A proposal for the diagnosis of incipient faults in power transformers using fuzzy logic techniques

The availability of power transformers is essential for the safety and continuity of electrical service. Today's fault diagnosis methods use intelligent techniques such as neural networks, support machines, hybrid techniques, among others. Although they present good results, these techniques fi...

Full description

Autores:
Fernández Blanco, Juan Carlos
Corrales Barrios, Luis Benigno
Benitez Pina, Israel Francisco
Núñez Alvarez, José Ricardo
Hernández, Félix H.
Llosas Albuerne, Yolanda
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9381
Acceso en línea:
https://hdl.handle.net/11323/9381
https://doi.org/10.15866/iree.v17i1.20772
https://repositorio.cuc.edu.co/
Palabra clave:
Dissolved gas analysis
Fault diagnosis
Fuzzy logic
Power transformer
Rights
openAccess
License
Copyright © 2022 Praise Worthy Prize - All rights reserved.
id RCUC2_c90b8e28dd88eecb6f6d804de235266b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9381
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv A proposal for the diagnosis of incipient faults in power transformers using fuzzy logic techniques
title A proposal for the diagnosis of incipient faults in power transformers using fuzzy logic techniques
spellingShingle A proposal for the diagnosis of incipient faults in power transformers using fuzzy logic techniques
Dissolved gas analysis
Fault diagnosis
Fuzzy logic
Power transformer
title_short A proposal for the diagnosis of incipient faults in power transformers using fuzzy logic techniques
title_full A proposal for the diagnosis of incipient faults in power transformers using fuzzy logic techniques
title_fullStr A proposal for the diagnosis of incipient faults in power transformers using fuzzy logic techniques
title_full_unstemmed A proposal for the diagnosis of incipient faults in power transformers using fuzzy logic techniques
title_sort A proposal for the diagnosis of incipient faults in power transformers using fuzzy logic techniques
dc.creator.fl_str_mv Fernández Blanco, Juan Carlos
Corrales Barrios, Luis Benigno
Benitez Pina, Israel Francisco
Núñez Alvarez, José Ricardo
Hernández, Félix H.
Llosas Albuerne, Yolanda
dc.contributor.author.spa.fl_str_mv Fernández Blanco, Juan Carlos
Corrales Barrios, Luis Benigno
Benitez Pina, Israel Francisco
Núñez Alvarez, José Ricardo
Hernández, Félix H.
Llosas Albuerne, Yolanda
dc.subject.proposal.eng.fl_str_mv Dissolved gas analysis
Fault diagnosis
Fuzzy logic
Power transformer
topic Dissolved gas analysis
Fault diagnosis
Fuzzy logic
Power transformer
description The availability of power transformers is essential for the safety and continuity of electrical service. Today's fault diagnosis methods use intelligent techniques such as neural networks, support machines, hybrid techniques, among others. Although they present good results, these techniques find restrictions in the ability to determine the precise moment in the event of multiple and small-magnitude faults. The proposal includes a new algorithm based on fuzzy rules that incorporates the daily increase of dissolved gases in the transformer oil that improves the classification of incipient faults. With reliable samples of gas dissolved in oil, the method proposed in the research can obtain a total precision rate of 91.4%. In contrast, this degree of precision is lower in other conventional methods reported in the bibliography. In addition, its performance in the classification of multiple failures is 97.5%. The method uses fuzzy logic tools to suggest actions aimed at preventive maintenance by monitoring the total of combustible gases dissolved in the oil. The proposal is a simple and easy solution to implement in practice that allows determining the status of the transformer in service without affecting the continuity of the electricity supply.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-19T13:39:32Z
dc.date.available.none.fl_str_mv 2022-07-19T13:39:32Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.spa.fl_str_mv 1827-6660
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9381
dc.identifier.url.spa.fl_str_mv https://doi.org/10.15866/iree.v17i1.20772
dc.identifier.doi.spa.fl_str_mv 10.15866/iree.v17i1.20772
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1827-6660
10.15866/iree.v17i1.20772
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9381
https://doi.org/10.15866/iree.v17i1.20772
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv International Review of Electrical Engineering
dc.relation.references.spa.fl_str_mv A. Naderian, S. Cress, R. Piercy, F. Wang, J. Service, An approach to determine the health index of power transformers, Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, 2008, pp. 192-196. https://doi.org/10.1109/ELINSL.2008.4570308
A. A. Etumi, F. Anayi, The application of correlation technique in detecting internal and external faults in three-phase transformer and saturation of current transformer, IEEE Transactions on Power Delivery, vol. 31, n. 5, pp. 2131-2169, 2016. https://doi.org/10.1109/TPWRD.2016.2572608
T. Committee, IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers, IEEE Std C57.104™. 2019.
M. Bagheri, A. Zollanvari, S. Nezhivenko, Transformer Fault Condition Prognosis Using Vibration Signals Over Cloud Environment, in IEEE Access, vol. 6, pp. 9862-9874, 2018. https://doi.org/10.1109/ACCESS.2018.2809436
A. Alzghoul, B. Backe, M. Löfstrand, A. Byström, B. Liljedahl, Comparing a knowledge-based and a data-driven method in querying data streams for system fault detection: A hydraulic drive system application, Computers in industry, vol. 65, n. 8, pp. 1126-1135, 2014. https://doi.org/10.1016/j.compind.2014.06.003
S. A. Wani, S.A. Khan, G. Prasha, D. Gupta, Smart diagnosis of incipient faults using dissolved gas analysis-based fault interpretation matrix (FIM), Arabian Journal for Science and Engineering, vol. 44, n. 8, pp. 6977-6985, 2019. https://doi.org/10.1007/s13369-019-03739-4
Y. Yahya, A. Qian, A. Yahya, Power transformer fault diagnosis using fuzzy reasoning spiking neural P systems, Journal of Intelligent Learning Systems and Applications, vol. 8, n. 4, pp. 77-91, 2016. https://doi.org/10.4236/jilsa.2016.84007
K. Chatterjee, S. Dawn, V. K. Jadoun, R. Jarial, Novel prediction-reliability based graphical DGA technique using multi-layer perceptron network & gas ratio combination algorithm, IET Science, Measurement & Technology, vol. 13, n. 6, pp. 836-842, 2019. https://doi.org/10.1049/iet-smt.2018.5397
H. MehdipourPicha, R. Bo, H. Chen, M. M. Rana, J. Huang, F. Hu, Transformer Fault Diagnosis Using Deep Neural Network, 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), 2019, pp. 4241-4245. https://doi.org/10.1109/ISGT-Asia.2019.8881052
M. Ou, H. Wei, Y. Zhang, J. Tan, A dynamic adam based deep neural network for fault diagnosis of oil-immersed power transformers, Energies, vol. 12, n. 6, pp. 995, 2019. https://doi.org/10.3390/en12060995
J. Li, Q. Zhang, K. Wang, J. Wang, T. Zhou, Y. Zhang, Optimal dissolved gas ratios selected by genetic algorithm for power transformer fault diagnosis based on support vector machine, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, n. 2, pp. 1198-2006, 2012. https://doi.org/10.1109/TDEI.2015.005277
W. Mo, T. Kari, H. Wang, L. Luan, W. Gao, Power Transformer Fault Diagnosis Using Support Vector Machine and Particle Swarm Optimization, 2017 10th International Symposium on Computational Intelligence and Design (ISCID), 2017, pp. 511-515. https://doi.org/10.1109/ISCID.2017.165
Y. Lu, C. Wei, T. Kong, T. Shi, J. Zheng, An improved DAG-SVM algorithm based on KFCM in Power Transformer Fault Diagnosis, 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 2019, pp. 1297-1302. https://doi.org/10.1109/ITNEC.2019.8729526
Matar, M., Mohamed, O., Fault Classification on a Power Transmission Line Using Discrete Wavelet Transform and Artificial Neural Networks, (2019) International Review of Electrical Engineering (IREE), 14 (5), pp. 349-357. https://doi.org/10.15866/iree.v14i5.17017
J. R. Nuñez et al., Design of a Fuzzy Controller for a Hybrid Generation System, IOP Conf. Series: Materials Science and Engineering, vol. 844, pp. 012017. 2020. https://doi.org/10.1088/1757-899X/844/1/012017
A. Hoballah, D. -E. A. Mansour, I. B. M. Taha, Hybrid Grey Wolf Optimizer for Transformer Fault Diagnosis Using Dissolved Gases Considering Uncertainty in Measurements, in IEEE Access, vol. 8, pp. 139176-139187, 2020. https://doi.org/10.1109/ACCESS.2020.3012633
A. I. Koldaev, A. A. Evdokimov, B. M. Shebzukhova, An Approach to Neuro-Fuzzy Monitoring of Power Transformers, 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2020, pp. 1-5. https://doi.org/10.1109/FarEastCon50210.2020.9271394
I. B. Taha, A. Hoballah, S. S. Ghoneim, Optimal ratio limits of rogers' four-ratios and IEC 60599 code methods using particle swarm optimization fuzzy-logic approach, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 27, n. 1, pp. 222-230, 2020. https://doi.org/10.1109/TDEI.2019.008395
L. Tightiz, M. A. Nasab, H. Yang, A. Addeh, An intelligent system based on optimized ANFIS and association rules for power transformer fault diagnosis, ISA Transactions, vol. 103, pp. 63-74, 2020. doi: 10.1016/j.isatra.2020.03.022
Moloi, K., Jordaan, J., Hamam, Y., The Development of a High Impedance Fault Diagnostic Scheme on Power Distribution Network, (2020) International Review of Electrical Engineering (IREE), 15 (1), pp. 69-79. doi:https://doi.org/10.15866/iree.v15i1.17074
C. Guo, B. Wang, Z. Wu, M. Ren, Y. He, R. Albarracín, M. Dong, Transformer failure diagnosis using fuzzy association rule mining combined with case-based reasoning, IET Generation, Transmission & Distribution, vol. 14, n. 11, pp. 2202–2208, 2020.
H. Malik, R. Sharma, S. Mishra, Fuzzy reinforcement learning based intelligent classifier for power transformer faults, ISA Transactions, vol. 101, pp. 390-398, 2020.
R. A. Prasojo, H. Gumilang, N. U. Maulidevi, B. A. Soedjarno, A Fuzzy Logic Model for Power Transformer Faults Severity Determination Based on Gas Level, Gas Rate, and Dissolved Gas Analysis Interpretation, Energies, vol. 13, n. 4, pp.1009, 2020. doi: 10.3390/en13041009
X. Wang, F. Guo, W. Xu, DGA fuzzy logic diagnostic method based on subordinating function, 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), 2020, pp. 1381-1384. doi: 10.1109/ITOEC49072.2020.9141578
M. Žarković, Z. Stojković, Analysis of artificial intelligence expert systems for power transformer condition monitoring and diagnostics, Electric Power Systems Research, vol. 149, pp. 125- 136, 2017. doi: 10.1016/j.epsr.2017.04.025
M. M. A. S. Mahmoud, Z. Qurbanov, Review of Fuzzy and ANN Fault Location Methods for Distribution Power System in Oil and Gas Sectors, IFAC-PapersOnLine, vol. 51, n. 30, pp. 263–267, 2018. doi: 10.1016/j.ifacol.2018.11.298
S. A. Wani, D. Gupta, M. U. Farooque, S. A. Khan, Multiple incipient fault classification approach for enhancing the accuracy of dissolved gas analysis (DGA) IET Science, Measurement & Technology, vol. 13, n. 7, pp. 959-967, 2019. doi: 10.1049/iet-smt.2018.5135
I. Marriaga-Márquez, K. Gómez-Sandoval, J. W. Grimaldo Guerrero, J. Nuñez-Álvarez, Identification of critical variables in conventional transformers in distribution networks, IOP Conference Series: Materials Science and Engineering, vol. 844, pp. 012009, 2020. doi: 10.1088/1757-899X/844/1/012009
S. Apte, R. Somalwar, A. Wajirabadkar, Incipient Fault Diagnosis of Transformer by DGA Using Fuzzy Logic, 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2018, pp. 1-5. doi: 10.1109/PEDES.2018.8707928
W. Teng, S. Fan, Z. Gong, W. Jiang, M. Gong, Fault diagnosis of transformer based on fuzzy clustering and the optimized wavelet neural network, Systems Science & Control Engineering, vol. 6, n. 3, pp. 359-363, 2018. doi: 10.1080/21642583.2018.1564891
R. L. Z. Pacori, J. H. A. Alcántara, Identification of Internal Failure in Power Transformers Using Fuzzy Logic Through the Dissolved Gas Analysis in Mineral Insulating Oil, 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 2020, pp. 1-4. doi: 10.1109/INTERCON50315.2020.9220214
R. Palke, P. Korde, Dissolved Gas Analysis (DGA) to Diagnose the Internal Faults of Power Transformer by using Fuzzy Logic Method, 2020 International Conference on Communication and Signal Processing (ICCSP), 2020, pp. 1050-1053. doi: 10.1109/ICCSP48568.2020.9182279
M. Idrees et al., Fuzzy Logic Based Calculation and Analysis of Health Index for Power Transformer Installed in Grid Stations, 2019 International Symposium on Recent Advances in Electrical Engineering (RAEE), 2019, pp. 1-6. doi: 10.1109/RAEE.2019.8887016
F. Mohamad, K. Hosny, T. Barakat, Incipient Fault Detection of Electric Power Transformers Using Fuzzy Logic Based on Roger's and IEC Method, 2019 14th International Conference on Computer Engineering and Systems (ICCES), 2019, pp. 303-309. doi: 10.1109/ICCES48960.2019.9068132
M. Duval, L. Lamarre. The duval pentagon-a new complementary tool for the interpretation of dissolved gas analysis in transformers, IEEE Electrical Insulation Magazine, vol. 30, n. 6, pp. 9-12, 2014. doi: 10.1109/MEI.2014.6943428
N. Pattanadech, W. Wattakapaiboon, Application of Duval Pentagon Compared with Other DGA Interpretation Techniques: Case Studies for Actual Transformer Inspections Including Experience from Power Plants in Thailand, 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST), 2019, pp. 1-4. doi: 10.1109/ICEAST.2019.8802523
M. Duval, A. DePabla, Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases, IEEE Electrical Insulation Magazine, vol. 17, n. 2, pp. 31-41, 2001. doi: 10.1109/57.917529.
E. Li, L. Wang, B. Song. Fault diagnosis of power transformers with membership degree, IEEE Access, vol. 7, pp. 28791-28798, 2019. doi: 10.1109/ACCESS.2019.2902299
J. Faiz, M. Soleimani, Dissolved gas analysis evaluation in electric power transformers using conventional methods a review, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, n. 2, pp. 1239-1248, 2017. doi: 10.1109/TDEI.2017.005959
Adnan, N., Srivastava, V., Loss Reduction Concept Review and Its Comparison for Various Transmission Lines, (2019) International Review of Electrical Engineering (IREE), 14 (4), pp. 263-271. doi:https://doi.org/10.15866/iree.v14i4.17011
I. A. Marriaga-Márquez, et al., Identification of critical variables in conventional transformers in distribution networks, IOP Conf. Series: Materials Science and Engineering, vol. 844, pp. 012009, 2020. doi:10.1088/1757-899X/844/1/012009
S. Díaz, J. Nuñez, K. Berdugo, K. Gomez, Study of technologies implemented in the operation of SF6 switches, IOP Conf. Series: Materials Science and Engineering, vol. 72, pp. 012041, 2020. doi: 10.1088/1757-899X/872/1/012041
dc.relation.citationendpage.spa.fl_str_mv 38
dc.relation.citationstartpage.spa.fl_str_mv 29
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 17
dc.rights.spa.fl_str_mv Copyright © 2022 Praise Worthy Prize - All rights reserved.
Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright © 2022 Praise Worthy Prize - All rights reserved.
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Praise Worthy Prize
dc.publisher.place.spa.fl_str_mv Italy
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.praiseworthyprize.org/jsm/index.php?journal=iree&page=article&op=view&path[]=25792
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/2116355d-2b10-48d5-ab1f-55a98e3e2548/download
https://repositorio.cuc.edu.co/bitstreams/361e81b7-0378-4d53-9807-e17dfc82ee44/download
https://repositorio.cuc.edu.co/bitstreams/95531791-7b2c-4396-97b3-f4b7a1bd9ecf/download
https://repositorio.cuc.edu.co/bitstreams/03cf71ba-3fdc-435e-a65a-51030facd46c/download
bitstream.checksum.fl_str_mv 5b4a84242cc877b5a1c184e8cb53662e
e30e9215131d99561d40d6b0abbe9bad
07ef7278618c9df3ae8ea931bf471409
76747ec83b5999dc62e234f138f443db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760691339591680
spelling Fernández Blanco, Juan Carlos Corrales Barrios, Luis BenignoBenitez Pina, Israel FranciscoNúñez Alvarez, José RicardoHernández, Félix H.Llosas Albuerne, Yolanda2022-07-19T13:39:32Z2022-07-19T13:39:32Z20221827-6660https://hdl.handle.net/11323/9381https://doi.org/10.15866/iree.v17i1.2077210.15866/iree.v17i1.20772Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The availability of power transformers is essential for the safety and continuity of electrical service. Today's fault diagnosis methods use intelligent techniques such as neural networks, support machines, hybrid techniques, among others. Although they present good results, these techniques find restrictions in the ability to determine the precise moment in the event of multiple and small-magnitude faults. The proposal includes a new algorithm based on fuzzy rules that incorporates the daily increase of dissolved gases in the transformer oil that improves the classification of incipient faults. With reliable samples of gas dissolved in oil, the method proposed in the research can obtain a total precision rate of 91.4%. In contrast, this degree of precision is lower in other conventional methods reported in the bibliography. In addition, its performance in the classification of multiple failures is 97.5%. The method uses fuzzy logic tools to suggest actions aimed at preventive maintenance by monitoring the total of combustible gases dissolved in the oil. The proposal is a simple and easy solution to implement in practice that allows determining the status of the transformer in service without affecting the continuity of the electricity supply.10 páginasapplication/pdfengPraise Worthy PrizeItalyCopyright © 2022 Praise Worthy Prize - All rights reserved.Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A proposal for the diagnosis of incipient faults in power transformers using fuzzy logic techniquesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.praiseworthyprize.org/jsm/index.php?journal=iree&page=article&op=view&path[]=25792International Review of Electrical EngineeringA. Naderian, S. Cress, R. Piercy, F. Wang, J. Service, An approach to determine the health index of power transformers, Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, 2008, pp. 192-196. https://doi.org/10.1109/ELINSL.2008.4570308A. A. Etumi, F. Anayi, The application of correlation technique in detecting internal and external faults in three-phase transformer and saturation of current transformer, IEEE Transactions on Power Delivery, vol. 31, n. 5, pp. 2131-2169, 2016. https://doi.org/10.1109/TPWRD.2016.2572608T. Committee, IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers, IEEE Std C57.104™. 2019.M. Bagheri, A. Zollanvari, S. Nezhivenko, Transformer Fault Condition Prognosis Using Vibration Signals Over Cloud Environment, in IEEE Access, vol. 6, pp. 9862-9874, 2018. https://doi.org/10.1109/ACCESS.2018.2809436A. Alzghoul, B. Backe, M. Löfstrand, A. Byström, B. Liljedahl, Comparing a knowledge-based and a data-driven method in querying data streams for system fault detection: A hydraulic drive system application, Computers in industry, vol. 65, n. 8, pp. 1126-1135, 2014. https://doi.org/10.1016/j.compind.2014.06.003S. A. Wani, S.A. Khan, G. Prasha, D. Gupta, Smart diagnosis of incipient faults using dissolved gas analysis-based fault interpretation matrix (FIM), Arabian Journal for Science and Engineering, vol. 44, n. 8, pp. 6977-6985, 2019. https://doi.org/10.1007/s13369-019-03739-4Y. Yahya, A. Qian, A. Yahya, Power transformer fault diagnosis using fuzzy reasoning spiking neural P systems, Journal of Intelligent Learning Systems and Applications, vol. 8, n. 4, pp. 77-91, 2016. https://doi.org/10.4236/jilsa.2016.84007K. Chatterjee, S. Dawn, V. K. Jadoun, R. Jarial, Novel prediction-reliability based graphical DGA technique using multi-layer perceptron network & gas ratio combination algorithm, IET Science, Measurement & Technology, vol. 13, n. 6, pp. 836-842, 2019. https://doi.org/10.1049/iet-smt.2018.5397H. MehdipourPicha, R. Bo, H. Chen, M. M. Rana, J. Huang, F. Hu, Transformer Fault Diagnosis Using Deep Neural Network, 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), 2019, pp. 4241-4245. https://doi.org/10.1109/ISGT-Asia.2019.8881052M. Ou, H. Wei, Y. Zhang, J. Tan, A dynamic adam based deep neural network for fault diagnosis of oil-immersed power transformers, Energies, vol. 12, n. 6, pp. 995, 2019. https://doi.org/10.3390/en12060995J. Li, Q. Zhang, K. Wang, J. Wang, T. Zhou, Y. Zhang, Optimal dissolved gas ratios selected by genetic algorithm for power transformer fault diagnosis based on support vector machine, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, n. 2, pp. 1198-2006, 2012. https://doi.org/10.1109/TDEI.2015.005277W. Mo, T. Kari, H. Wang, L. Luan, W. Gao, Power Transformer Fault Diagnosis Using Support Vector Machine and Particle Swarm Optimization, 2017 10th International Symposium on Computational Intelligence and Design (ISCID), 2017, pp. 511-515. https://doi.org/10.1109/ISCID.2017.165Y. Lu, C. Wei, T. Kong, T. Shi, J. Zheng, An improved DAG-SVM algorithm based on KFCM in Power Transformer Fault Diagnosis, 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 2019, pp. 1297-1302. https://doi.org/10.1109/ITNEC.2019.8729526Matar, M., Mohamed, O., Fault Classification on a Power Transmission Line Using Discrete Wavelet Transform and Artificial Neural Networks, (2019) International Review of Electrical Engineering (IREE), 14 (5), pp. 349-357. https://doi.org/10.15866/iree.v14i5.17017J. R. Nuñez et al., Design of a Fuzzy Controller for a Hybrid Generation System, IOP Conf. Series: Materials Science and Engineering, vol. 844, pp. 012017. 2020. https://doi.org/10.1088/1757-899X/844/1/012017A. Hoballah, D. -E. A. Mansour, I. B. M. Taha, Hybrid Grey Wolf Optimizer for Transformer Fault Diagnosis Using Dissolved Gases Considering Uncertainty in Measurements, in IEEE Access, vol. 8, pp. 139176-139187, 2020. https://doi.org/10.1109/ACCESS.2020.3012633A. I. Koldaev, A. A. Evdokimov, B. M. Shebzukhova, An Approach to Neuro-Fuzzy Monitoring of Power Transformers, 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2020, pp. 1-5. https://doi.org/10.1109/FarEastCon50210.2020.9271394I. B. Taha, A. Hoballah, S. S. Ghoneim, Optimal ratio limits of rogers' four-ratios and IEC 60599 code methods using particle swarm optimization fuzzy-logic approach, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 27, n. 1, pp. 222-230, 2020. https://doi.org/10.1109/TDEI.2019.008395L. Tightiz, M. A. Nasab, H. Yang, A. Addeh, An intelligent system based on optimized ANFIS and association rules for power transformer fault diagnosis, ISA Transactions, vol. 103, pp. 63-74, 2020. doi: 10.1016/j.isatra.2020.03.022Moloi, K., Jordaan, J., Hamam, Y., The Development of a High Impedance Fault Diagnostic Scheme on Power Distribution Network, (2020) International Review of Electrical Engineering (IREE), 15 (1), pp. 69-79. doi:https://doi.org/10.15866/iree.v15i1.17074C. Guo, B. Wang, Z. Wu, M. Ren, Y. He, R. Albarracín, M. Dong, Transformer failure diagnosis using fuzzy association rule mining combined with case-based reasoning, IET Generation, Transmission & Distribution, vol. 14, n. 11, pp. 2202–2208, 2020.H. Malik, R. Sharma, S. Mishra, Fuzzy reinforcement learning based intelligent classifier for power transformer faults, ISA Transactions, vol. 101, pp. 390-398, 2020.R. A. Prasojo, H. Gumilang, N. U. Maulidevi, B. A. Soedjarno, A Fuzzy Logic Model for Power Transformer Faults Severity Determination Based on Gas Level, Gas Rate, and Dissolved Gas Analysis Interpretation, Energies, vol. 13, n. 4, pp.1009, 2020. doi: 10.3390/en13041009X. Wang, F. Guo, W. Xu, DGA fuzzy logic diagnostic method based on subordinating function, 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), 2020, pp. 1381-1384. doi: 10.1109/ITOEC49072.2020.9141578M. Žarković, Z. Stojković, Analysis of artificial intelligence expert systems for power transformer condition monitoring and diagnostics, Electric Power Systems Research, vol. 149, pp. 125- 136, 2017. doi: 10.1016/j.epsr.2017.04.025M. M. A. S. Mahmoud, Z. Qurbanov, Review of Fuzzy and ANN Fault Location Methods for Distribution Power System in Oil and Gas Sectors, IFAC-PapersOnLine, vol. 51, n. 30, pp. 263–267, 2018. doi: 10.1016/j.ifacol.2018.11.298S. A. Wani, D. Gupta, M. U. Farooque, S. A. Khan, Multiple incipient fault classification approach for enhancing the accuracy of dissolved gas analysis (DGA) IET Science, Measurement & Technology, vol. 13, n. 7, pp. 959-967, 2019. doi: 10.1049/iet-smt.2018.5135I. Marriaga-Márquez, K. Gómez-Sandoval, J. W. Grimaldo Guerrero, J. Nuñez-Álvarez, Identification of critical variables in conventional transformers in distribution networks, IOP Conference Series: Materials Science and Engineering, vol. 844, pp. 012009, 2020. doi: 10.1088/1757-899X/844/1/012009S. Apte, R. Somalwar, A. Wajirabadkar, Incipient Fault Diagnosis of Transformer by DGA Using Fuzzy Logic, 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2018, pp. 1-5. doi: 10.1109/PEDES.2018.8707928W. Teng, S. Fan, Z. Gong, W. Jiang, M. Gong, Fault diagnosis of transformer based on fuzzy clustering and the optimized wavelet neural network, Systems Science & Control Engineering, vol. 6, n. 3, pp. 359-363, 2018. doi: 10.1080/21642583.2018.1564891R. L. Z. Pacori, J. H. A. Alcántara, Identification of Internal Failure in Power Transformers Using Fuzzy Logic Through the Dissolved Gas Analysis in Mineral Insulating Oil, 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 2020, pp. 1-4. doi: 10.1109/INTERCON50315.2020.9220214R. Palke, P. Korde, Dissolved Gas Analysis (DGA) to Diagnose the Internal Faults of Power Transformer by using Fuzzy Logic Method, 2020 International Conference on Communication and Signal Processing (ICCSP), 2020, pp. 1050-1053. doi: 10.1109/ICCSP48568.2020.9182279M. Idrees et al., Fuzzy Logic Based Calculation and Analysis of Health Index for Power Transformer Installed in Grid Stations, 2019 International Symposium on Recent Advances in Electrical Engineering (RAEE), 2019, pp. 1-6. doi: 10.1109/RAEE.2019.8887016F. Mohamad, K. Hosny, T. Barakat, Incipient Fault Detection of Electric Power Transformers Using Fuzzy Logic Based on Roger's and IEC Method, 2019 14th International Conference on Computer Engineering and Systems (ICCES), 2019, pp. 303-309. doi: 10.1109/ICCES48960.2019.9068132M. Duval, L. Lamarre. The duval pentagon-a new complementary tool for the interpretation of dissolved gas analysis in transformers, IEEE Electrical Insulation Magazine, vol. 30, n. 6, pp. 9-12, 2014. doi: 10.1109/MEI.2014.6943428N. Pattanadech, W. Wattakapaiboon, Application of Duval Pentagon Compared with Other DGA Interpretation Techniques: Case Studies for Actual Transformer Inspections Including Experience from Power Plants in Thailand, 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST), 2019, pp. 1-4. doi: 10.1109/ICEAST.2019.8802523M. Duval, A. DePabla, Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases, IEEE Electrical Insulation Magazine, vol. 17, n. 2, pp. 31-41, 2001. doi: 10.1109/57.917529.E. Li, L. Wang, B. Song. Fault diagnosis of power transformers with membership degree, IEEE Access, vol. 7, pp. 28791-28798, 2019. doi: 10.1109/ACCESS.2019.2902299J. Faiz, M. Soleimani, Dissolved gas analysis evaluation in electric power transformers using conventional methods a review, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, n. 2, pp. 1239-1248, 2017. doi: 10.1109/TDEI.2017.005959Adnan, N., Srivastava, V., Loss Reduction Concept Review and Its Comparison for Various Transmission Lines, (2019) International Review of Electrical Engineering (IREE), 14 (4), pp. 263-271. doi:https://doi.org/10.15866/iree.v14i4.17011I. A. Marriaga-Márquez, et al., Identification of critical variables in conventional transformers in distribution networks, IOP Conf. Series: Materials Science and Engineering, vol. 844, pp. 012009, 2020. doi:10.1088/1757-899X/844/1/012009S. Díaz, J. Nuñez, K. Berdugo, K. Gomez, Study of technologies implemented in the operation of SF6 switches, IOP Conf. Series: Materials Science and Engineering, vol. 72, pp. 012041, 2020. doi: 10.1088/1757-899X/872/1/0120413829117Dissolved gas analysisFault diagnosisFuzzy logicPower transformerPublicationORIGINALA Proposal for the Diagnosis of Incipient Faults.pdfA Proposal for the Diagnosis of Incipient Faults.pdfapplication/pdf1200916https://repositorio.cuc.edu.co/bitstreams/2116355d-2b10-48d5-ab1f-55a98e3e2548/download5b4a84242cc877b5a1c184e8cb53662eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/361e81b7-0378-4d53-9807-e17dfc82ee44/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTA Proposal for the Diagnosis of Incipient Faults.pdf.txtA Proposal for the Diagnosis of Incipient Faults.pdf.txttext/plain54662https://repositorio.cuc.edu.co/bitstreams/95531791-7b2c-4396-97b3-f4b7a1bd9ecf/download07ef7278618c9df3ae8ea931bf471409MD53THUMBNAILA Proposal for the Diagnosis of Incipient Faults.pdf.jpgA Proposal for the Diagnosis of Incipient Faults.pdf.jpgimage/jpeg14222https://repositorio.cuc.edu.co/bitstreams/03cf71ba-3fdc-435e-a65a-51030facd46c/download76747ec83b5999dc62e234f138f443dbMD5411323/9381oai:repositorio.cuc.edu.co:11323/93812024-09-17 10:13:26.992https://creativecommons.org/licenses/by/4.0/Copyright © 2022 Praise Worthy Prize - All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==