(ω, Q) -periodic mild solutions for a class of semilinear abstract differential equations and applications to Hopfield-type neural network model

In this paper, we investigate the existence and uniqueness of (ω, Q) -periodic mild solutions for the following problem x′(t)=Ax(t)+f(t,x(t)), t∈R, on a Banach space X. Here, A is a closed linear operator which generates an exponentially stable C-semigroup and the nonlinearity f satisfies suitable p...

Full description

Autores:
Alvarez, E.
Díaz, S.
Grau, R.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10375
Acceso en línea:
https://hdl.handle.net/11323/10375
https://repositorio.cuc.edu.co/
Palabra clave:
(ω, Q)-periodic solutions
Affine-periodic functions
Hopfield-type
Semilinear Cauchy problem
Rights
embargoedAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
Description
Summary:In this paper, we investigate the existence and uniqueness of (ω, Q) -periodic mild solutions for the following problem x′(t)=Ax(t)+f(t,x(t)), t∈R, on a Banach space X. Here, A is a closed linear operator which generates an exponentially stable C-semigroup and the nonlinearity f satisfies suitable properties. The approaches are based on the well-known Banach contraction principle. In addition, a sufficient criterion is established for the existence and uniqueness of (ω, Q) -periodic mild solutions to the Hopfield-type neural network model.