Sustainable release of macronutrients to black oat and maize crops from organically-altered dacite rock powder

By-products from the dairy industry and mining activities represent a great environmental overload, which justify research for value-added reuse of these by-products (dairy sludge and dacite rock powder). Dairy sludge is generated at a rate of about 0.2–10 l per liter of processed milk, and dacite p...

Full description

Autores:
Gindri Ramos, Claudete
Celimar Dalmora, Adilson
Müller Kautzmann, Rubens
Hower, James
Dotto, Guilherme Luiz
Silva Oliveira, Luis Felipe
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8263
Acceso en línea:
https://hdl.handle.net/11323/8263
https://doi.org/10.1007/s11053-021-09862-0
https://repositorio.cuc.edu.co/
Palabra clave:
Dairy sludge
Dacite rock poder
By-products
Soil fertilization
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_c94d457505cd7c1f59b3468c4e8d2a39
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8263
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Sustainable release of macronutrients to black oat and maize crops from organically-altered dacite rock powder
title Sustainable release of macronutrients to black oat and maize crops from organically-altered dacite rock powder
spellingShingle Sustainable release of macronutrients to black oat and maize crops from organically-altered dacite rock powder
Dairy sludge
Dacite rock poder
By-products
Soil fertilization
title_short Sustainable release of macronutrients to black oat and maize crops from organically-altered dacite rock powder
title_full Sustainable release of macronutrients to black oat and maize crops from organically-altered dacite rock powder
title_fullStr Sustainable release of macronutrients to black oat and maize crops from organically-altered dacite rock powder
title_full_unstemmed Sustainable release of macronutrients to black oat and maize crops from organically-altered dacite rock powder
title_sort Sustainable release of macronutrients to black oat and maize crops from organically-altered dacite rock powder
dc.creator.fl_str_mv Gindri Ramos, Claudete
Celimar Dalmora, Adilson
Müller Kautzmann, Rubens
Hower, James
Dotto, Guilherme Luiz
Silva Oliveira, Luis Felipe
dc.contributor.author.spa.fl_str_mv Gindri Ramos, Claudete
Celimar Dalmora, Adilson
Müller Kautzmann, Rubens
Hower, James
Dotto, Guilherme Luiz
Silva Oliveira, Luis Felipe
dc.subject.spa.fl_str_mv Dairy sludge
Dacite rock poder
By-products
Soil fertilization
topic Dairy sludge
Dacite rock poder
By-products
Soil fertilization
description By-products from the dairy industry and mining activities represent a great environmental overload, which justify research for value-added reuse of these by-products (dairy sludge and dacite rock powder). Dairy sludge is generated at a rate of about 0.2–10 l per liter of processed milk, and dacite powder, from rock mining extraction and processing, is generated for about 52,400 m3 per year in Nova Prata city, Southern Brazil. For both by-products, the compositions of calcium (Ca), magnesium (Mg), potassium (K) and phosphorous (P), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb) were determined by using appropriate analytical techniques. A greenhouse experiment was conducted to determine release of macronutrients, such as Ca, K, Mg, and P, from by-products to support black oat (Avena strigosa) and maize nutrition. Twelve by-products doses were blended with a typic Hapludox soil and were applied to pots with five replications each. Black oat (first cultivation) and, sequentially, maize (second cultivation) were cultivated for 70 days each. Ameliorations in soil chemical attributes, leaf dry matter yield, and plant nutritional status were evaluated at the end of each cultivation. There was a significant (p < 0.05) increase in all parameters evaluated in a dose of 7251 kg ha−1 of dacite rock powder and 20,594 kg ha−1 of dairy sludge. Compared to the control treatments, both crops grew well better on all mixtures. The presence of potentially toxic elements in both by-products was irrelevant, indicating that effective blending of dacite rock powder along with dairy sludge could be a potential source of Ca, K, Mg, and P in agriculture without posing a risk of contamination to the environment.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-14T21:49:02Z
dc.date.available.none.fl_str_mv 2021-05-14T21:49:02Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1520-7439
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8263
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/s11053-021-09862-0
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1520-7439
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8263
https://doi.org/10.1007/s11053-021-09862-0
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Anjanadevi, I. P., John, N. S., John, K. S., Jeeva, M. L., & Misra, R. S. (2016). Rock inhabiting potassium solubilizing bacteria from Kerala, India: characterization and possibility in chemical K fertilizer substitution. Journal of Basic Microbiology, 56, 67–77.
2. Balannec, B., Vourch, M., Rabiller-Baudry, M., & Chaufer, B. (2005). Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration. Separation and Purification Technology, 42, 195–200.
3. Basak, B. B., Sarkar, B., Biswas, D. R., Sarkar, S., Sanderson, P., & Naidu, R. (2017). Bio-intervention of naturally occurring silicate minerals for alternative source of potassium: challenges and opportunities. Advances in Agronomy, 141, 115–145.
4. Basak, B. B. (2019). Waste mica as alternative source of plant available potassium: Evaluation of agronomic potential through chemical and biological methods. Natural Resources Research, 28(3), 953–965.
5. Basak, B. B., Sarkar, B., & Naidu, R. (2020). Environmentally safe release of plant available potassium and micronutrients from organically amended rock mineral powder. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00677-1
6. Bhadouria, B. S., & Sai, V. S. (2011). Utilization and treatment of dairy effluent through biogas generation-A case study. International Journal of Environmental Sciences, 1, 1621.
7. Brazil. (2006). Ministério do Meio Ambiente. Conselho Nacional de Meio Ambiente. Resolução n. 375, de 29 de agosto de 2006. Define critérios e procedimentos, para o uso agrícola de lodos de esgoto gerados em estações de tratamento de esgoto sanitário e seus produtos derivados. Brasília. http://www.mma.gov.br/port/conama/res/res06/res37506.pdf. Accessed 19 May 2020.
8. Brazil. (2016). Instrução Normativa Nº 05 de 10 de março de 2016. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-5-de-10-3-16-remineralizadores-e-substratos-para-plantas.pdf. Accessed 28 May 2020.
9. Cavallaro, N., Padilla, N., & Villarrubia, J. (1993). Sewage sludge effects on chemical properties of acid soils. Soil Science, 156, 63–70.
10. Dalmora, A. C., Ramos, C. G., Oliveira, M. L. S., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2020). Application of andesite rock as a clean source of fertilizer for eucalyptus crop: Evidence of sustainability. Journal of Cleaner Production, 256, 120432.
11. De Conti, L., Ceretta, C. A., Melo, G. W. B., Tiecher, T. L., Silva, L. O. S., Garlet, L. P., Mimmo, T., Cesco, S., & Brunetto, G. (2019). Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere, 216, 147–156.
12. Donagema, G. K., Campos, D. V. B., Calderano, S. B., Teixeira, W. G., & Viana, J. H. M. (2011). Manual de métodos de análise de solo. 2. ed. rev. Rio de Janeiro: Embrapa Solos, 230 p.
13. European Union - E.U. (1986). Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01986L0278-20090420&qid=1439354498400&from=DE. Accessed 25 May 2020.
14. Fageria, N. K. (2009). The use of nutrients in crop plants (p. 430). CRC Press.
15. Ferrari, V., Taffarel, S. R., Espinosa-Fuentes, E., Oliveira, M. L. S., Saikia, B. K., & Oliveira, L. F. S. (2019). Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. Journal of Cleaner Production., 208, 297–306.
16. Fornasieri Filho, D. (2007). Manual da Cultura do Milho (p. 574p). Funep.
17. Frac, M., Jezierska-Tys, S., Oszust, K., Gryta, A., & Pastor, M. (2017). Assessment of microbiological and biochemical properties of dairy sewage sludge. International Journal of Environmental Science and Technology, 14, 679–688.
18. Furrer, O. J., Gupta, S. K., & Stauffer, W. (1984). Sludge as a source of phosphorus and consequences of phosphorus accumulation in soils. In P. L’Hermite (Ed.), Processing and use of sewage sludge. proceedings of the third international symposium held at Brighton (pp. 279–294). Dordrecht: Reidel Publishing Co.
19. García-Delgado, C., Calab, V., & Eymara, E. (2012). Inûuence of chemical and mineralogical properties of organic amendments on the selection of an adequate analytical procedure for trace elements determination. Talanta, 88, 375–384.
20. Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32, 390–399.
21. Gupta, S., & Hani, H. (1979). Estimation of available phosphate content of sewage sludges. In D. Alexandre, & H. Ott (Eds.), Treatment and use of sewage sludge. Proceedings of the first European Symposium held in Cadarache, 1979. (pp. 261–268).
22. Haraldsen, T. K., & Pedersen, P. A. (2003). Mixtures of crushed rock, forest soils, and sewage sludge used as soils for grassed green areas. Urban Forestry & Urban Greening, 21, 41–51. https://doi.org/10.1078/1618-8667-00022
23. Hue, N. V., & Ranjith, S. A. (1994). Sewage sludges in Hawaii: chemical composition and reactions with soils and plants. Water Air Soil Pollution, 72, 265–283.
24. Kwano, B. H., Moreira, A., Moraes, L. A. C., & Nogueira, M. A. (2017). Magnesium-manganese interaction in soybean cultivars with different nutritional requirements. Journal of Plant Nutrition, 40, 372–381.
25. Li, Z., Zhang, R., Xia, S., Wang, L., Liu, C., Zhang, R., Fan, Z., Chen, F., & Liu, Y. (2019). Interactions between N, P and K fertilizers affect the environment and the yield and quality of satsumas. Global Ecology and Conservation. https://doi.org/10.1016/j.gecco.2019.e00663
26. Lins, F. A. F. (2008). Panorama das rochas e minerais industriais no Brasil. http://mineralis.cetem.gov.br/bitstream/cetem/1031/1/01.Panorama%20da%20Produ%C3%A7%C3%A3o%20de%20RMIs%20%28novo%20texto%29.pdf. Accessed 17 May 2020.
27. López-Mosquera, M. E., Moirón, C., & Carral, E. (2000). Use of dairy-industry sludge as fertiliser for grasslands in northwest Spain: heavy metal levels in the soil and plants. Resources, Conservation & Recycling, 30, 95–109.
28. López-Mosquera, M. E., Cascallana, V., & Seoane, S. (2002). Comparison of the effects of dairy sludge and a mineral NPK fertilizer on an acid soil. Instituto Nacional de Investigaciones Agrarias, 17, 87–99.
29. Macoon, B., Woodard, K. R., Slooenberger, L. E., French, E. C., Portier, K. M., Graetz, D. A., Prine, G. M., & Van Horn, H. H. (2002). Dairy effluent effects on herbage yield and nutritive value of forage cropping systems. Agronomy Journal, 94, 1043–1049.
30. Manning, D. A. (2018). Innovation in resourcing geological materials as crop nutrients. Natural Resources Research, 27(2), 217–227.
31. Mclaughlin, M. J., & Champion, L. (1987). Sewage sludge as a phosphorus amendment for sesquioxic soils. Soil Science, 14, 45–75.
32. Mohammed, S. M. O., Brandt, K., Gray, N. D., White, M. L., & Manning, D. A. C. (2014). Comparison of silicate minerals as sources of potassium for plant nutrition in sandy soil. European Journal of Soil Science, 65(5), 653–662.
33. Moura, E., Gehring, C., Braun, H., Ferraz Junior, A., Reis, F., & Aguiar, A. (2016). Improving farming practices for sustainable soil use in the humid tropics and rainforest ecosystem health. Sustainability, 8, 841.
34. Oszust, K., Frac, M., & Lipiec, J. (2015). Soil microbial functionality in response to dairy sewage sludge and mineral fertilisers application under winter rape. International Journal of Environmental Science and Technology, 12, 3675–3684.
35. Pauletti, V. (2004). Nutrientes: Teores e interpretações. 2a edição, Fundação ABC para a Assistência e Divulgação Técnica Agropecuária. Castro, 86 p.
36. Qasim, W., & Mane, A. V. (2013). Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques. Water Resources and Industry, 4, 1–12.
37. Ramos, C. G., Querol, X., Dalmora, A. C., Pires, K. C. J., Shneider, I. A. H., Oliveira, L. F. S., & Kautzmann, R. M. (2017). Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. Journal of Cleaner Production, 142, 2700–2706.
38. Ramos, C. G., de Medeiros, D. S., Gomez, L., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2019). Evaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops. Natural Resources Research, 28, 1–18.
39. Rawat, J., Sanwal, P., & Saxena, J. (2016). Potassium and its role in sustainable agriculture. In V. Meena, B. Maurya, J. Verma, & R. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture. New Delhi: Springer. https://doi.org/10.1007/978-81-322-2776-2_17
40. Rosling, A., Suttle, K. B., Johansson, E., van Hees, P. A., & Banfield, J. F. (2007). Phosphorous availability influences the dissolution of apatite by soil fungi. Geobiology, 5(3), 265–280.
41. Santos, W. O., Mattiello, E. M., Vergutz, L., & Costa, R. F. (2016). Production and evaluation of potassium fertilizers from silicate rock. Journal of Plant Nutrition and Soil Science, 179, 547–556.
42. Sociedade Brasileira de Ciência do Solo – SBCS. (2004). Manual de Adubação e de Calagem: para os estados do Rio Grande do Sul e Santa Catarina. Comissão de Química e Fertilidade do Solo.
43. Sommers, L. E., & Sutton A. L. (1980). Use of waste materials as sources of phosphorus, in the role of phosphorus in agriculture. R.C. Dinauer and M. Stelly (Eds.). American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin.
44. Spohn, M., Zeißig, I., Brucker, E., Widdig, M., Lacher, U., & Aburto, F. (2020). Phosphorus solubilization in the rhizosphere in two saprolites with contrasting phosphorus fractions. Geoderma, 366, 114245.
45. Stranghoener, M., Schippers, A., Dultz, S., & Behrens, H. (2018). Experimental microbial alteration and Fe mobilization from basaltic rocks of the ICDP HSDP2 drill core, Hilo, Hawaii. Frontiers in Microbiology, 9, 1252.
46. Suárez, P. C., Seoane, S., Mosquera, O., Lopez, E., Solla-Grullin, F., & Merino, A. (2004). Dairy industry sewage sludge as a fertilizer for an acid soil: a laboratory experiment with Lolium multiflorium L. Spanish Journal of Agricultural Research, 2, 419–427.
47. Theodoro, S. H., & Leonardos, O. H. (2006). The use of rocks to improve family agriculture in Brazil. Anais da Academia Brasileira de Ciências, 78(4), 721–730.
48. Theodoro, S. H., & Leonardos, O. H. (2014). Stonemeal: principles, potencial and Perspective from Brazil. In T. J. Goreau, R. W. Larson, & J. Campe (Eds.), Geotherapy: Innovative methods of soil fertility restoration, carbon sequestration and reversing CO2 increase (pp. 403–418). USA: CRC Press.
49. Tikariha, A., & Sahu, O. (2014). Study of characteristics and treatments of dairy industry waste water. Journal of Applied & Environmental Microbiology, 2, 16–22.
50. Toscan, L., Kautzmann, R. M., & Sabedot, S. (2007). O rejeito da mineração de basalto no nordeste do Estado do Rio Grande do Sul: diagnóstico do problema. Revista Escola de Minas, 60, 657–662.
51. Turek, A., Wieczorek, K., & Wolf, W. M. (2019). Digestion procedure and determination of heavy metals in sewage sludge—An analytical problem. Sustainability, 11, 1753.
52. USEPA. (1999). Title 40 CFR: part 503: final rules standards for the use for disposal of sewage sludge. Washington. https://www.epa.gov/sites/production/files/2017-1/documents/frn_part_503_february_19_1993_converted_20090305.pdf. Accessed 10 Jun 2020.
53. USDA. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd ed.). Agriculture Handbook.
54. van Straaten, P. (2013). Which rocks for which crops? Ecophysiological and geological factors. II Congresso Brasileiro de Rochagem, Poços de Caldas. Annals... Poços de Caldas. Visconde do Rio Branco: Suprema (pp. 65–73).
55. van Straaten, P. (2016). ‘Rocks for crops’ in the world. III Congresso Brasileiro de Rochagem (pp. 59–69). Pelotas. Annals... Pelotas.
56. Vance, C. P., Uhde-Stone, C., & Allan, D. L. (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a non-renewable resource. New Phytologist, 157, 423–447.
57. Velazco, C. L. (2013). Crop rotation design in view of soilborne pathogen dynamics: A methodological approach illustrated with sclerotium rolfsii and fusarium oxysporum f. sp. cepae. Wageningen University and Research.
58. Volf, M. R., Guimarães, T. M., Scudeletti, D., Cruz, I. V., & Rosolem, C. A. (2018). Potassium Dynamics in Ruzigrass Rhizosphere. Revista Brasileira de Ciência do Solo. https://doi.org/10.1590/18069657rbcs20170370
59. White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92, 487–511.
60. Withers, P. J., Rodrigues, M., Soltangheisi, A., Carvalho, T. S., Guilherme, L. R., Benites, V. D. M., Gatiboni, L. C., Sousa, D. M. G., Nunes, R. S., Rosolem, C. A., Andreote, F. D., Oliveira, A., Jr., Coutinho, E. L. M., & Pavinato, P. S. (2018). Transitions to sustainable management of phosphorus in Brazilian agriculture. Scientific Reports, 8(1), 2537.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Natural Resources Research
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/article/10.1007/s11053-021-09862-0
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d0191ac8-06e4-487f-8a55-08225dd2f3c7/download
https://repositorio.cuc.edu.co/bitstreams/f4fa4f4f-8a7c-40a7-9cb1-d91b9fd471ae/download
https://repositorio.cuc.edu.co/bitstreams/3c6d992b-2be8-4326-b85e-da34a5bcb46e/download
https://repositorio.cuc.edu.co/bitstreams/7e098170-77b9-4779-8773-e914fc977c1a/download
https://repositorio.cuc.edu.co/bitstreams/4c352f91-3d57-4661-94c3-bdf7be653761/download
bitstream.checksum.fl_str_mv e30e9215131d99561d40d6b0abbe9bad
6bc2036a1c6187664c93521c905832f4
42fd4ad1e89814f5e4a476b409eb708c
36891a78ed0d64c89f7b619d59ea955b
46c36b87067da1f485aa5ccfae8dfc26
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760662148284416
spelling Gindri Ramos, ClaudeteCelimar Dalmora, AdilsonMüller Kautzmann, RubensHower, JamesDotto, Guilherme LuizSilva Oliveira, Luis Felipe2021-05-14T21:49:02Z2021-05-14T21:49:02Z20211520-7439https://hdl.handle.net/11323/8263https://doi.org/10.1007/s11053-021-09862-0Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/By-products from the dairy industry and mining activities represent a great environmental overload, which justify research for value-added reuse of these by-products (dairy sludge and dacite rock powder). Dairy sludge is generated at a rate of about 0.2–10 l per liter of processed milk, and dacite powder, from rock mining extraction and processing, is generated for about 52,400 m3 per year in Nova Prata city, Southern Brazil. For both by-products, the compositions of calcium (Ca), magnesium (Mg), potassium (K) and phosphorous (P), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb) were determined by using appropriate analytical techniques. A greenhouse experiment was conducted to determine release of macronutrients, such as Ca, K, Mg, and P, from by-products to support black oat (Avena strigosa) and maize nutrition. Twelve by-products doses were blended with a typic Hapludox soil and were applied to pots with five replications each. Black oat (first cultivation) and, sequentially, maize (second cultivation) were cultivated for 70 days each. Ameliorations in soil chemical attributes, leaf dry matter yield, and plant nutritional status were evaluated at the end of each cultivation. There was a significant (p < 0.05) increase in all parameters evaluated in a dose of 7251 kg ha−1 of dacite rock powder and 20,594 kg ha−1 of dairy sludge. Compared to the control treatments, both crops grew well better on all mixtures. The presence of potentially toxic elements in both by-products was irrelevant, indicating that effective blending of dacite rock powder along with dairy sludge could be a potential source of Ca, K, Mg, and P in agriculture without posing a risk of contamination to the environment.Gindri Ramos, Claudete-will be generated-orcid-0000-0003-2172-8052-600Celimar Dalmora, AdilsonMüller Kautzmann, Rubens-will be generated-orcid-0000-0002-7789-7464-600Hower, James-will be generated-orcid-0000-0003-4694-2776-600Dotto, Guilherme Luiz-will be generated-orcid-0000-0002-4413-8138-600Silva Oliveira, Luis Felipeapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Natural Resources Researchhttps://link.springer.com/article/10.1007/s11053-021-09862-0Dairy sludgeDacite rock poderBy-productsSoil fertilizationSustainable release of macronutrients to black oat and maize crops from organically-altered dacite rock powderPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion1. Anjanadevi, I. P., John, N. S., John, K. S., Jeeva, M. L., & Misra, R. S. (2016). Rock inhabiting potassium solubilizing bacteria from Kerala, India: characterization and possibility in chemical K fertilizer substitution. Journal of Basic Microbiology, 56, 67–77.2. Balannec, B., Vourch, M., Rabiller-Baudry, M., & Chaufer, B. (2005). Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration. Separation and Purification Technology, 42, 195–200.3. Basak, B. B., Sarkar, B., Biswas, D. R., Sarkar, S., Sanderson, P., & Naidu, R. (2017). Bio-intervention of naturally occurring silicate minerals for alternative source of potassium: challenges and opportunities. Advances in Agronomy, 141, 115–145.4. Basak, B. B. (2019). Waste mica as alternative source of plant available potassium: Evaluation of agronomic potential through chemical and biological methods. Natural Resources Research, 28(3), 953–965.5. Basak, B. B., Sarkar, B., & Naidu, R. (2020). Environmentally safe release of plant available potassium and micronutrients from organically amended rock mineral powder. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00677-16. Bhadouria, B. S., & Sai, V. S. (2011). Utilization and treatment of dairy effluent through biogas generation-A case study. International Journal of Environmental Sciences, 1, 1621.7. Brazil. (2006). Ministério do Meio Ambiente. Conselho Nacional de Meio Ambiente. Resolução n. 375, de 29 de agosto de 2006. Define critérios e procedimentos, para o uso agrícola de lodos de esgoto gerados em estações de tratamento de esgoto sanitário e seus produtos derivados. Brasília. http://www.mma.gov.br/port/conama/res/res06/res37506.pdf. Accessed 19 May 2020.8. Brazil. (2016). Instrução Normativa Nº 05 de 10 de março de 2016. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-5-de-10-3-16-remineralizadores-e-substratos-para-plantas.pdf. Accessed 28 May 2020.9. Cavallaro, N., Padilla, N., & Villarrubia, J. (1993). Sewage sludge effects on chemical properties of acid soils. Soil Science, 156, 63–70.10. Dalmora, A. C., Ramos, C. G., Oliveira, M. L. S., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2020). Application of andesite rock as a clean source of fertilizer for eucalyptus crop: Evidence of sustainability. Journal of Cleaner Production, 256, 120432.11. De Conti, L., Ceretta, C. A., Melo, G. W. B., Tiecher, T. L., Silva, L. O. S., Garlet, L. P., Mimmo, T., Cesco, S., & Brunetto, G. (2019). Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere, 216, 147–156.12. Donagema, G. K., Campos, D. V. B., Calderano, S. B., Teixeira, W. G., & Viana, J. H. M. (2011). Manual de métodos de análise de solo. 2. ed. rev. Rio de Janeiro: Embrapa Solos, 230 p.13. European Union - E.U. (1986). Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01986L0278-20090420&qid=1439354498400&from=DE. Accessed 25 May 2020.14. Fageria, N. K. (2009). The use of nutrients in crop plants (p. 430). CRC Press.15. Ferrari, V., Taffarel, S. R., Espinosa-Fuentes, E., Oliveira, M. L. S., Saikia, B. K., & Oliveira, L. F. S. (2019). Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. Journal of Cleaner Production., 208, 297–306.16. Fornasieri Filho, D. (2007). Manual da Cultura do Milho (p. 574p). Funep.17. Frac, M., Jezierska-Tys, S., Oszust, K., Gryta, A., & Pastor, M. (2017). Assessment of microbiological and biochemical properties of dairy sewage sludge. International Journal of Environmental Science and Technology, 14, 679–688.18. Furrer, O. J., Gupta, S. K., & Stauffer, W. (1984). Sludge as a source of phosphorus and consequences of phosphorus accumulation in soils. In P. L’Hermite (Ed.), Processing and use of sewage sludge. proceedings of the third international symposium held at Brighton (pp. 279–294). Dordrecht: Reidel Publishing Co.19. García-Delgado, C., Calab, V., & Eymara, E. (2012). Inûuence of chemical and mineralogical properties of organic amendments on the selection of an adequate analytical procedure for trace elements determination. Talanta, 88, 375–384.20. Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32, 390–399.21. Gupta, S., & Hani, H. (1979). Estimation of available phosphate content of sewage sludges. In D. Alexandre, & H. Ott (Eds.), Treatment and use of sewage sludge. Proceedings of the first European Symposium held in Cadarache, 1979. (pp. 261–268).22. Haraldsen, T. K., & Pedersen, P. A. (2003). Mixtures of crushed rock, forest soils, and sewage sludge used as soils for grassed green areas. Urban Forestry & Urban Greening, 21, 41–51. https://doi.org/10.1078/1618-8667-0002223. Hue, N. V., & Ranjith, S. A. (1994). Sewage sludges in Hawaii: chemical composition and reactions with soils and plants. Water Air Soil Pollution, 72, 265–283.24. Kwano, B. H., Moreira, A., Moraes, L. A. C., & Nogueira, M. A. (2017). Magnesium-manganese interaction in soybean cultivars with different nutritional requirements. Journal of Plant Nutrition, 40, 372–381.25. Li, Z., Zhang, R., Xia, S., Wang, L., Liu, C., Zhang, R., Fan, Z., Chen, F., & Liu, Y. (2019). Interactions between N, P and K fertilizers affect the environment and the yield and quality of satsumas. Global Ecology and Conservation. https://doi.org/10.1016/j.gecco.2019.e0066326. Lins, F. A. F. (2008). Panorama das rochas e minerais industriais no Brasil. http://mineralis.cetem.gov.br/bitstream/cetem/1031/1/01.Panorama%20da%20Produ%C3%A7%C3%A3o%20de%20RMIs%20%28novo%20texto%29.pdf. Accessed 17 May 2020.27. López-Mosquera, M. E., Moirón, C., & Carral, E. (2000). Use of dairy-industry sludge as fertiliser for grasslands in northwest Spain: heavy metal levels in the soil and plants. Resources, Conservation & Recycling, 30, 95–109.28. López-Mosquera, M. E., Cascallana, V., & Seoane, S. (2002). Comparison of the effects of dairy sludge and a mineral NPK fertilizer on an acid soil. Instituto Nacional de Investigaciones Agrarias, 17, 87–99.29. Macoon, B., Woodard, K. R., Slooenberger, L. E., French, E. C., Portier, K. M., Graetz, D. A., Prine, G. M., & Van Horn, H. H. (2002). Dairy effluent effects on herbage yield and nutritive value of forage cropping systems. Agronomy Journal, 94, 1043–1049.30. Manning, D. A. (2018). Innovation in resourcing geological materials as crop nutrients. Natural Resources Research, 27(2), 217–227.31. Mclaughlin, M. J., & Champion, L. (1987). Sewage sludge as a phosphorus amendment for sesquioxic soils. Soil Science, 14, 45–75.32. Mohammed, S. M. O., Brandt, K., Gray, N. D., White, M. L., & Manning, D. A. C. (2014). Comparison of silicate minerals as sources of potassium for plant nutrition in sandy soil. European Journal of Soil Science, 65(5), 653–662.33. Moura, E., Gehring, C., Braun, H., Ferraz Junior, A., Reis, F., & Aguiar, A. (2016). Improving farming practices for sustainable soil use in the humid tropics and rainforest ecosystem health. Sustainability, 8, 841.34. Oszust, K., Frac, M., & Lipiec, J. (2015). Soil microbial functionality in response to dairy sewage sludge and mineral fertilisers application under winter rape. International Journal of Environmental Science and Technology, 12, 3675–3684.35. Pauletti, V. (2004). Nutrientes: Teores e interpretações. 2a edição, Fundação ABC para a Assistência e Divulgação Técnica Agropecuária. Castro, 86 p.36. Qasim, W., & Mane, A. V. (2013). Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques. Water Resources and Industry, 4, 1–12.37. Ramos, C. G., Querol, X., Dalmora, A. C., Pires, K. C. J., Shneider, I. A. H., Oliveira, L. F. S., & Kautzmann, R. M. (2017). Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. Journal of Cleaner Production, 142, 2700–2706.38. Ramos, C. G., de Medeiros, D. S., Gomez, L., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2019). Evaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops. Natural Resources Research, 28, 1–18.39. Rawat, J., Sanwal, P., & Saxena, J. (2016). Potassium and its role in sustainable agriculture. In V. Meena, B. Maurya, J. Verma, & R. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture. New Delhi: Springer. https://doi.org/10.1007/978-81-322-2776-2_1740. Rosling, A., Suttle, K. B., Johansson, E., van Hees, P. A., & Banfield, J. F. (2007). Phosphorous availability influences the dissolution of apatite by soil fungi. Geobiology, 5(3), 265–280.41. Santos, W. O., Mattiello, E. M., Vergutz, L., & Costa, R. F. (2016). Production and evaluation of potassium fertilizers from silicate rock. Journal of Plant Nutrition and Soil Science, 179, 547–556.42. Sociedade Brasileira de Ciência do Solo – SBCS. (2004). Manual de Adubação e de Calagem: para os estados do Rio Grande do Sul e Santa Catarina. Comissão de Química e Fertilidade do Solo.43. Sommers, L. E., & Sutton A. L. (1980). Use of waste materials as sources of phosphorus, in the role of phosphorus in agriculture. R.C. Dinauer and M. Stelly (Eds.). American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin.44. Spohn, M., Zeißig, I., Brucker, E., Widdig, M., Lacher, U., & Aburto, F. (2020). Phosphorus solubilization in the rhizosphere in two saprolites with contrasting phosphorus fractions. Geoderma, 366, 114245.45. Stranghoener, M., Schippers, A., Dultz, S., & Behrens, H. (2018). Experimental microbial alteration and Fe mobilization from basaltic rocks of the ICDP HSDP2 drill core, Hilo, Hawaii. Frontiers in Microbiology, 9, 1252.46. Suárez, P. C., Seoane, S., Mosquera, O., Lopez, E., Solla-Grullin, F., & Merino, A. (2004). Dairy industry sewage sludge as a fertilizer for an acid soil: a laboratory experiment with Lolium multiflorium L. Spanish Journal of Agricultural Research, 2, 419–427.47. Theodoro, S. H., & Leonardos, O. H. (2006). The use of rocks to improve family agriculture in Brazil. Anais da Academia Brasileira de Ciências, 78(4), 721–730.48. Theodoro, S. H., & Leonardos, O. H. (2014). Stonemeal: principles, potencial and Perspective from Brazil. In T. J. Goreau, R. W. Larson, & J. Campe (Eds.), Geotherapy: Innovative methods of soil fertility restoration, carbon sequestration and reversing CO2 increase (pp. 403–418). USA: CRC Press.49. Tikariha, A., & Sahu, O. (2014). Study of characteristics and treatments of dairy industry waste water. Journal of Applied & Environmental Microbiology, 2, 16–22.50. Toscan, L., Kautzmann, R. M., & Sabedot, S. (2007). O rejeito da mineração de basalto no nordeste do Estado do Rio Grande do Sul: diagnóstico do problema. Revista Escola de Minas, 60, 657–662.51. Turek, A., Wieczorek, K., & Wolf, W. M. (2019). Digestion procedure and determination of heavy metals in sewage sludge—An analytical problem. Sustainability, 11, 1753.52. USEPA. (1999). Title 40 CFR: part 503: final rules standards for the use for disposal of sewage sludge. Washington. https://www.epa.gov/sites/production/files/2017-1/documents/frn_part_503_february_19_1993_converted_20090305.pdf. Accessed 10 Jun 2020.53. USDA. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd ed.). Agriculture Handbook.54. van Straaten, P. (2013). Which rocks for which crops? Ecophysiological and geological factors. II Congresso Brasileiro de Rochagem, Poços de Caldas. Annals... Poços de Caldas. Visconde do Rio Branco: Suprema (pp. 65–73).55. van Straaten, P. (2016). ‘Rocks for crops’ in the world. III Congresso Brasileiro de Rochagem (pp. 59–69). Pelotas. Annals... Pelotas.56. Vance, C. P., Uhde-Stone, C., & Allan, D. L. (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a non-renewable resource. New Phytologist, 157, 423–447.57. Velazco, C. L. (2013). Crop rotation design in view of soilborne pathogen dynamics: A methodological approach illustrated with sclerotium rolfsii and fusarium oxysporum f. sp. cepae. Wageningen University and Research.58. Volf, M. R., Guimarães, T. M., Scudeletti, D., Cruz, I. V., & Rosolem, C. A. (2018). Potassium Dynamics in Ruzigrass Rhizosphere. Revista Brasileira de Ciência do Solo. https://doi.org/10.1590/18069657rbcs2017037059. White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92, 487–511.60. Withers, P. J., Rodrigues, M., Soltangheisi, A., Carvalho, T. S., Guilherme, L. R., Benites, V. D. M., Gatiboni, L. C., Sousa, D. M. G., Nunes, R. S., Rosolem, C. A., Andreote, F. D., Oliveira, A., Jr., Coutinho, E. L. M., & Pavinato, P. S. (2018). Transitions to sustainable management of phosphorus in Brazilian agriculture. Scientific Reports, 8(1), 2537.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d0191ac8-06e4-487f-8a55-08225dd2f3c7/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALSustainable Release of Macronutrients to Black Oat and Maize Crops from Organically-Altered Dacite Rock Powder.pdfSustainable Release of Macronutrients to Black Oat and Maize Crops from Organically-Altered Dacite Rock Powder.pdfapplication/pdf164460https://repositorio.cuc.edu.co/bitstreams/f4fa4f4f-8a7c-40a7-9cb1-d91b9fd471ae/download6bc2036a1c6187664c93521c905832f4MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/3c6d992b-2be8-4326-b85e-da34a5bcb46e/download42fd4ad1e89814f5e4a476b409eb708cMD52THUMBNAILSustainable Release of Macronutrients to Black Oat and Maize Crops from Organically-Altered Dacite Rock Powder.pdf.jpgSustainable Release of Macronutrients to Black Oat and Maize Crops from Organically-Altered Dacite Rock Powder.pdf.jpgimage/jpeg68448https://repositorio.cuc.edu.co/bitstreams/7e098170-77b9-4779-8773-e914fc977c1a/download36891a78ed0d64c89f7b619d59ea955bMD54TEXTSustainable Release of Macronutrients to Black Oat and Maize Crops from Organically-Altered Dacite Rock Powder.pdf.txtSustainable Release of Macronutrients to Black Oat and Maize Crops from Organically-Altered Dacite Rock Powder.pdf.txttext/plain15761https://repositorio.cuc.edu.co/bitstreams/4c352f91-3d57-4661-94c3-bdf7be653761/download46c36b87067da1f485aa5ccfae8dfc26MD5511323/8263oai:repositorio.cuc.edu.co:11323/82632024-09-16 16:35:58.569http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==