Análisis basado en optimización de externalidades negativas del servicio de transporte público urbano: Un caso de estudio

Introducción: Utilizando los principios de movilidad sostenible para el transporte público urbano, en la presente investigación se modela y resuelve un problema de optimización de externalidades negativas del servicio de transporte público como: congestión, cambio climático, contaminación del aire,...

Full description

Autores:
Reyes Vasquez, John
Aldas Salazar, Darwin Santiago
Mayorga Abril, Cesar Medardo
Ruiz Guajala, Mery Esperanza
Barahona Sánchez, Mayra Stephanie
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12327
Acceso en línea:
https://hdl.handle.net/11323/12327
https://doi.org/10.17981/ingecuc.17.2.2021.15
Palabra clave:
public transportation
externalities
sustainable mobility
optimization
mathematical models
transporte público
externalidades
movilidad sostenible
optimización
modelos matemáticos
Rights
openAccess
License
INGE CUC - 2021
id RCUC2_c84c26ecd33162fe1b1f90718be63139
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12327
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Análisis basado en optimización de externalidades negativas del servicio de transporte público urbano: Un caso de estudio
dc.title.translated.eng.fl_str_mv Optimization-based analysis of negative externalities of urban public transport service: A case study
title Análisis basado en optimización de externalidades negativas del servicio de transporte público urbano: Un caso de estudio
spellingShingle Análisis basado en optimización de externalidades negativas del servicio de transporte público urbano: Un caso de estudio
public transportation
externalities
sustainable mobility
optimization
mathematical models
transporte público
externalidades
movilidad sostenible
optimización
modelos matemáticos
title_short Análisis basado en optimización de externalidades negativas del servicio de transporte público urbano: Un caso de estudio
title_full Análisis basado en optimización de externalidades negativas del servicio de transporte público urbano: Un caso de estudio
title_fullStr Análisis basado en optimización de externalidades negativas del servicio de transporte público urbano: Un caso de estudio
title_full_unstemmed Análisis basado en optimización de externalidades negativas del servicio de transporte público urbano: Un caso de estudio
title_sort Análisis basado en optimización de externalidades negativas del servicio de transporte público urbano: Un caso de estudio
dc.creator.fl_str_mv Reyes Vasquez, John
Aldas Salazar, Darwin Santiago
Mayorga Abril, Cesar Medardo
Ruiz Guajala, Mery Esperanza
Barahona Sánchez, Mayra Stephanie
dc.contributor.author.spa.fl_str_mv Reyes Vasquez, John
Aldas Salazar, Darwin Santiago
Mayorga Abril, Cesar Medardo
Ruiz Guajala, Mery Esperanza
Barahona Sánchez, Mayra Stephanie
dc.subject.eng.fl_str_mv public transportation
externalities
sustainable mobility
optimization
mathematical models
topic public transportation
externalities
sustainable mobility
optimization
mathematical models
transporte público
externalidades
movilidad sostenible
optimización
modelos matemáticos
dc.subject.spa.fl_str_mv transporte público
externalidades
movilidad sostenible
optimización
modelos matemáticos
description Introducción: Utilizando los principios de movilidad sostenible para el transporte público urbano, en la presente investigación se modela y resuelve un problema de optimización de externalidades negativas del servicio de transporte público como: congestión, cambio climático, contaminación del aire, ruido y accidentes de tránsito, planteando la posibilidad de minimizar los costos sociales variables. Objetivo: Plantear y resolver un modelo de optimización de externalidades negativas en un sistema de transporte de la ciudad de Ambato- Ecuador. Metodología: Para el modelado y solución del programa se toma como base el modelo de Ngamchai y Lovell, programado en el software LINGO, se aplica en el sistema que cuenta con 5 operadoras, 22 líneas y 397 unidades de buses. Resultados: A través de los resultados obtenidos se logra disminuir el costo total para la operación del sistema de transporte de $ 8910,72 a $ 6608,39 por unidad por hora, esto implica una reducción del 25,9% con las consideraciones individuales del headway (separación en tiempo entre vehículos) para cada una de las líneas que lo conforman, se logra disminuir además la flota utilizada actualmente en un 21%. Conclusiones: La investigación deja abierta la posibilidad de plantear futuros estudios que busquen estrategias que permitan mitigar cada una de las externalidades desde una perspectiva técnico-económica de sostenibilidad medioambiental.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-03-18 00:00:00
2024-04-09T20:21:37Z
dc.date.available.none.fl_str_mv 2021-03-18 00:00:00
2024-04-09T20:21:37Z
dc.date.issued.none.fl_str_mv 2021-03-18
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12327
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.17.2.2021.15
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.17.2.2021.15
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.17.2.2021.15
2382-4700
url https://hdl.handle.net/11323/12327
https://doi.org/10.17981/ingecuc.17.2.2021.15
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.spa.fl_str_mv I. Chatziioannou, L. Alvarez-Icaza & E. Bakogiannis, “A structural analysis method for the promotion of Mexico City´s integral plan of mobility,” Cogent Eng, vol. 7, no. 1, pp. 1–21, 2020. https://doi.org/10.1080/23311916.2020.1759395
C. Regnier & S. Legras, “Urban Structure and Environmental Externalities,” Environ Resour Econ, vol. 70, no. 1, pp. 31–52, 2018. https://doi.org/10.1007/s10640-016-0109-0
S. Perveen, T. Yigitcanlar, M. Kamruzzaman & J. Hayes, “Evaluating transport externalities of urban growth: a critical review of scenario-based planning methods,” Int J Environ Sci.Technol, vol. 14, no. 3, pp. 663–678, 2016. https://doi.org/10.1007/s13762-016-1144-7
D. Aldas, J. Reyes, L. Morales, P. Pazmiño, J. Núñez & B. Toaza.Impacts analysis towards a sustainable urban public transport system. InICORES, pp. 38–46, 2018. https://doi.org/10.5220/0006537700380046
I. Chatziioannou, L. Alvarez-Icaza, E. Bakogiannis, C. Kyriakidis & L. Chias-Becerril, “A CLIOS analysis for the promotion of sustainable plans of mobility: The case of Mexico City,” Appl Sci, vol. 10, no. 13, pp. 1–30, 2020. https://doi.org/10.3390/app10134556
I. Henke, A. Cartenì, C. Molitierno & A. Errico, “Decision-Making in the transport sector: A sustainable evaluation method for road infrastructure,” Sustain, vol. 12, no. 3, pp. 1–19, 2020. https://doi.org/10.3390/su12030764
I. W. H. Parry, M. Walls & W. Harrington, “Automobile Externalities and Policies,” SSRN Electron J, pp. 10–35, 2007. https://doi.org/10.2139/ssrn.927794
I. Chatziioannou, L. Alvarez-Icaza, E. Bakogiannis, C. Kyriakidis & L. Chias-Becerril, “A structural analysis for the categorization of the negative externalities of transport and the hierarchical organization of sustainable mobility’s strategies,” Sustain, vol. 12, no. 15, pp. 1–27, 2020. https://doi.org/10.3390/su12156011
 C. Dascalu, C. Caraiani, C. Iuliana Lungu, F. Colceag & G. Raluca Guse, “The externalities in social environmental accounting,” Int J Account Inf Manag, vol. 18, no. 1, pp. 19–30, 2010. https://doi.org/10.1108/18347641011023252
 A. Tob-Ogu, N. Kumar, J. Cullen & E. E. F. Ballantyne, “Sustainability Intervention Mechanisms for Managing Road Freight Transport Externalities: A Systematic Literature Review,” Sustain, vol. 10, no. 6, pp. 1–18, 2018. https://doi.org/10.3390/su10061923
 A. Tirachini, “Ride-hailing, travel behaviour and sustainable mobility: an international review,” Transportation (Amst), vol. 47, no. 4, pp. 2011–2047, 2020. https://doi.org/10.1007/s11116-019-10070-2
 J. P. Bocarejo & L. F. Urrego, “The impacts of formalization and integration of public transport in social equity: The case of Bogota,” Res Transp Bus Manag, pp. 1–11, 2020. https://doi.org/10.1016/j.rtbm.2020.100560
 A. Tetteh & S. Dsane-Nsor, “Minimising negative externalities cost using 0-1 mixed integer linear programming model in e-commerce environment,” J Transp Supply Chain Manag, vol. 11, pp. 1–9, 2017. https://doi.org/10.4102/jtscm.v11i0.272
 A. Ceder, B. Golany & O. Tal, “Creating bus timetables with maximal synchronization,” Transp Res Part A Policy Pract, vol. 35, no. 10, pp. 913–928, 2001. https://doi.org/10.1016/S0965-8564(00)00032-X
 A. Virk, “Urbanisation: A Growing Story in Context of Efficient Urban Mob,” RRIJM, 2019. Available: https://rrjournals.com/index.php/rrijm
 S. McLeod, J. Scheurer & C. Curtis, “Urban Public Transport: Planning Principles and Emerging Practice,” J Plan Lit, vol. 32, no. 3, pp. 223–239, 2017. https://doi.org/10.1177/0885412217693570
 N. Ayu & Nahry, “Externalities aspects of freight distribution through the urban consolidation center,” IOP Conf Ser Earth Environ Sci, vol. 622, pp. 12024, 2021. https://doi.org/10.1088/1755-1315/622/1/012024
 R. Peñabaena-Niebles, V. Cantillo & J. Luis Moura, “The positive impacts of designing transition between traffic signal plans considering social cost,” Transp Policy, vol. 87, pp. 67–76, 2020. https://doi.org/10.1016/j.tranpol.2019.05.020
 M. H. Baaj & H. S. Mahmassani, “An AI-based approach for transit route system planning and design,” J Adv Transp, vol. 25, no. 2, pp. 187–209, 1991. https://doi.org/10.1002/atr.5670250205
 S. Ngamchai & D. J. Lovell, “Optimal Time Transfer in Bus Transit Route Network Design Using a Genetic Algorithm,” J Transp Eng, vol. 129, no. 5, pp. 510–521, 2003. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:5(510)
 A. Eranki, “A Model to Create Bus Timetables to Attain Maximum Synchronization Considering Waiting Times at Transfer Stops,” Thesis MSIE, USF, TPA, FL, USA, 2004. Available: https://digitalcommons.usf.edu/etd/1025/
 A. Mauttone, M. Urqhhart & H. Cancela, “Optimización de Recorridos y Frecuencias en Sistemas de Transporte Público Urbano Colectivo,” Tesis de Maestría, UDELAR, MV, UY, 2005. Disponible en https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/2937
 M. Meyer, Estimating travel characteristics and volumes. In: ITE, Transportation Planning Handbook, NJ, USA, Meyer, pp. 35–52, 2016.
 G. Desaulniers & M. D. Hickman, Public Transit. In: C. Barnhart & G. Laporte, eds., Handbooks in Operations Research and Management Science, vol. 14, Chapt 2, NL, North Holand, pp. 69–127, 2007. https://doi.org/10.1016/S0927-0507(06)14002-5
 M. Sinner, U. Weidmann & A. Nash, “Application of a Cost-Allocation Model to Swiss Bus and Train Lines,” Transp Res Rec, vol. 2672, no. 8, pp. 431–442, 2018. https://doi.org/10.1177/0361198118772702
 L. Deng, W. Gao, Y. Fu & W. Zhou, “Optimal design of the feeder-bus network based on the transfer system,” Discret Dyn Nat Soc, pp. 1–11, 2013. https://doi.org/10.1155/2013/483682
 M. E. Ruiz, C. M. Mayorga, D. S. Aldas & J. P. Reyes, “El costo y la percepción en la sociedad por congestión vehicular causada por el transporte público urbano en la ciudad de Ambato, Ecuador,” Espacios, vol. 40, no. 43, pp. 42, 2019. Disponible en https://www.revistaespacios.com/a19v40n43/19404322.html
 J. H. E. Taplin & Y. Sun, “Optimizing bus stop locations for walking access: Stops-first design of a feeder route to enhance a residential plan,” Environ Plan. B Urban Anal City Sci, vol. 47, no. 7, pp. 1237–1259, 2020. https://doi.org/10.1177/2399808318824108
 P. Shrivastava & M. O’Mahony, “A model for development of optimized feeder routes and coordinated schedules-A genetic algorithms approach,” Transp Policy, vol. 13, no. 5, pp. 413–425, 2006. https://doi.org/10.1016/j.tranpol.2006.03.002
 L. Deng, Y. He, N. Zeng & J. Zeng, “Optimal Design of Feeder-Bus Network with Split Delivery,” ASCE, vol. 146, no. 3, 2020. https://doi.org/10.1061/jtepbs.0000305
 República del Ecuador. Asamblea Consituyente, Ley Orgánica de Transporte Terrestre , Tránsito y Seguridad Vial. Registro Oficial, Suplemento 398, 7 ago. 2008. Recuperado de https://portovial.gob.ec/sitio/descargas/leyes/ley-organica-transporte-terrestre-transito-y-seguridad-vial.pdf
J. Llamuca, “Estudio tarifario del transporte urbano en buses de la ciudad de Riobamba según el nivel de servicio que prestan las operadoras a los usuarios,” Tesis - Maestría, PUCE, DMQ, EC, 2017. Disponible en http://repositorio.puce.edu.ec/handle/22000/13128
dc.relation.citationendpage.none.fl_str_mv 182
dc.relation.citationstartpage.none.fl_str_mv 167
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 17
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/3553/3824
https://revistascientificas.cuc.edu.co/ingecuc/article/download/3553/4676
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2021 : (Julio-Diciembre)
dc.rights.spa.fl_str_mv INGE CUC - 2021
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2021
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
text/html
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/3553
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/457822c7-b5e0-45cc-b48b-6d6781b9ca81/download
bitstream.checksum.fl_str_mv 513362cf3178abc50662ae1ed1c5c364
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760832398229504
spelling Reyes Vasquez, JohnAldas Salazar, Darwin SantiagoMayorga Abril, Cesar MedardoRuiz Guajala, Mery EsperanzaBarahona Sánchez, Mayra Stephanie2021-03-18 00:00:002024-04-09T20:21:37Z2021-03-18 00:00:002024-04-09T20:21:37Z2021-03-180122-6517https://hdl.handle.net/11323/12327https://doi.org/10.17981/ingecuc.17.2.2021.1510.17981/ingecuc.17.2.2021.152382-4700Introducción: Utilizando los principios de movilidad sostenible para el transporte público urbano, en la presente investigación se modela y resuelve un problema de optimización de externalidades negativas del servicio de transporte público como: congestión, cambio climático, contaminación del aire, ruido y accidentes de tránsito, planteando la posibilidad de minimizar los costos sociales variables. Objetivo: Plantear y resolver un modelo de optimización de externalidades negativas en un sistema de transporte de la ciudad de Ambato- Ecuador. Metodología: Para el modelado y solución del programa se toma como base el modelo de Ngamchai y Lovell, programado en el software LINGO, se aplica en el sistema que cuenta con 5 operadoras, 22 líneas y 397 unidades de buses. Resultados: A través de los resultados obtenidos se logra disminuir el costo total para la operación del sistema de transporte de $ 8910,72 a $ 6608,39 por unidad por hora, esto implica una reducción del 25,9% con las consideraciones individuales del headway (separación en tiempo entre vehículos) para cada una de las líneas que lo conforman, se logra disminuir además la flota utilizada actualmente en un 21%. Conclusiones: La investigación deja abierta la posibilidad de plantear futuros estudios que busquen estrategias que permitan mitigar cada una de las externalidades desde una perspectiva técnico-económica de sostenibilidad medioambiental.Introduction: Using the principles of sustainable mobility for urban public transport, this research models and solves a problem of optimization of negative externalities of the public transport service such as congestion, climate change, air pollution, noise and traffic accidents, raising the possibility of minimizing the variable social costs. Objective: The study was carried out in Ecuador, in the transportation system of the city of Ambato, which has 5 operators, 22 lines and 397 bus units. Method: The Ngamchai and Lovell model, programmed in LINGO software, is used as the basis for the modeling and solution of the program. Results:  Through the results obtained, the total cost for the operation of the transportation system was reduced from $ 8910.72 to $ 6608.39 per unit per hour, which implies a reduction of 25.9% with the individual considerations of the headway (separation in time between vehicles) for each of the lines that comprise it, and the fleet currently used is also reduced by 21%. Conclusions: The research leaves open the possibility of proposing future studies that seek strategies to mitigate each of the externalities from a technical-economic perspective of environmental sustainability.application/pdftext/htmlspaUniversidad de la CostaINGE CUC - 2021http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/3553public transportationexternalitiessustainable mobilityoptimizationmathematical modelstransporte públicoexternalidadesmovilidad sostenibleoptimizaciónmodelos matemáticosAnálisis basado en optimización de externalidades negativas del servicio de transporte público urbano: Un caso de estudioOptimization-based analysis of negative externalities of urban public transport service: A case studyArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucI. Chatziioannou, L. Alvarez-Icaza & E. Bakogiannis, “A structural analysis method for the promotion of Mexico City´s integral plan of mobility,” Cogent Eng, vol. 7, no. 1, pp. 1–21, 2020. https://doi.org/10.1080/23311916.2020.1759395C. Regnier & S. Legras, “Urban Structure and Environmental Externalities,” Environ Resour Econ, vol. 70, no. 1, pp. 31–52, 2018. https://doi.org/10.1007/s10640-016-0109-0S. Perveen, T. Yigitcanlar, M. Kamruzzaman & J. Hayes, “Evaluating transport externalities of urban growth: a critical review of scenario-based planning methods,” Int J Environ Sci.Technol, vol. 14, no. 3, pp. 663–678, 2016. https://doi.org/10.1007/s13762-016-1144-7D. Aldas, J. Reyes, L. Morales, P. Pazmiño, J. Núñez & B. Toaza.Impacts analysis towards a sustainable urban public transport system. InICORES, pp. 38–46, 2018. https://doi.org/10.5220/0006537700380046I. Chatziioannou, L. Alvarez-Icaza, E. Bakogiannis, C. Kyriakidis & L. Chias-Becerril, “A CLIOS analysis for the promotion of sustainable plans of mobility: The case of Mexico City,” Appl Sci, vol. 10, no. 13, pp. 1–30, 2020. https://doi.org/10.3390/app10134556I. Henke, A. Cartenì, C. Molitierno & A. Errico, “Decision-Making in the transport sector: A sustainable evaluation method for road infrastructure,” Sustain, vol. 12, no. 3, pp. 1–19, 2020. https://doi.org/10.3390/su12030764I. W. H. Parry, M. Walls & W. Harrington, “Automobile Externalities and Policies,” SSRN Electron J, pp. 10–35, 2007. https://doi.org/10.2139/ssrn.927794I. Chatziioannou, L. Alvarez-Icaza, E. Bakogiannis, C. Kyriakidis & L. Chias-Becerril, “A structural analysis for the categorization of the negative externalities of transport and the hierarchical organization of sustainable mobility’s strategies,” Sustain, vol. 12, no. 15, pp. 1–27, 2020. https://doi.org/10.3390/su12156011 C. Dascalu, C. Caraiani, C. Iuliana Lungu, F. Colceag & G. Raluca Guse, “The externalities in social environmental accounting,” Int J Account Inf Manag, vol. 18, no. 1, pp. 19–30, 2010. https://doi.org/10.1108/18347641011023252 A. Tob-Ogu, N. Kumar, J. Cullen & E. E. F. Ballantyne, “Sustainability Intervention Mechanisms for Managing Road Freight Transport Externalities: A Systematic Literature Review,” Sustain, vol. 10, no. 6, pp. 1–18, 2018. https://doi.org/10.3390/su10061923 A. Tirachini, “Ride-hailing, travel behaviour and sustainable mobility: an international review,” Transportation (Amst), vol. 47, no. 4, pp. 2011–2047, 2020. https://doi.org/10.1007/s11116-019-10070-2 J. P. Bocarejo & L. F. Urrego, “The impacts of formalization and integration of public transport in social equity: The case of Bogota,” Res Transp Bus Manag, pp. 1–11, 2020. https://doi.org/10.1016/j.rtbm.2020.100560 A. Tetteh & S. Dsane-Nsor, “Minimising negative externalities cost using 0-1 mixed integer linear programming model in e-commerce environment,” J Transp Supply Chain Manag, vol. 11, pp. 1–9, 2017. https://doi.org/10.4102/jtscm.v11i0.272 A. Ceder, B. Golany & O. Tal, “Creating bus timetables with maximal synchronization,” Transp Res Part A Policy Pract, vol. 35, no. 10, pp. 913–928, 2001. https://doi.org/10.1016/S0965-8564(00)00032-X A. Virk, “Urbanisation: A Growing Story in Context of Efficient Urban Mob,” RRIJM, 2019. Available: https://rrjournals.com/index.php/rrijm S. McLeod, J. Scheurer & C. Curtis, “Urban Public Transport: Planning Principles and Emerging Practice,” J Plan Lit, vol. 32, no. 3, pp. 223–239, 2017. https://doi.org/10.1177/0885412217693570 N. Ayu & Nahry, “Externalities aspects of freight distribution through the urban consolidation center,” IOP Conf Ser Earth Environ Sci, vol. 622, pp. 12024, 2021. https://doi.org/10.1088/1755-1315/622/1/012024 R. Peñabaena-Niebles, V. Cantillo & J. Luis Moura, “The positive impacts of designing transition between traffic signal plans considering social cost,” Transp Policy, vol. 87, pp. 67–76, 2020. https://doi.org/10.1016/j.tranpol.2019.05.020 M. H. Baaj & H. S. Mahmassani, “An AI-based approach for transit route system planning and design,” J Adv Transp, vol. 25, no. 2, pp. 187–209, 1991. https://doi.org/10.1002/atr.5670250205 S. Ngamchai & D. J. Lovell, “Optimal Time Transfer in Bus Transit Route Network Design Using a Genetic Algorithm,” J Transp Eng, vol. 129, no. 5, pp. 510–521, 2003. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:5(510) A. Eranki, “A Model to Create Bus Timetables to Attain Maximum Synchronization Considering Waiting Times at Transfer Stops,” Thesis MSIE, USF, TPA, FL, USA, 2004. Available: https://digitalcommons.usf.edu/etd/1025/ A. Mauttone, M. Urqhhart & H. Cancela, “Optimización de Recorridos y Frecuencias en Sistemas de Transporte Público Urbano Colectivo,” Tesis de Maestría, UDELAR, MV, UY, 2005. Disponible en https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/2937 M. Meyer, Estimating travel characteristics and volumes. In: ITE, Transportation Planning Handbook, NJ, USA, Meyer, pp. 35–52, 2016. G. Desaulniers & M. D. Hickman, Public Transit. In: C. Barnhart & G. Laporte, eds., Handbooks in Operations Research and Management Science, vol. 14, Chapt 2, NL, North Holand, pp. 69–127, 2007. https://doi.org/10.1016/S0927-0507(06)14002-5 M. Sinner, U. Weidmann & A. Nash, “Application of a Cost-Allocation Model to Swiss Bus and Train Lines,” Transp Res Rec, vol. 2672, no. 8, pp. 431–442, 2018. https://doi.org/10.1177/0361198118772702 L. Deng, W. Gao, Y. Fu & W. Zhou, “Optimal design of the feeder-bus network based on the transfer system,” Discret Dyn Nat Soc, pp. 1–11, 2013. https://doi.org/10.1155/2013/483682 M. E. Ruiz, C. M. Mayorga, D. S. Aldas & J. P. Reyes, “El costo y la percepción en la sociedad por congestión vehicular causada por el transporte público urbano en la ciudad de Ambato, Ecuador,” Espacios, vol. 40, no. 43, pp. 42, 2019. Disponible en https://www.revistaespacios.com/a19v40n43/19404322.html J. H. E. Taplin & Y. Sun, “Optimizing bus stop locations for walking access: Stops-first design of a feeder route to enhance a residential plan,” Environ Plan. B Urban Anal City Sci, vol. 47, no. 7, pp. 1237–1259, 2020. https://doi.org/10.1177/2399808318824108 P. Shrivastava & M. O’Mahony, “A model for development of optimized feeder routes and coordinated schedules-A genetic algorithms approach,” Transp Policy, vol. 13, no. 5, pp. 413–425, 2006. https://doi.org/10.1016/j.tranpol.2006.03.002 L. Deng, Y. He, N. Zeng & J. Zeng, “Optimal Design of Feeder-Bus Network with Split Delivery,” ASCE, vol. 146, no. 3, 2020. https://doi.org/10.1061/jtepbs.0000305 República del Ecuador. Asamblea Consituyente, Ley Orgánica de Transporte Terrestre , Tránsito y Seguridad Vial. Registro Oficial, Suplemento 398, 7 ago. 2008. Recuperado de https://portovial.gob.ec/sitio/descargas/leyes/ley-organica-transporte-terrestre-transito-y-seguridad-vial.pdfJ. Llamuca, “Estudio tarifario del transporte urbano en buses de la ciudad de Riobamba según el nivel de servicio que prestan las operadoras a los usuarios,” Tesis - Maestría, PUCE, DMQ, EC, 2017. Disponible en http://repositorio.puce.edu.ec/handle/22000/13128182167217https://revistascientificas.cuc.edu.co/ingecuc/article/download/3553/3824https://revistascientificas.cuc.edu.co/ingecuc/article/download/3553/4676Núm. 2 , Año 2021 : (Julio-Diciembre)PublicationOREORE.xmltext/xml2854https://repositorio.cuc.edu.co/bitstreams/457822c7-b5e0-45cc-b48b-6d6781b9ca81/download513362cf3178abc50662ae1ed1c5c364MD5111323/12327oai:repositorio.cuc.edu.co:11323/123272024-09-17 14:07:18.562http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2021metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co