Islands)
title_fullStr Multiannual shore morphodynamics of a cuspate foreland: Maspalomas (Gran Canaria, Canary Islands)
title_full_unstemmed Multiannual shore morphodynamics of a cuspate foreland: Maspalomas (Gran Canaria, Canary Islands)
title_sort Multiannual shore morphodynamics of a cuspate foreland: Maspalomas (Gran Canaria, Canary Islands)
dc.creator.fl_str_mv Fontan Bouzas, Angela
Alcántara-Carrió, Javier
Albarracin, Silvia
Enes Baganha Baptista, Paulo Renato
Silva, Paulo
Portz, Luana
Manzolli, Rogerio Portantiolo
dc.contributor.author.spa.fl_str_mv Fontan Bouzas, Angela
Alcántara-Carrió, Javier
Albarracin, Silvia
Enes Baganha Baptista, Paulo Renato
Silva, Paulo
Portz, Luana
Manzolli, Rogerio Portantiolo
dc.subject.spa.fl_str_mv Coast
Wave storm energy
Shoreline
Beach erosion
Beach recovery
topic Coast
Wave storm energy
Shoreline
Beach erosion
Beach recovery
description On a cuspate sandy foreland, the cycle of beach erosion and recovery is driven by the bi-directional approaches of wave climates, which also determine its specific shape. This work describes the seasonal morphodynamics of the Maspalomas natural cuspate foreland over a period of six years. This area, located in the south of Gran Canaria Island, consists of two beaches with different shoreline orientation, Maspalomas Beach and El Inglés Beach, converging to La Bajeta Tip at the head of the foreland. Shoreline variability and three-dimensional beach changes were measuredandcoupledtowaveenergyandlongshorecurrents. Fromwaveanalysis,112stormevents were identified over the period in focus. These events most frequently came from the northeast and in summer, which is consistent with the strong northeasterly trade winds between April and September. However, the strongest storms from the southwest were found to be the main cause of intense shoreline retreats, of up to 100 and 200 m, at Maspalomas Beach and La Bajeta Tip, respectively. The Maspalomas Beach sector showed interannual variability, with a general trend of erosion, whereas La Bajeta Tip demonstrated faster beach recovery. In contrast, El Inglés Beach sector presented a stable shoreline, in spite of the occurrence of wave storms approaching from northeast or southwest. Consequently, results indicate that energetic waves play a significant role in shoreline dynamics and Maspalomas landform shape. Post-storm sand recovery processes do not only occur during calm periods, but also during energetic events. The findings of this study have improved the understanding of seasonal and multiannual cuspate foreland morphodynamics, setting the groundwork for a potential long-term evolution model of Maspalomas coast.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-11-14
dc.date.accessioned.none.fl_str_mv 2020-01-16T14:13:42Z
dc.date.available.none.fl_str_mv 2020-01-16T14:13:42Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2077-1312
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5835
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2077-1312
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5835
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 2. McNinch, J.E.; Luettich, R.A. Physical processes around a cuspate foreland: Implications to the evolution and long-term maintenance of a cape-associated shoal. Cont. Shelf Res. 2000, 20, 2367–2389. [CrossRef]
3. Russell, R.J.; Zenkovich, V.P.; Steers, J.A.; Fry, D.G. Processes of Coastal Development. Geogr. Rev. 1968, 58, 685. [CrossRef]
4. Coakley, J.P. The Origin and Evolution of a Complex Cuspate Foreland: Pointe-aux-Pins, Lake Erie, Ontario. Géogr. Phys. Quat. 2012, 43, 65. [CrossRef]
5. Brown, J.M.; Phelps, J.J.C.; Barkwith, A.; Hurst, M.D.; Ellis, M.A.; Plater, A.J. The effectiveness of beach mega-nourishment, assessed over three management epochs. J. Environ. Manag. 2016, 184, 400–408. [CrossRef] [PubMed]
6. Ferreira, Ó. The role of storm groups in the erosion of sandy coasts. Earth Surf. Process. Landf. 2006, 31, 1058–1060. [CrossRef]
7. Callaghan, D.P.; Nielsen, P.; Short, A.; Ranasinghe, R. Statistical simulation of wave climate and extreme beach erosion. Coast. Eng. 2008, 55, 375–390. [CrossRef]
8. Karunarathna, H.; Pender, D.; Ranasinghe, R.; Short, A.D.; Reeve, D.E. The effects of storm clustering on beach profile variability. Mar. Geol. 2014, 348, 103–112. [CrossRef]
9. Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Effects of storm clustering on beach/dune evolution. Mar. Geol. 2015, 370, 63–75. [CrossRef]
10. Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Comparison of storm cluster vs isolated event impacts on beach/dune morphodynamics. Estuar. Coast. Shelf Sci. 2015, 164, 301–312. [CrossRef]
11. Vousdoukas, M.I.; Almeida, L.P.M.; Ferreira, Ó. Beach erosion and recovery during consecutive storms at a steep-sloping, meso-tidal beach. Earth Surf. Process. Landf. 2012, 37, 583–593. [CrossRef]
12. Coco, G.; Senechal, N.; Rejas, A.; Bryan, K.R.; Capo, S.; Parisot, J.P.; Brown, J.A.; MacMahan, J.H.M. Beach response to a sequence of extreme storms. Geomorphology 2014, 204, 493–501. [CrossRef]
13. Corbella, S.; Stretch, D.D. Shoreline recovery from storms on the east coast of Southern Africa. Nat. Hazards Earth Syst. Sci. 2012, 12, 11–22. [CrossRef]
14. Angnuureng, D.B.; Almar, R.; Senechal, N.; Castelle, B.; Addo, K.A.; Marieu, V.; Ranasinghe, R. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach. Geomorphology 2017, 290, 265–276. [CrossRef]
15. Almeida, L.P.; Vousdoukas, M.V.; Ferreira, Ó.; Rodrigues, B.A.; Matias, A. Thresholds for storm impacts on an exposed sandy coastal area in southern Portugal. Geomorphology 2012, 143–144, 3–12. [CrossRef]
16. Roberts, T.M.; Wang, P.; Puleo, J.A. Storm-driven cyclic beach morphodynamics of a mixed sand and gravel beach along the Mid-Atlantic Coast, USA. Mar. Geol. 2013, 346, 403–421. [CrossRef]
17. Sénéchal, N.; Gouriou, T.; Castelle, B.; Parisot, J.P.; Capo, S.; Bujan, S.; Howa, H. Morphodynamic response of a meso- to macro-tidal intermediate beach based on a long-term data set. Geomorphology 2009, 107, 263–274. [CrossRef]
18. Masselink, G.; Scott, T.; Poate, T.; Russell, P.; Davidson, M.; Conley, D. The extreme 2013/2014 winter storms: Hydrodynamic forcing and coastal response along the southwest coast of England. Earth Surf. Process. Landf. 2016, 41, 378–391. [CrossRef]
19. Scott, T.; Masselink, G.; O’Hare, T.; Saulter, A.; Poate, T.; Russell, P.; Davidson, M.; Conley, D. The extreme 2013/2014 winter storms: Beach recovery along the southwest coast of England. Mar. Geol. 2016, 382, 224–241. [CrossRef]
20. Baptista, P.; Coelho, C.; Pereira, C.; Bernardes, C.; Veloso-Gomes, F. Beach morphology and shoreline evolution: Monitoring and modelling medium-term responses (Portuguese NW coast study site). Coast. Eng. 2014, 84, 23–37. [CrossRef]
21. Clemmensen, L.B.; Bendixen, M.; Nielsen, L.; Jensen, S.; Schrøder, L. Coastal evolution of a cuspate foreland (Flakket, Anholt, Denmark) between 2006 and 2010. Bull. Geol. Soc. Denmark 2011, 59, 37–41.
22. Burningham, H.; French, J.R. Travelling forelands: Complexities in drift and migration patterns. J. Coast. Res. 2014, 70, 102–108. [CrossRef]
23. Hesp, P.A.; Ruz, M.H.; Hequette, A.; Marin, D.; Miot da Silva, G. Geomorphology and dynamics of a traveling cuspate foreland, Authie estuary, France. Geomorphology 2016, 254, 104–120. [CrossRef]
24. Xhardé, R.; Long, B.F.; Forbes, D.L. Short-Term Beach and Shoreface Evolution on a Cuspate Foreland Observed with Airborne Topographic and Bathymetric LIDAR. J. Coast. Res. 2011, 62, 50–61. [CrossRef]
25. Alonso; Alcántara-Carrió, J.; Cabrera, L. Tourist Resorts and their Impact on Beach Erosion at Sotavento Beaches, Fuerteventura, Spain. J. Coast. Res. 2002, 36, 1–7. [CrossRef]
26. Alonso, I.; Sanchez, I.; Cabrera, L.; Benavides, A.; Alcantara-Carrio, J.; Usera, J. Decadal evolution of a coastal dune field and adjacent beaches at North of Fuerteventura (Canary Islands, Spain). J. Coast. Res. 2006, 39, 198–203.
27. Hernández, L.; Alonso, I.; Sánchez-Pérez, I.; Alcántara-Carrió, J.; Montesdeoca, I. Shortage of Sediments in the Maspalomas Dune Field (Gran Canaria, Canary Islands) Deduced from Analysis of Aerial Photographs, Foraminiferal Content, and Sediment Transport Trends. J. Coast. Res. 2007, 234, 993–999. [CrossRef]
28. Hernández, L.; Alonso, I.; Ruiz, P.; Pérez-Chacón, E.; Suárez, C.; Alcántara-Carrió, J. Decadal Environmental Changes on the Dune Field of Maspalomas (Canary Islands): Evidences of an Erosive Tendency. Litoral 2002 Chang. Coast EUROCOAST/EUCC 2002, 293–297.
29. García-Romero, L.; Hernández-Cordero, A.I.; Fernández-Cabrera, E.; Peña-Alonso, C.; Hernández-Calvento, L.; Pérez-Chacón, E. Urban-touristic impacts on the aeolian sedimentary systems of the Canary Islands: Conflict between development and conservation. Island Stud. J. 2016, 11, 91–112.
30. Vallejo, I.; Hernández Calvento, L.; Ojeda, J.; Mayer, P.; Gómez Molina, A. Caracterización morfométrica y balance sedimentario en el sistema de dunas de Maspalomas (Gran Canaria) a partir de datos LIDAR. Rev. Soc. Geol. Esp. 2009, 22, 57–65.
31. Hernández-Cordero, A.I.; Hernández-Calvento, L.; Espino, E.P.C. Vegetation changes as an indicator of impact from tourist development in an arid transgressive coastal dune field. Land Use Policy 2017, 64, 479–491. [CrossRef]
32. Smith, A.B.; Jackson, D.W.T.; Cooper, J.A.G.; Hernández-Calvento, L. Quantifying the role of urbanization on airflow perturbations and dunefield evolution. Earths Future 2017, 5, 520–539. [CrossRef]
33. Fontán, A.; Alcántara-Carrió, J.; Correa, I.D. Combined beach - inner shelf erosion in short and medium term (Maspalomas, Canary Islands). Geol. Acta 2012, 10, 411–426.
34. Alonso, I.; Montesdeoca, I.; Vivares, A.; Alcántara-Carrió, J. Aproximación a la modelización de la dinámica litoral de las playas de El Inglés y Maspalomas (Gran Canaria). Vector Plus 2001, 18, 17–27.
35. Alcántara-Carrió, J.; Fontán, A. Factors controlling the morphodynamics and geomorphologic evolution of a cuspate foreland in a volcanic intraplate Island (Maspalomas, Canary Islands). J. Coast. Res. 2009, 56, 683–687.
36. Fontán Bouzas, A.; Alcántara-Carrió, J.; Montoya Montes, I.; Barranco Ojeda, A.; Albarracín, S.; Rey Díaz de Rada, J.; Rey Salgado, J. Distribution and thickness of sedimentary facies in the coastal dune, beach and nearshore sedimentary system at Maspalomas, Canary Islands. Geo Mar. Lett. 2013, 33, 117–127. [CrossRef]
37. Azorin-Molina, C.; Menendez, M.; McVicar, T.R.; Acevedo, A.; Vicente-Serrano, S.M.; Cuevas, E.; Minola, L.; Chen, D. Wind speed variability over the Canary Islands, 1948–2014: Focusing on trend differences at the land–ocean interface and below–above the trade-wind inversion layer. Clim. Dyn. 2018, 50, 4061–4081. [CrossRef]
38. Sanjaume Saumell, E.; Gracia Prieto, F.J. Las Dunas en España; Sociedad Española de Geomorfología: Zaragoza, Spain, 2011; ISBN 9788461537808.
39. Máyer Suárez, P.; Pérez-Chacón Espino, E.; Cruz Avero, N.; Hernández-Calvento, L. Características del viento en el campo de dunas de Maspalomas (Gran Canaria, islas canarias, España). Nimbus Rev. Climatol. Meteorol. Y Paisaje 2012, 30, 381–397.
40. Yanes, A.; Marzol, M.V.; Romero, C. Characterization of sea storms along the coast of Tenerife, the Canary Islands. J. Coast. Res. 2006, 48, 124–128.
41. Dolan, R.; Davis, R. Coastal Storm Hazards. J. Coast. Res. 1994, SI 12, 103–114.
42. Mendoza, E.T.; Jimenez, J.A.; Mateo, J. A coastal storms intensity scale for the Catalan sea (NW Mediterranean). Nat. Hazards Earth Syst. Sci. 2011, 11, 2453–2462. [CrossRef]
43. González, M.; Medina, R.; Gonzalez-Ondina, J.; Osorio, A.; Méndez, F.J.; García, E. An integrated coastal modeling system for analyzing beach processes and beach restoration projects, SMC. Comput. Geosci. 2007, 33, 916–931. [CrossRef]
44. Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [CrossRef] 45. Lury, D.A.; Fisher, R.A. Statistical Methods for Research Workers. Statistician 1972, 21, 229. [CrossRef]
46. Ruggiero, P.; Kaminsky, G.M.; Gelfenbaum, G.; Voigt, B. Seasonal to Interannual Morphodynamics along a High-Energy Dissipative Littoral Cell. J. Coast. Res. 2005, 213, 553–578. [CrossRef]
47. Senechal, N.; Coco, G.; Castelle, B.; Marieu, V. Storm impact on the seasonal shoreline dynamics of a mesoto macrotidal open sandy beach (Biscarrosse, France). Geomorphology 2015, 228, 448–461. [CrossRef]
48. Phillips, M.S.; Harley, M.D.; Turner, I.L.; Splinter, K.D.; Cox, R.J. Shoreline recovery on wave-dominated sandy coastlines: The role of sandbar morphodynamics and nearshore wave parameters. Mar. Geol. 2017, 385, 146–159. [CrossRef]
49. Birmemeier, W.A. The effects of the 19 December 1977 coastal storm on beaches in North Carolina and New Jersey. Shore Beach 1979, 47, 7–15.
50. Kriebel, D.L. Beach Recovery Following Hurricane Elena. Coast. Sediments 1987, 1, 990–1005.
51. List, J.H.; Farris, A.S.; Sullivan, C. Reversing storm hotspots on sandy beaches: Spatial and temporal characteristics. Mar. Geol. 2006, 226, 261–279. [CrossRef]
52. Garnier, E.; Ciavola, P.; Spencer, T.; Ferreira, O.; Armaroli, C.; McIvor, A. Historical analysis of storm events: Case studies in France, England, Portugal and Italy. Coast. Eng. 2018, 134, 10–23. [CrossRef]
53. Davidson, M.A.; Turner, I.L.; Splinter, K.D.; Harley, M.D. Annual prediction of shoreline erosion and subsequent recovery. Coast. Eng. 2017, 130, 14–25. [CrossRef]
54. Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe Pressure Anomaly. Geophys. Res. Lett. 2017, 44, 1384–1392.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Marine Science and Engineering
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/2af7ec83-36f1-4b49-a15b-dbc53c11db6d/download
https://repositorio.cuc.edu.co/bitstreams/0ff325ec-123e-4252-944c-897d7ddef73a/download
https://repositorio.cuc.edu.co/bitstreams/7912a7ec-e40f-420a-adc8-56559204f96a/download
https://repositorio.cuc.edu.co/bitstreams/c0204324-8d6b-4a3a-9d37-34e9c0cbcb44/download
https://repositorio.cuc.edu.co/bitstreams/e1d02c27-3091-4f2e-bb0d-c4b689b2183d/download
bitstream.checksum.fl_str_mv a1d5f50d68e0af6809e738d9fcb7e7f9
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
217dd6578b44a7cc19ac53a02a181c93
2f81b36dfeb6bc9bf526106014ef0676
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760790470918144
spelling Fontan Bouzas, AngelaAlcántara-Carrió, JavierAlbarracin, SilviaEnes Baganha Baptista, Paulo RenatoSilva, PauloPortz, LuanaManzolli, Rogerio Portantiolo2020-01-16T14:13:42Z2020-01-16T14:13:42Z2019-11-142077-1312https://hdl.handle.net/11323/5835Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/On a cuspate sandy foreland, the cycle of beach erosion and recovery is driven by the bi-directional approaches of wave climates, which also determine its specific shape. This work describes the seasonal morphodynamics of the Maspalomas natural cuspate foreland over a period of six years. This area, located in the south of Gran Canaria Island, consists of two beaches with different shoreline orientation, Maspalomas Beach and El Inglés Beach, converging to La Bajeta Tip at the head of the foreland. Shoreline variability and three-dimensional beach changes were measuredandcoupledtowaveenergyandlongshorecurrents. Fromwaveanalysis,112stormevents were identified over the period in focus. These events most frequently came from the northeast and in summer, which is consistent with the strong northeasterly trade winds between April and September. However, the strongest storms from the southwest were found to be the main cause of intense shoreline retreats, of up to 100 and 200 m, at Maspalomas Beach and La Bajeta Tip, respectively. The Maspalomas Beach sector showed interannual variability, with a general trend of erosion, whereas La Bajeta Tip demonstrated faster beach recovery. In contrast, El Inglés Beach sector presented a stable shoreline, in spite of the occurrence of wave storms approaching from northeast or southwest. Consequently, results indicate that energetic waves play a significant role in shoreline dynamics and Maspalomas landform shape. Post-storm sand recovery processes do not only occur during calm periods, but also during energetic events. The findings of this study have improved the understanding of seasonal and multiannual cuspate foreland morphodynamics, setting the groundwork for a potential long-term evolution model of Maspalomas coast.Fontan Bouzas, Angela-will be generated-orcid-0000-0003-0221-3707-600Alcántara-Carrió, Javier-will be generated-orcid-0000-0002-9840-4980-600Albarracin, Silvia-will be generated-orcid-0000-0002-5005-1530-600Enes Baganha Baptista, Paulo Renato-will be generated-orcid-0000-0002-6718-9528-600Silva, Paulo-will be generated-orcid-0000-0002-7305-5403-600Portz, Luana-will be generated-orcid-0000-0001-9232-8086-600Manzolli, Rogerio Portantiolo-will be generated-orcid-0000-0002-0223-5634-600engJournal of Marine Science and EngineeringCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2CoastWave storm energyShorelineBeach erosionBeach recoveryMultiannual shore morphodynamics of a cuspate foreland: Maspalomas (Gran Canaria, Canary Islands)Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion2. McNinch, J.E.; Luettich, R.A. Physical processes around a cuspate foreland: Implications to the evolution and long-term maintenance of a cape-associated shoal. Cont. Shelf Res. 2000, 20, 2367–2389. [CrossRef]3. Russell, R.J.; Zenkovich, V.P.; Steers, J.A.; Fry, D.G. Processes of Coastal Development. Geogr. Rev. 1968, 58, 685. [CrossRef]4. Coakley, J.P. The Origin and Evolution of a Complex Cuspate Foreland: Pointe-aux-Pins, Lake Erie, Ontario. Géogr. Phys. Quat. 2012, 43, 65. [CrossRef]5. Brown, J.M.; Phelps, J.J.C.; Barkwith, A.; Hurst, M.D.; Ellis, M.A.; Plater, A.J. The effectiveness of beach mega-nourishment, assessed over three management epochs. J. Environ. Manag. 2016, 184, 400–408. [CrossRef] [PubMed]6. Ferreira, Ó. The role of storm groups in the erosion of sandy coasts. Earth Surf. Process. Landf. 2006, 31, 1058–1060. [CrossRef]7. Callaghan, D.P.; Nielsen, P.; Short, A.; Ranasinghe, R. Statistical simulation of wave climate and extreme beach erosion. Coast. Eng. 2008, 55, 375–390. [CrossRef]8. Karunarathna, H.; Pender, D.; Ranasinghe, R.; Short, A.D.; Reeve, D.E. The effects of storm clustering on beach profile variability. Mar. Geol. 2014, 348, 103–112. [CrossRef]9. Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Effects of storm clustering on beach/dune evolution. Mar. Geol. 2015, 370, 63–75. [CrossRef]10. Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Comparison of storm cluster vs isolated event impacts on beach/dune morphodynamics. Estuar. Coast. Shelf Sci. 2015, 164, 301–312. [CrossRef]11. Vousdoukas, M.I.; Almeida, L.P.M.; Ferreira, Ó. Beach erosion and recovery during consecutive storms at a steep-sloping, meso-tidal beach. Earth Surf. Process. Landf. 2012, 37, 583–593. [CrossRef]12. Coco, G.; Senechal, N.; Rejas, A.; Bryan, K.R.; Capo, S.; Parisot, J.P.; Brown, J.A.; MacMahan, J.H.M. Beach response to a sequence of extreme storms. Geomorphology 2014, 204, 493–501. [CrossRef]13. Corbella, S.; Stretch, D.D. Shoreline recovery from storms on the east coast of Southern Africa. Nat. Hazards Earth Syst. Sci. 2012, 12, 11–22. [CrossRef]14. Angnuureng, D.B.; Almar, R.; Senechal, N.; Castelle, B.; Addo, K.A.; Marieu, V.; Ranasinghe, R. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach. Geomorphology 2017, 290, 265–276. [CrossRef]15. Almeida, L.P.; Vousdoukas, M.V.; Ferreira, Ó.; Rodrigues, B.A.; Matias, A. Thresholds for storm impacts on an exposed sandy coastal area in southern Portugal. Geomorphology 2012, 143–144, 3–12. [CrossRef]16. Roberts, T.M.; Wang, P.; Puleo, J.A. Storm-driven cyclic beach morphodynamics of a mixed sand and gravel beach along the Mid-Atlantic Coast, USA. Mar. Geol. 2013, 346, 403–421. [CrossRef]17. Sénéchal, N.; Gouriou, T.; Castelle, B.; Parisot, J.P.; Capo, S.; Bujan, S.; Howa, H. Morphodynamic response of a meso- to macro-tidal intermediate beach based on a long-term data set. Geomorphology 2009, 107, 263–274. [CrossRef]18. Masselink, G.; Scott, T.; Poate, T.; Russell, P.; Davidson, M.; Conley, D. The extreme 2013/2014 winter storms: Hydrodynamic forcing and coastal response along the southwest coast of England. Earth Surf. Process. Landf. 2016, 41, 378–391. [CrossRef]19. Scott, T.; Masselink, G.; O’Hare, T.; Saulter, A.; Poate, T.; Russell, P.; Davidson, M.; Conley, D. The extreme 2013/2014 winter storms: Beach recovery along the southwest coast of England. Mar. Geol. 2016, 382, 224–241. [CrossRef]20. Baptista, P.; Coelho, C.; Pereira, C.; Bernardes, C.; Veloso-Gomes, F. Beach morphology and shoreline evolution: Monitoring and modelling medium-term responses (Portuguese NW coast study site). Coast. Eng. 2014, 84, 23–37. [CrossRef]21. Clemmensen, L.B.; Bendixen, M.; Nielsen, L.; Jensen, S.; Schrøder, L. Coastal evolution of a cuspate foreland (Flakket, Anholt, Denmark) between 2006 and 2010. Bull. Geol. Soc. Denmark 2011, 59, 37–41.22. Burningham, H.; French, J.R. Travelling forelands: Complexities in drift and migration patterns. J. Coast. Res. 2014, 70, 102–108. [CrossRef]23. Hesp, P.A.; Ruz, M.H.; Hequette, A.; Marin, D.; Miot da Silva, G. Geomorphology and dynamics of a traveling cuspate foreland, Authie estuary, France. Geomorphology 2016, 254, 104–120. [CrossRef]24. Xhardé, R.; Long, B.F.; Forbes, D.L. Short-Term Beach and Shoreface Evolution on a Cuspate Foreland Observed with Airborne Topographic and Bathymetric LIDAR. J. Coast. Res. 2011, 62, 50–61. [CrossRef]25. Alonso; Alcántara-Carrió, J.; Cabrera, L. Tourist Resorts and their Impact on Beach Erosion at Sotavento Beaches, Fuerteventura, Spain. J. Coast. Res. 2002, 36, 1–7. [CrossRef]26. Alonso, I.; Sanchez, I.; Cabrera, L.; Benavides, A.; Alcantara-Carrio, J.; Usera, J. Decadal evolution of a coastal dune field and adjacent beaches at North of Fuerteventura (Canary Islands, Spain). J. Coast. Res. 2006, 39, 198–203.27. Hernández, L.; Alonso, I.; Sánchez-Pérez, I.; Alcántara-Carrió, J.; Montesdeoca, I. Shortage of Sediments in the Maspalomas Dune Field (Gran Canaria, Canary Islands) Deduced from Analysis of Aerial Photographs, Foraminiferal Content, and Sediment Transport Trends. J. Coast. Res. 2007, 234, 993–999. [CrossRef]28. Hernández, L.; Alonso, I.; Ruiz, P.; Pérez-Chacón, E.; Suárez, C.; Alcántara-Carrió, J. Decadal Environmental Changes on the Dune Field of Maspalomas (Canary Islands): Evidences of an Erosive Tendency. Litoral 2002 Chang. Coast EUROCOAST/EUCC 2002, 293–297.29. García-Romero, L.; Hernández-Cordero, A.I.; Fernández-Cabrera, E.; Peña-Alonso, C.; Hernández-Calvento, L.; Pérez-Chacón, E. Urban-touristic impacts on the aeolian sedimentary systems of the Canary Islands: Conflict between development and conservation. Island Stud. J. 2016, 11, 91–112.30. Vallejo, I.; Hernández Calvento, L.; Ojeda, J.; Mayer, P.; Gómez Molina, A. Caracterización morfométrica y balance sedimentario en el sistema de dunas de Maspalomas (Gran Canaria) a partir de datos LIDAR. Rev. Soc. Geol. Esp. 2009, 22, 57–65.31. Hernández-Cordero, A.I.; Hernández-Calvento, L.; Espino, E.P.C. Vegetation changes as an indicator of impact from tourist development in an arid transgressive coastal dune field. Land Use Policy 2017, 64, 479–491. [CrossRef]32. Smith, A.B.; Jackson, D.W.T.; Cooper, J.A.G.; Hernández-Calvento, L. Quantifying the role of urbanization on airflow perturbations and dunefield evolution. Earths Future 2017, 5, 520–539. [CrossRef]33. Fontán, A.; Alcántara-Carrió, J.; Correa, I.D. Combined beach - inner shelf erosion in short and medium term (Maspalomas, Canary Islands). Geol. Acta 2012, 10, 411–426.34. Alonso, I.; Montesdeoca, I.; Vivares, A.; Alcántara-Carrió, J. Aproximación a la modelización de la dinámica litoral de las playas de El Inglés y Maspalomas (Gran Canaria). Vector Plus 2001, 18, 17–27.35. Alcántara-Carrió, J.; Fontán, A. Factors controlling the morphodynamics and geomorphologic evolution of a cuspate foreland in a volcanic intraplate Island (Maspalomas, Canary Islands). J. Coast. Res. 2009, 56, 683–687.36. Fontán Bouzas, A.; Alcántara-Carrió, J.; Montoya Montes, I.; Barranco Ojeda, A.; Albarracín, S.; Rey Díaz de Rada, J.; Rey Salgado, J. Distribution and thickness of sedimentary facies in the coastal dune, beach and nearshore sedimentary system at Maspalomas, Canary Islands. Geo Mar. Lett. 2013, 33, 117–127. [CrossRef]37. Azorin-Molina, C.; Menendez, M.; McVicar, T.R.; Acevedo, A.; Vicente-Serrano, S.M.; Cuevas, E.; Minola, L.; Chen, D. Wind speed variability over the Canary Islands, 1948–2014: Focusing on trend differences at the land–ocean interface and below–above the trade-wind inversion layer. Clim. Dyn. 2018, 50, 4061–4081. [CrossRef]38. Sanjaume Saumell, E.; Gracia Prieto, F.J. Las Dunas en España; Sociedad Española de Geomorfología: Zaragoza, Spain, 2011; ISBN 9788461537808.39. Máyer Suárez, P.; Pérez-Chacón Espino, E.; Cruz Avero, N.; Hernández-Calvento, L. Características del viento en el campo de dunas de Maspalomas (Gran Canaria, islas canarias, España). Nimbus Rev. Climatol. Meteorol. Y Paisaje 2012, 30, 381–397.40. Yanes, A.; Marzol, M.V.; Romero, C. Characterization of sea storms along the coast of Tenerife, the Canary Islands. J. Coast. Res. 2006, 48, 124–128.41. Dolan, R.; Davis, R. Coastal Storm Hazards. J. Coast. Res. 1994, SI 12, 103–114.42. Mendoza, E.T.; Jimenez, J.A.; Mateo, J. A coastal storms intensity scale for the Catalan sea (NW Mediterranean). Nat. Hazards Earth Syst. Sci. 2011, 11, 2453–2462. [CrossRef]43. González, M.; Medina, R.; Gonzalez-Ondina, J.; Osorio, A.; Méndez, F.J.; García, E. An integrated coastal modeling system for analyzing beach processes and beach restoration projects, SMC. Comput. Geosci. 2007, 33, 916–931. [CrossRef]44. Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [CrossRef] 45. Lury, D.A.; Fisher, R.A. Statistical Methods for Research Workers. Statistician 1972, 21, 229. [CrossRef]46. Ruggiero, P.; Kaminsky, G.M.; Gelfenbaum, G.; Voigt, B. Seasonal to Interannual Morphodynamics along a High-Energy Dissipative Littoral Cell. J. Coast. Res. 2005, 213, 553–578. [CrossRef]47. Senechal, N.; Coco, G.; Castelle, B.; Marieu, V. Storm impact on the seasonal shoreline dynamics of a mesoto macrotidal open sandy beach (Biscarrosse, France). Geomorphology 2015, 228, 448–461. [CrossRef]48. Phillips, M.S.; Harley, M.D.; Turner, I.L.; Splinter, K.D.; Cox, R.J. Shoreline recovery on wave-dominated sandy coastlines: The role of sandbar morphodynamics and nearshore wave parameters. Mar. Geol. 2017, 385, 146–159. [CrossRef]49. Birmemeier, W.A. The effects of the 19 December 1977 coastal storm on beaches in North Carolina and New Jersey. Shore Beach 1979, 47, 7–15.50. Kriebel, D.L. Beach Recovery Following Hurricane Elena. Coast. Sediments 1987, 1, 990–1005.51. List, J.H.; Farris, A.S.; Sullivan, C. Reversing storm hotspots on sandy beaches: Spatial and temporal characteristics. Mar. Geol. 2006, 226, 261–279. [CrossRef]52. Garnier, E.; Ciavola, P.; Spencer, T.; Ferreira, O.; Armaroli, C.; McIvor, A. Historical analysis of storm events: Case studies in France, England, Portugal and Italy. Coast. Eng. 2018, 134, 10–23. [CrossRef]53. Davidson, M.A.; Turner, I.L.; Splinter, K.D.; Harley, M.D. Annual prediction of shoreline erosion and subsequent recovery. Coast. Eng. 2017, 130, 14–25. [CrossRef]54. Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe Pressure Anomaly. Geophys. Res. Lett. 2017, 44, 1384–1392.PublicationORIGINALMultiannual Shore Morphodynamics of a Cuspate Foreland.pdfMultiannual Shore Morphodynamics of a Cuspate Foreland.pdfapplication/pdf5498856https://repositorio.cuc.edu.co/bitstreams/2af7ec83-36f1-4b49-a15b-dbc53c11db6d/downloada1d5f50d68e0af6809e738d9fcb7e7f9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/0ff325ec-123e-4252-944c-897d7ddef73a/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/7912a7ec-e40f-420a-adc8-56559204f96a/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILMultiannual Shore Morphodynamics of a Cuspate Foreland.pdf.jpgMultiannual Shore Morphodynamics of a Cuspate Foreland.pdf.jpgimage/jpeg68419https://repositorio.cuc.edu.co/bitstreams/c0204324-8d6b-4a3a-9d37-34e9c0cbcb44/download217dd6578b44a7cc19ac53a02a181c93MD55TEXTMultiannual Shore Morphodynamics of a Cuspate Foreland.pdf.txtMultiannual Shore Morphodynamics of a Cuspate Foreland.pdf.txttext/plain65419https://repositorio.cuc.edu.co/bitstreams/e1d02c27-3091-4f2e-bb0d-c4b689b2183d/download2f81b36dfeb6bc9bf526106014ef0676MD5611323/5835oai:repositorio.cuc.edu.co:11323/58352024-09-17 11:10:10.735http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=