An image processing‐based method to assess the monthly energetic complementarity of solar and wind energy in Colombia
Solar and wind energy systems, without storage, cannot satisfy variable load demands, but their combined use can help to solve the problem of the balance between generation and consumption. Energetic complementarity studies are useful to evaluate the viability of the use of two or more renewable ene...
- Autores:
-
Peña Gallardo, Rafael
Ospino Castro, Adalberto
Medina Ríos, Aurelio
Ospino C., Adalberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6576
- Acceso en línea:
- https://hdl.handle.net/11323/6576
https://repositorio.cuc.edu.co/
- Palabra clave:
- Energetic complementarity
Image processing algorithms
Resource maps
Solar energy
Wind energy
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_c8e48ba468cbd63e0712d0c8adf6ce4e |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6576 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
An image processing‐based method to assess the monthly energetic complementarity of solar and wind energy in Colombia |
title |
An image processing‐based method to assess the monthly energetic complementarity of solar and wind energy in Colombia |
spellingShingle |
An image processing‐based method to assess the monthly energetic complementarity of solar and wind energy in Colombia Energetic complementarity Image processing algorithms Resource maps Solar energy Wind energy |
title_short |
An image processing‐based method to assess the monthly energetic complementarity of solar and wind energy in Colombia |
title_full |
An image processing‐based method to assess the monthly energetic complementarity of solar and wind energy in Colombia |
title_fullStr |
An image processing‐based method to assess the monthly energetic complementarity of solar and wind energy in Colombia |
title_full_unstemmed |
An image processing‐based method to assess the monthly energetic complementarity of solar and wind energy in Colombia |
title_sort |
An image processing‐based method to assess the monthly energetic complementarity of solar and wind energy in Colombia |
dc.creator.fl_str_mv |
Peña Gallardo, Rafael Ospino Castro, Adalberto Medina Ríos, Aurelio Ospino C., Adalberto |
dc.contributor.author.spa.fl_str_mv |
Peña Gallardo, Rafael Ospino Castro, Adalberto Medina Ríos, Aurelio |
dc.contributor.author.none.fl_str_mv |
Ospino C., Adalberto |
dc.subject.spa.fl_str_mv |
Energetic complementarity Image processing algorithms Resource maps Solar energy Wind energy |
topic |
Energetic complementarity Image processing algorithms Resource maps Solar energy Wind energy |
description |
Solar and wind energy systems, without storage, cannot satisfy variable load demands, but their combined use can help to solve the problem of the balance between generation and consumption. Energetic complementarity studies are useful to evaluate the viability of the use of two or more renewable energy sources with high variability in a specific interval of time in a determined region. In this paper, the monthly energetic complementarity study of solar and wind resources of Colombia is carried out. A novel approach to conduct the study is proposed. A dataset with the average monthly solar radiation and wind speed values is obtained from high‐resolution images of renewable resources maps, using image processing algorithms. Then, the dataset is used to calculate the energetic complementarity of the sources employing the negative of the Pearson correlation coefficient. The obtained values are transformed to energetic complementarity maps, previously eliminating the protected areas. The obtained results show that there is a good energetic complementarity in the north and northeastern regions of the country throughout the year. The results indicate that projects related to the joint use of solar and wind generation systems could be developed in these regions. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-07-16T15:22:56Z |
dc.date.available.none.fl_str_mv |
2020-07-16T15:22:56Z |
dc.date.issued.none.fl_str_mv |
2020-02-25 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1996-1073 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6576 |
dc.identifier.doi.spa.fl_str_mv |
doi:10.3390/en13051033 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1996-1073 doi:10.3390/en13051033 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/6576 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Sorrell, S. Reducing Energy Demand: A Review of Issues, Challenges and Approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82, doi:10.1016/j.rser.2015.03.002. 2. Claudia Roldán, M.; Martínez, M.; Peña, R. Scenarios for a Hierarchical Assessment of the Global Sustainability of Electric Power Plants in México. Renew. Sustain. Energy Rev. 2014, 33, 154–160, doi:10.1016/j.rser.2014.02.007. 3. Wei, M.; Patadia, S.; Kammen, D.M. Putting Renewables and Energy Efficiency to Work: How Many Jobs Can the Clean Energy Industry Generate in the US? Energy Policy 2010, 38, 919–931, doi:10.1016/j.enpol.2009.10.044. 4. Ellabban, O.; Abu‐Rub, H.; Blaabjerg, F. Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764, doi:10.1016/j.rser.2014.07.113. 5. Dincer, I. Renewable Energy and Sustainable Development: A Crucial Review. Renew. Sustain. Energy Rev. 2000, 4, 157–175, doi:10.1016/S1364‐0321(99)00011‐8. 6. Zsiborács, H.; Baranyai, N.H.; Vincze, A.; Zentkó, L.; Birkner, Z.; Máté, K.; Pintér, G. Intermittent Renewable Energy Sources: The Role of Energy Storage in the European Power System of 2040. Electronics 2019, 8, 729, doi:10.3390/electronics8070729. 7. Peña Gallardo, R.; Ospino Castro, A.; Segundo Ramirez, J.; Rodriguez Hernández, A.; Noriega Angarita, E.; Munoz Maldonado, Y.A. Economic and energy analysis of small capacity grid‐connected hybrid photovoltaic‐wind systems in Mexico. Int. J. Energy Econ. Policy 2020, 10, 7–17, doi:10.32479/ijeep.8449. 8. Pagola, V.; Peña, R.; Segundo, J.; Ospino, A. Rapid Prototyping of a Hybrid PV–Wind Generation System Implemented in a Real‐Time Digital Simulation Platform and Arduino. Electronics 2019, 8, 102, doi:10.3390/electronics8010102. 9. Jurasz, J.; Canales, F.A.; Kies, A.; Guezgouz, M.; Beluco, A. A Review on the Complementarity of Renewable Energy Sources: Concept, Metrics, Application and Future Research Directions. Sol. Energy 2020, 195, 703–724, doi:10.1016/j.solener.2019.11.087. 10. Bagatini, M.; Benevit, M.G.; Beluco, A.; Risso, A. Complementarity in Time between Hydro, Wind and Solar Energy Resources in the State of Rio Grande Do Sul, in Southern Brazil. Energy Power Eng. 2017, 9, 515–526, doi:10.4236/epe.2017.99036. 11. Beluco, A.; de Souza, P.K.; Krenzinger, A. A Dimensionless Index Evaluating the Time Complementarity between Solar and Hydraulic Energies. Renew. Energy 2008, 33, 2157–2165, doi:10.1016/j.renene.2008.01.019. 12. François, B.; Borga, M.; Creutin, J.D.; Hingray, B.; Raynaud, D.; Sauterleute, J.F. Complementarity between Solar and Hydro Power: Sensitivity Study to Climate Characteristics in Northern‐Italy. Renew. Energy 2016, 86, 543–553, doi:10.1016/j.renene.2015.08.044. 13. Monforti, F.; Huld, T.; Bódis, K.; Vitali, L.; D’Isidoro, M.; Lacal‐Arántegui, R. Assessing Complementarity of Wind and Solar Resources for Energy Production in Italy. A Monte Carlo Approach. Renew. Energy 2014, 63, 576–586, doi:10.1016/j.renene.2013.10.028. 14. Miglietta, M.M.; Huld, T.; Monforti‐Ferrario, F. Local Complementarity of Wind and Solar Energy Resources over Europe: An Assessment Study from a Meteorological Perspective. J. Appl. Meteorol. Climatol. 2017, 56, 217–234, doi:10.1175/jamc‐d‐16‐0031.1. 15. Beluco, A.; Kroeff de Souza, P.; Krenzinger, A. A Method to Evaluate the Effect of Complementarity in Time between Hydro and Solar Energy on the Performance of Hybrid Hydro PV Generating Plants. Renew. Energy 2012, 45, 24–30, doi:10.1016/j.renene.2012.01.096. 16. Stoyanov, L.; Notton, G.; Lazarov, V.; Ezzat, M. Wind and Solar Energies Production Complementarity for Various Bulgarian Sites. In Revue des Energies Renouvelables SMEE’10 Bou Ismail Tipaza 2010; Bou Ismail, Algeria, 2014; pp. 311–325. 17. Hoicka, C.E.; Rowlands, I.H. Solar and Wind Resource Complementarity: Advancing Options for Renewable Electricity Integration in Ontario, Canada. Renew. Energy 2011, 36, 97–107, doi:10.1016/j.renene.2010.06.004. 18. Kunwar, S. Complementarity of Wind, Solar and Hydro Resources for Combating Seasonal Power Shortage in Nepal. In Proceedings of the The 4th World Sustainability Forum, 1–30 November 2014; p. e018, doi:10.3390/wsf‐4‐e018. 19. Jerez, S.; Trigo, R.M.; Sarsa, A.; Lorente‐Plazas, R.; Pozo‐Vázquez, D.; Montávez, J.P. Spatio‐Temporal Complementarity between Solar and Wind Power in the Iberian Peninsula. Energy Procedia 2013, 40, 48–57, doi:10.1016/j.egypro.2013.08.007. 20. Xu, L.; Wang, Z.; Liu, Y. The Spatial and Temporal Variation Features of Wind‐Sun Complementarity in China. Energy Convers. Manag. 2017, 154, 138–148, doi:10.1016/j.enconman.2017.10.031. 21. Prasad, A.A.; Taylor, R.A.; Kay, M. Assessment of Solar and Wind Resource Synergy in Australia. Appl. Energy 2017, 190, 354–367, doi:10.1016/j.apenergy.2016.12.135. 22. Vega‐Sanchez, M.A.; Castaneda‐Jimenez, P.D.; Pena‐Gallardo, R.; Ruiz‐Alonso, A.; Morales‐Saldana, J.A.; Palacios‐Hernandez, E.R. Evaluation of Complementarity of Wind and Solar Energy Resources over Mexico Using an Image Processing Approach. In Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2017), Ixtapa, Mexico, 8–10 November 2017; pp. 1–5, doi:10.1109/ROPEC.2017.8261637. 23. Shaner, M.R.; Davis, S.J.; Lewis, N.S.; Caldeira, K. Geophysical Constraints on the Reliability of Solar and Wind Power in the United States. Energy Environ. Sci. 2018, 11, 914–925, doi:10.1039/c7ee03029k. 24. Jurasz, J.; Dąbek, P.B.; Kaźmierczak, B.; Kies, A.; Wdowikowski, M. Large Scale Complementary Solar and Wind Energy Sources Coupled with Pumped‐Storage Hydroelectricity for Lower Silesia (Poland). Energy 2018, 161, 183–192, doi:10.1016/j.energy.2018.07.085. 25. Bett, P.E.; Thornton, H.E. The Climatological Relationships between Wind and Solar Energy Supply in Britain. Renew. Energy 2016, 87, 96–110, doi:10.1016/j.renene.2015.10.006. 26. Gburčik, V.; Mastilović, S.; Vučinić, Ž. Assessment of Solar and Wind Energy Resources in Serbia. J. Renew. Sustain. Energy 2013, 5, 041822, doi:10.1063/1.4819504. 27. Dos Anjos, P.S.; Alves Da Silva, A.S.; Stošić, B.; Stošić, T. Long‐Term Correlations and Cross‐Correlations in Wind Speed and Solar Radiation Temporal Series from Fernando de Noronha Island, Brazil. Phys. A Stat. Mech. Appl. 2015, 424, 90–96, doi:10.1016/j.physa.2015.01.003. 28. Li, W.; Stadler, S.; Ramakumar, R. Modeling and Assessment of Wind and Insolation Resources with a Focus on Their Complementary Nature: A Case Study of Oklahoma. Ann. Assoc. Am. Geogr. 2011, 101, 717–729, doi:10.1080/00045608.2011.567926. 29. Vergara, W.; Deeb, A.; Toba, N.; Cramton, P.; Leino, I.; Benoit, P. Wind Energy in Colombia: A Framework for Market Entry; World Bank: Washington, DC, USA, 2010; doi:10.1596/978‐0‐8213‐8504‐3. 30. Rodríguez‐Urrego, D.; Rodríguez‐Urrego, L. Photovoltaic Energy in Colombia: Current Status, Inventory, Policies and Future Prospects. Renew. Sustain. Energy Rev. 2018, 92, 160–170, doi:10.1016/j.rser.2018.04.065. 31. SIEL. Informe Mensual de Variables de Generación y del Mercado Electrico Colombiano‐Marzo de 2018; Ministry Minas y Energía: Bogota, Colombia, 2018. 32. Olaya, Y.; Arango‐Aramburo, S.; Larsen, E.R. How Capacity Mechanisms Drive Technology Choice in Power Generation: The Case of Colombia. Renew. Sustain. Energy Rev. 2016, 56, 563–571, doi:10.1016/j.rser.2015.11.065. 33. Paez, A.F.; Maldonado, Y.M.; Castro, A.O.; Hernandez, N.; Conde, E.; Pacheco, L.; Gonzalez, W.; Sotelo, O. Future Scenarios and Trends of Energy Demand in Colombia Using Long‐Range Energy Alternative Planning. Int. J. Energy Econ. Policy 2017, 7, 178–190. 34. Han, S.; Zhang, L.N; Liu, Y.Q.; Zhang, H.; Yan, J.; Li, L.; Lei, X.H.; Wang, X. Quantitative Evaluation Method for the Complementarity of Wind–Solar–Hydro Power and Optimization of Wind–Solar Ratio. Appl. Energy 2019, 236, 973–984, doi:10.1016/j.apenergy.2018.12.059. 35. Gómez‐Navarro, T.; Ribó‐Pérez, D. Assessing the Obstacles to the Participation of Renewable Energy Sources in the Electricity Market of Colombia. Renew. Sustain. Energy Rev. 2018, 90, 131–141, doi:10.1016/j.rser.2018.03.015. 36. IDEAM. Atlas Interactivo de Recursos Naturales de Colombia; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogota, Colombia, 2019. 37. Ordóñez, G.; Osma, G.; Vergara, P.; Rey, J. Wind and Solar Energy Potential Assessment for Development of Renewables Energies Applications in Bucaramanga, Colombia. IOP Conf. Ser. Mater. Sci. Eng. 2014, 59, doi:10.1088/1757‐899X/59/1/012004. 38. Castillo, Y.; Gutiérrez, M.C.; Vanegas‐Chamorro, M.; Valencia, G.; Villicaña, E. Rol de Las Fuentes No Convencionales de Energía En El Sector Eléctrico Colombiano. Prospectiva 2015, 13, 39–51, doi:10.15665/rp.v13i1.358. 39. Instituto de Hidrología Meteorología y Estudios Ambientales. Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia; Instituto de Hidrología Meteorología y Estudios Ambientales: Bogota, Colombia, 2015; doi:10.1161/CIRCULATIONAHA.109.883843. 40. Banda, D.; Pena, R.; Gutierrez, G.; Juarez, E.; Visairo, N.; Nunez, C. Feasibility Assessment of the Installation of a Photovoltaic System as a Battery Charging Center in a Mexican Mining Company. In Proceedings of the 2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2014), Ixtapa, Mexico, 5–7 November 2014; doi:10.1109/ROPEC.2014.7036352. 41. De la Cruz Buelvas, J.; Valencia Ochoa, G.; Vanegas Chamorro, M. Statistical Study of Wind Speed and Direction in the Departments of Atlántico and Bolivar in Colombia. Ingeniare 2018, 26, 319–328, doi:10.4067/S0718‐33052018000200319. 42. Congreso de Colombia. Ley 1715 de 2014—Por Medio de la Cual se Regula la Integración de las Energías Renovables no Convencionales al Sistema Energético Nacional; Congreso de Colombia: Bogota, Colombia, 2014. 43. UPME. Informe de gestión 2018, Ministerio de Minas y Energía, República de Colombia; Ministry Minas y Energía: Bogota, Colombia, 2018. 44. UPME, IDEAM. Atlas de Viento y Enegía Eólica de Colombia; UPME‐IDEAM: Bogota, Colombia, 2010. 45. Hernandez, A.; Pena, R.; Mendez, W.; Visairo, N.; Nunez, C. Wind Resource Assessment in the Surroundings of San Luis Potosi, Mexico. In Proceedings of the 2013 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2013), Mexico City, Mexico, 13–15 November 2013; doi:10.1109/ROPEC.2013.6702748. 46. Canavire‐Bacarreza, G.; Diaz‐Gutierrez, J.E.; Hanauer, M.M. Unintended Consequences of Conservation: Estimating the Impact of Protected Areas on Violence in Colombia. J. Environ. Econ. Manag. 2018, 89, 46–70, doi:10.1016/j.jeem.2018.02.004. 47. Congreso de Colombia. Ley 165 de 1994—Por Medio de la Cual se Aprueba el “Convenio Sobre la Diversidad Biológica; Congreso de Colombia: Bogota, Colombia, 1994. 48. Lenis, Y.R. La Historia de Las Áreas Protegidas En Colombia, Sus Firmas de Gobierno y Las Alternativas Para La Gobernanza. Rev. Soc. Econ. 2014, 27, 155–175. 49. SINAP. Mapa SINAP—Sistema Nacional de Áreas Protegidas de Colombia; Sistema Nacional de Áreas Protegidas: Bogota, Colombia, 2018. 50. Peña Gallardo, R.; Ospino Castro, A. An Assessment Study of the Monthly Complementarity of Renewable Energy Resources in Colombia. In Proceedings of the 7th International Workshop Advances in Cleaner Production, Barranquilla, Colombia, 21–22 June 2018; pp. 1–11. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Energies |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/77d5d2e8-7710-419f-8fd5-311bcbce5fff/download https://repositorio.cuc.edu.co/bitstreams/a4dec18d-2b17-4710-9758-6730857a4e17/download https://repositorio.cuc.edu.co/bitstreams/a42db428-e9c0-4089-80f7-83e4b9b3cd7c/download https://repositorio.cuc.edu.co/bitstreams/acb3898a-9a18-4924-a247-42a5157ea2b4/download https://repositorio.cuc.edu.co/bitstreams/147a636e-dd7a-4fb7-915a-063ea8c0de9f/download |
bitstream.checksum.fl_str_mv |
b336308f61dc6daf2219d910edaee77d 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 964feb6124256b20f2037028597674a9 40d167401275e3fa1799b9e17b7e7a92 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166841460064256 |
spelling |
Peña Gallardo, RafaelOspino Castro, AdalbertoMedina Ríos, AurelioOspino C., Adalbertovirtual::900-12020-07-16T15:22:56Z2020-07-16T15:22:56Z2020-02-251996-1073https://hdl.handle.net/11323/6576doi:10.3390/en13051033Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Solar and wind energy systems, without storage, cannot satisfy variable load demands, but their combined use can help to solve the problem of the balance between generation and consumption. Energetic complementarity studies are useful to evaluate the viability of the use of two or more renewable energy sources with high variability in a specific interval of time in a determined region. In this paper, the monthly energetic complementarity study of solar and wind resources of Colombia is carried out. A novel approach to conduct the study is proposed. A dataset with the average monthly solar radiation and wind speed values is obtained from high‐resolution images of renewable resources maps, using image processing algorithms. Then, the dataset is used to calculate the energetic complementarity of the sources employing the negative of the Pearson correlation coefficient. The obtained values are transformed to energetic complementarity maps, previously eliminating the protected areas. The obtained results show that there is a good energetic complementarity in the north and northeastern regions of the country throughout the year. The results indicate that projects related to the joint use of solar and wind generation systems could be developed in these regions.Peña Gallardo, RafaelOspino Castro, AdalbertoMedina Ríos, AurelioengEnergiesCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energetic complementarityImage processing algorithmsResource mapsSolar energyWind energyAn image processing‐based method to assess the monthly energetic complementarity of solar and wind energy in ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Sorrell, S. Reducing Energy Demand: A Review of Issues, Challenges and Approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82, doi:10.1016/j.rser.2015.03.002.2. Claudia Roldán, M.; Martínez, M.; Peña, R. Scenarios for a Hierarchical Assessment of the Global Sustainability of Electric Power Plants in México. Renew. Sustain. Energy Rev. 2014, 33, 154–160, doi:10.1016/j.rser.2014.02.007.3. Wei, M.; Patadia, S.; Kammen, D.M. Putting Renewables and Energy Efficiency to Work: How Many Jobs Can the Clean Energy Industry Generate in the US? Energy Policy 2010, 38, 919–931, doi:10.1016/j.enpol.2009.10.044.4. Ellabban, O.; Abu‐Rub, H.; Blaabjerg, F. Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764, doi:10.1016/j.rser.2014.07.113.5. Dincer, I. Renewable Energy and Sustainable Development: A Crucial Review. Renew. Sustain. Energy Rev. 2000, 4, 157–175, doi:10.1016/S1364‐0321(99)00011‐8.6. Zsiborács, H.; Baranyai, N.H.; Vincze, A.; Zentkó, L.; Birkner, Z.; Máté, K.; Pintér, G. Intermittent Renewable Energy Sources: The Role of Energy Storage in the European Power System of 2040. Electronics 2019, 8, 729, doi:10.3390/electronics8070729.7. Peña Gallardo, R.; Ospino Castro, A.; Segundo Ramirez, J.; Rodriguez Hernández, A.; Noriega Angarita, E.; Munoz Maldonado, Y.A. Economic and energy analysis of small capacity grid‐connected hybrid photovoltaic‐wind systems in Mexico. Int. J. Energy Econ. Policy 2020, 10, 7–17, doi:10.32479/ijeep.8449.8. Pagola, V.; Peña, R.; Segundo, J.; Ospino, A. Rapid Prototyping of a Hybrid PV–Wind Generation System Implemented in a Real‐Time Digital Simulation Platform and Arduino. Electronics 2019, 8, 102, doi:10.3390/electronics8010102.9. Jurasz, J.; Canales, F.A.; Kies, A.; Guezgouz, M.; Beluco, A. A Review on the Complementarity of Renewable Energy Sources: Concept, Metrics, Application and Future Research Directions. Sol. Energy 2020, 195, 703–724, doi:10.1016/j.solener.2019.11.087.10. Bagatini, M.; Benevit, M.G.; Beluco, A.; Risso, A. Complementarity in Time between Hydro, Wind and Solar Energy Resources in the State of Rio Grande Do Sul, in Southern Brazil. Energy Power Eng. 2017, 9, 515–526, doi:10.4236/epe.2017.99036.11. Beluco, A.; de Souza, P.K.; Krenzinger, A. A Dimensionless Index Evaluating the Time Complementarity between Solar and Hydraulic Energies. Renew. Energy 2008, 33, 2157–2165, doi:10.1016/j.renene.2008.01.019.12. François, B.; Borga, M.; Creutin, J.D.; Hingray, B.; Raynaud, D.; Sauterleute, J.F. Complementarity between Solar and Hydro Power: Sensitivity Study to Climate Characteristics in Northern‐Italy. Renew. Energy 2016, 86, 543–553, doi:10.1016/j.renene.2015.08.044.13. Monforti, F.; Huld, T.; Bódis, K.; Vitali, L.; D’Isidoro, M.; Lacal‐Arántegui, R. Assessing Complementarity of Wind and Solar Resources for Energy Production in Italy. A Monte Carlo Approach. Renew. Energy 2014, 63, 576–586, doi:10.1016/j.renene.2013.10.028.14. Miglietta, M.M.; Huld, T.; Monforti‐Ferrario, F. Local Complementarity of Wind and Solar Energy Resources over Europe: An Assessment Study from a Meteorological Perspective. J. Appl. Meteorol. Climatol. 2017, 56, 217–234, doi:10.1175/jamc‐d‐16‐0031.1.15. Beluco, A.; Kroeff de Souza, P.; Krenzinger, A. A Method to Evaluate the Effect of Complementarity in Time between Hydro and Solar Energy on the Performance of Hybrid Hydro PV Generating Plants. Renew. Energy 2012, 45, 24–30, doi:10.1016/j.renene.2012.01.096.16. Stoyanov, L.; Notton, G.; Lazarov, V.; Ezzat, M. Wind and Solar Energies Production Complementarity for Various Bulgarian Sites. In Revue des Energies Renouvelables SMEE’10 Bou Ismail Tipaza 2010; Bou Ismail, Algeria, 2014; pp. 311–325.17. Hoicka, C.E.; Rowlands, I.H. Solar and Wind Resource Complementarity: Advancing Options for Renewable Electricity Integration in Ontario, Canada. Renew. Energy 2011, 36, 97–107, doi:10.1016/j.renene.2010.06.004.18. Kunwar, S. Complementarity of Wind, Solar and Hydro Resources for Combating Seasonal Power Shortage in Nepal. In Proceedings of the The 4th World Sustainability Forum, 1–30 November 2014; p. e018, doi:10.3390/wsf‐4‐e018.19. Jerez, S.; Trigo, R.M.; Sarsa, A.; Lorente‐Plazas, R.; Pozo‐Vázquez, D.; Montávez, J.P. Spatio‐Temporal Complementarity between Solar and Wind Power in the Iberian Peninsula. Energy Procedia 2013, 40, 48–57, doi:10.1016/j.egypro.2013.08.007.20. Xu, L.; Wang, Z.; Liu, Y. The Spatial and Temporal Variation Features of Wind‐Sun Complementarity in China. Energy Convers. Manag. 2017, 154, 138–148, doi:10.1016/j.enconman.2017.10.031.21. Prasad, A.A.; Taylor, R.A.; Kay, M. Assessment of Solar and Wind Resource Synergy in Australia. Appl. Energy 2017, 190, 354–367, doi:10.1016/j.apenergy.2016.12.135.22. Vega‐Sanchez, M.A.; Castaneda‐Jimenez, P.D.; Pena‐Gallardo, R.; Ruiz‐Alonso, A.; Morales‐Saldana, J.A.; Palacios‐Hernandez, E.R. Evaluation of Complementarity of Wind and Solar Energy Resources over Mexico Using an Image Processing Approach. In Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2017), Ixtapa, Mexico, 8–10 November 2017; pp. 1–5, doi:10.1109/ROPEC.2017.8261637.23. Shaner, M.R.; Davis, S.J.; Lewis, N.S.; Caldeira, K. Geophysical Constraints on the Reliability of Solar and Wind Power in the United States. Energy Environ. Sci. 2018, 11, 914–925, doi:10.1039/c7ee03029k.24. Jurasz, J.; Dąbek, P.B.; Kaźmierczak, B.; Kies, A.; Wdowikowski, M. Large Scale Complementary Solar and Wind Energy Sources Coupled with Pumped‐Storage Hydroelectricity for Lower Silesia (Poland). Energy 2018, 161, 183–192, doi:10.1016/j.energy.2018.07.085.25. Bett, P.E.; Thornton, H.E. The Climatological Relationships between Wind and Solar Energy Supply in Britain. Renew. Energy 2016, 87, 96–110, doi:10.1016/j.renene.2015.10.006.26. Gburčik, V.; Mastilović, S.; Vučinić, Ž. Assessment of Solar and Wind Energy Resources in Serbia. J. Renew. Sustain. Energy 2013, 5, 041822, doi:10.1063/1.4819504.27. Dos Anjos, P.S.; Alves Da Silva, A.S.; Stošić, B.; Stošić, T. Long‐Term Correlations and Cross‐Correlations in Wind Speed and Solar Radiation Temporal Series from Fernando de Noronha Island, Brazil. Phys. A Stat. Mech. Appl. 2015, 424, 90–96, doi:10.1016/j.physa.2015.01.003.28. Li, W.; Stadler, S.; Ramakumar, R. Modeling and Assessment of Wind and Insolation Resources with a Focus on Their Complementary Nature: A Case Study of Oklahoma. Ann. Assoc. Am. Geogr. 2011, 101, 717–729, doi:10.1080/00045608.2011.567926.29. Vergara, W.; Deeb, A.; Toba, N.; Cramton, P.; Leino, I.; Benoit, P. Wind Energy in Colombia: A Framework for Market Entry; World Bank: Washington, DC, USA, 2010; doi:10.1596/978‐0‐8213‐8504‐3.30. Rodríguez‐Urrego, D.; Rodríguez‐Urrego, L. Photovoltaic Energy in Colombia: Current Status, Inventory, Policies and Future Prospects. Renew. Sustain. Energy Rev. 2018, 92, 160–170, doi:10.1016/j.rser.2018.04.065.31. SIEL. Informe Mensual de Variables de Generación y del Mercado Electrico Colombiano‐Marzo de 2018; Ministry Minas y Energía: Bogota, Colombia, 2018.32. Olaya, Y.; Arango‐Aramburo, S.; Larsen, E.R. How Capacity Mechanisms Drive Technology Choice in Power Generation: The Case of Colombia. Renew. Sustain. Energy Rev. 2016, 56, 563–571, doi:10.1016/j.rser.2015.11.065.33. Paez, A.F.; Maldonado, Y.M.; Castro, A.O.; Hernandez, N.; Conde, E.; Pacheco, L.; Gonzalez, W.; Sotelo, O. Future Scenarios and Trends of Energy Demand in Colombia Using Long‐Range Energy Alternative Planning. Int. J. Energy Econ. Policy 2017, 7, 178–190.34. Han, S.; Zhang, L.N; Liu, Y.Q.; Zhang, H.; Yan, J.; Li, L.; Lei, X.H.; Wang, X. Quantitative Evaluation Method for the Complementarity of Wind–Solar–Hydro Power and Optimization of Wind–Solar Ratio. Appl. Energy 2019, 236, 973–984, doi:10.1016/j.apenergy.2018.12.059.35. Gómez‐Navarro, T.; Ribó‐Pérez, D. Assessing the Obstacles to the Participation of Renewable Energy Sources in the Electricity Market of Colombia. Renew. Sustain. Energy Rev. 2018, 90, 131–141, doi:10.1016/j.rser.2018.03.015.36. IDEAM. Atlas Interactivo de Recursos Naturales de Colombia; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogota, Colombia, 2019.37. Ordóñez, G.; Osma, G.; Vergara, P.; Rey, J. Wind and Solar Energy Potential Assessment for Development of Renewables Energies Applications in Bucaramanga, Colombia. IOP Conf. Ser. Mater. Sci. Eng. 2014, 59, doi:10.1088/1757‐899X/59/1/012004.38. Castillo, Y.; Gutiérrez, M.C.; Vanegas‐Chamorro, M.; Valencia, G.; Villicaña, E. Rol de Las Fuentes No Convencionales de Energía En El Sector Eléctrico Colombiano. Prospectiva 2015, 13, 39–51, doi:10.15665/rp.v13i1.358.39. Instituto de Hidrología Meteorología y Estudios Ambientales. Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia; Instituto de Hidrología Meteorología y Estudios Ambientales: Bogota, Colombia, 2015; doi:10.1161/CIRCULATIONAHA.109.883843.40. Banda, D.; Pena, R.; Gutierrez, G.; Juarez, E.; Visairo, N.; Nunez, C. Feasibility Assessment of the Installation of a Photovoltaic System as a Battery Charging Center in a Mexican Mining Company. In Proceedings of the 2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2014), Ixtapa, Mexico, 5–7 November 2014; doi:10.1109/ROPEC.2014.7036352.41. De la Cruz Buelvas, J.; Valencia Ochoa, G.; Vanegas Chamorro, M. Statistical Study of Wind Speed and Direction in the Departments of Atlántico and Bolivar in Colombia. Ingeniare 2018, 26, 319–328, doi:10.4067/S0718‐33052018000200319.42. Congreso de Colombia. Ley 1715 de 2014—Por Medio de la Cual se Regula la Integración de las Energías Renovables no Convencionales al Sistema Energético Nacional; Congreso de Colombia: Bogota, Colombia, 2014.43. UPME. Informe de gestión 2018, Ministerio de Minas y Energía, República de Colombia; Ministry Minas y Energía: Bogota, Colombia, 2018.44. UPME, IDEAM. Atlas de Viento y Enegía Eólica de Colombia; UPME‐IDEAM: Bogota, Colombia, 2010.45. Hernandez, A.; Pena, R.; Mendez, W.; Visairo, N.; Nunez, C. Wind Resource Assessment in the Surroundings of San Luis Potosi, Mexico. In Proceedings of the 2013 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2013), Mexico City, Mexico, 13–15 November 2013; doi:10.1109/ROPEC.2013.6702748.46. Canavire‐Bacarreza, G.; Diaz‐Gutierrez, J.E.; Hanauer, M.M. Unintended Consequences of Conservation: Estimating the Impact of Protected Areas on Violence in Colombia. J. Environ. Econ. Manag. 2018, 89, 46–70, doi:10.1016/j.jeem.2018.02.004.47. Congreso de Colombia. Ley 165 de 1994—Por Medio de la Cual se Aprueba el “Convenio Sobre la Diversidad Biológica; Congreso de Colombia: Bogota, Colombia, 1994.48. Lenis, Y.R. La Historia de Las Áreas Protegidas En Colombia, Sus Firmas de Gobierno y Las Alternativas Para La Gobernanza. Rev. Soc. Econ. 2014, 27, 155–175.49. SINAP. Mapa SINAP—Sistema Nacional de Áreas Protegidas de Colombia; Sistema Nacional de Áreas Protegidas: Bogota, Colombia, 2018.50. Peña Gallardo, R.; Ospino Castro, A. An Assessment Study of the Monthly Complementarity of Renewable Energy Resources in Colombia. In Proceedings of the 7th International Workshop Advances in Cleaner Production, Barranquilla, Colombia, 21–22 June 2018; pp. 1–11.Publicationaf89e44d-2c08-45ae-b01c-cd941b86fa8avirtual::900-1af89e44d-2c08-45ae-b01c-cd941b86fa8avirtual::900-1https://scholar.google.es/citations?user=ODmDjToAAAAJ&hl=esvirtual::900-10000-0003-1466-0424virtual::900-1ORIGINALAn Image Processing‐Based Method to Assess.pdfAn Image Processing‐Based Method to Assess.pdfapplication/pdf9515360https://repositorio.cuc.edu.co/bitstreams/77d5d2e8-7710-419f-8fd5-311bcbce5fff/downloadb336308f61dc6daf2219d910edaee77dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a4dec18d-2b17-4710-9758-6730857a4e17/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/a42db428-e9c0-4089-80f7-83e4b9b3cd7c/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILAn Image Processing‐Based Method to Assess.pdf.jpgAn Image Processing‐Based Method to Assess.pdf.jpgimage/jpeg67948https://repositorio.cuc.edu.co/bitstreams/acb3898a-9a18-4924-a247-42a5157ea2b4/download964feb6124256b20f2037028597674a9MD54TEXTAn Image Processing‐Based Method to Assess.pdf.txtAn Image Processing‐Based Method to Assess.pdf.txttext/plain56663https://repositorio.cuc.edu.co/bitstreams/147a636e-dd7a-4fb7-915a-063ea8c0de9f/download40d167401275e3fa1799b9e17b7e7a92MD5511323/6576oai:repositorio.cuc.edu.co:11323/65762025-02-25 11:44:48.064http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |