Detección de Fugas de Información Aplicando Estructura de Dinámica de Datos y Técnicas de Clasificación

La fuga de información es un problema que está presente en instituciones públicas y privadas alrededor del mundo. El principal problema que se presenta es identificar de forma eficiente el filtrado de la información. Para solucionar este problema en el presente trabajo desarrolla una estructura de d...

Full description

Autores:
Guevara Maldonado, Cesar Byron
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12100
Acceso en línea:
https://hdl.handle.net/11323/12100
https://revistascientificas.cuc.edu.co/ingecuc/article/view/382
Palabra clave:
Fuga de Información
Estructura de Datos
Árbol de decisión C4.5
UCS
Naive Bayes
Data Leakage
Data Structure
Decision Tree C4.5
UCS
Naive Bayes
Rights
openAccess
License
INGE CUC - 2015
id RCUC2_c837efc88ddfd4406a2355a2c7b1dac1
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12100
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Detección de Fugas de Información Aplicando Estructura de Dinámica de Datos y Técnicas de Clasificación
dc.title.translated.eng.fl_str_mv Data Leakage Detection Using Dynamic Data Structure and Classification Techniques
title Detección de Fugas de Información Aplicando Estructura de Dinámica de Datos y Técnicas de Clasificación
spellingShingle Detección de Fugas de Información Aplicando Estructura de Dinámica de Datos y Técnicas de Clasificación
Fuga de Información
Estructura de Datos
Árbol de decisión C4.5
UCS
Naive Bayes
Data Leakage
Data Structure
Decision Tree C4.5
UCS
Naive Bayes
title_short Detección de Fugas de Información Aplicando Estructura de Dinámica de Datos y Técnicas de Clasificación
title_full Detección de Fugas de Información Aplicando Estructura de Dinámica de Datos y Técnicas de Clasificación
title_fullStr Detección de Fugas de Información Aplicando Estructura de Dinámica de Datos y Técnicas de Clasificación
title_full_unstemmed Detección de Fugas de Información Aplicando Estructura de Dinámica de Datos y Técnicas de Clasificación
title_sort Detección de Fugas de Información Aplicando Estructura de Dinámica de Datos y Técnicas de Clasificación
dc.creator.fl_str_mv Guevara Maldonado, Cesar Byron
dc.contributor.author.spa.fl_str_mv Guevara Maldonado, Cesar Byron
dc.subject.spa.fl_str_mv Fuga de Información
Estructura de Datos
Árbol de decisión C4.5
UCS
Naive Bayes
topic Fuga de Información
Estructura de Datos
Árbol de decisión C4.5
UCS
Naive Bayes
Data Leakage
Data Structure
Decision Tree C4.5
UCS
Naive Bayes
dc.subject.eng.fl_str_mv Data Leakage
Data Structure
Decision Tree C4.5
UCS
Naive Bayes
description La fuga de información es un problema que está presente en instituciones públicas y privadas alrededor del mundo. El principal problema que se presenta es identificar de forma eficiente el filtrado de la información. Para solucionar este problema en el presente trabajo desarrolla una estructura de datos adaptable al comportamiento humano, utilizando como base las actividades ejecutadas dentro del sistema informático. Al aplicar esta estructura se modela un comportamiento NORMAL de cada uno de los usuarios y de esta manera detecta cualquier comportamiento ANÓ- MALO en tiempo real. Además, permite la aplicación de varias técnicas de clasificación como los árboles de decisión (C4.5), UCS y Naive Bayes las cuales han demostrado un eficiente resultado en la detección de intrusiones. Para probar este modelo se ha diseñado un escenario que sirve para demostrar la validez de la propuesta con información real de una institución gubernamental y para acreditar líneas futuras de trabajo.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2015-01-05 00:00:00
2024-04-09T20:13:32Z
dc.date.available.none.fl_str_mv 2015-01-05 00:00:00
2024-04-09T20:13:32Z
dc.date.issued.none.fl_str_mv 2015-01-05
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12100
dc.identifier.url.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/382
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
2382-4700
url https://hdl.handle.net/11323/12100
https://revistascientificas.cuc.edu.co/ingecuc/article/view/382
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.spa.fl_str_mv A. Kumar, A. Goyal, N. K. Chaudhary, and S. Sowmya Kamath, “Comparative evaluation of algorithms for effective data leakage detection,” in Information & Communication Technologies (ICT), IEEE Conference, 2013, pp. 177–182. DOI:10.1109/CICT.2013.6558085 [2] E. Summary, “Data Leakage Worldwide: Common Risks and Mistakes Employees Make,” Europe, pp. 1–8, 2008. [3] InfoWatch Research Center, "Global Data Leakages & Insider Threats Report, 2012". Disponible en: http://tech-titan.com/infowatch/pdf/InfoWatch%20Global%20Data%20Leakages%20and%20Insider%20Threats%20Report%202012.pdf [4] W. L. W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining framework for building intrusion detection models,” IEEE Symp. Secur. Priv., vol. 00, no. c, pp. 120–132, 1999. DOI:10.1109/SECPRI.1999.766909 [5] C. Guevara, M. Santos and J. A. Martín, "Método para la Detección de Intrusos basado en la Sinergia de Técnicas de Inteligencia Artificial," in Proceedings of the IV Congreso Español de Informática CEDI 2013, pp. 963-972. [6] NSL-KDD. Disponible en: http://nsl.cs.unb.ca/NSL-KDD/ [7] J. McHugh, “Testing Intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory,” ACM Transactions on Information and System Security, vol. 3. pp. 262–294, 2000. DOI:10.1145/382912.382923 [8] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99 data set,” in IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2009, 2009. DOI:10.1109/CISDA.2009.5356528 [9] M. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural networks, vol. 6, pp. 525–533, 1993. DOI:10.1016/S0893-6080(05)80056-5 [10] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: Perceptron, Madaline, and backpropagation,” Proc. IEEE, vol. 78, no. 9, pp. 1415–1442, 1990. DOI:10.1109/5.58323 [11] J. Quinlan, C4.5: Programs for Machine Learning, 240th ed. Londres: Morgan Kaufmann, 1993. [12] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, pp. 81–106, 1986. DOI:10.1023/A:1022643204877 [13] J. C. Platt, “Sequential minimal optimization: A fast algorithm for training support vector machines,” Adv. Kernel Methods Support Vector Learn., vol. 208, pp. 1–21, 1998. [14] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt’s SMO Algorithm for SVM Classifier Design,” Neural Computation, vol. 13, no. 3. pp. 637–649, 2001. DOI:10.1162/089976601300014493 [15] D. Heckerman, “Bayesian Networks for Data Mining,” Data Min. Knowl. Discov., vol. 119, no. 1, pp. 79–119, 1997. DOI:10.1023/A:1009730122752 [16] S. W. Wilson, “Classifier Fitness Based on Accuracy,” Evolutionary Computation, vol. 3, no. 2. pp. 149–175, 1995. DOI:10.1162/evco.1995.3.2.149 [17] T. G. Dietterich, “Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms,” Neural Computation, vol. 10, no. 7. pp. 1895–1923, 1998. DOI:10.1162/089976698300017197 [18] E. Bernadó-Mansilla and J. M. Garrell-Guiu, “Accuracy-based learning classifier systems: models, analysis and applications to classification tasks,” Evol. Comput., vol. 11, no. 3, pp. 209–238, 2003. DOI:10.1162/106365603322365289 [19] P. Domingos and M. Pazzani, “On the Optimality of the Simple Bayesian Classifier under Zero-One Los,” Mach. Learn., vol. 29, no. 2–3, pp. 103–130, 1997. [20] D. Pyle, Data Preparation for Data Mining, 1st ed., vol. 1. San Francisco: Morgan Kaufmann, 1999. DOI:10.1023/A:1007413511361 [21] M. Basu, “Complexity measures of supervised classification problems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 289–300, 2002. DOI:10.1109/34.990132 [22] H. Brighton and C. Mellish, “Advances in instance selection for instance-based learning algorithms,” Data Mining and Knowledge Discovery, vol. 6, no. 2. pp. 153–172, 2002. DOI:10.1023/A:1014043630878 [23] F. Ceballos, L. E. Muñoz, and J. Moreno, “Selección de perceptrones multicapa usando aprendizaje bayesiano,” Sci. Tech., no. 49, pp. 110–115, 2011. [24] L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33, no. 1–2, pp. 1–39, 2010. DOI:10.1007/s10462-009-9124-7 [25] H. Liu and R. Setiono, “Feature Selection and Classification: A Probabilistic Wrapper Approach,” in Proceedings of the 9th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, 1996, pp. 419–424. [26] J. Alcala-Fdez, L. Sanchez, S. Garcia, M. J. del Jesus, S. Ventura, J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernandez, and F. Herrera, “KEEL: a software tool to assess evolutionary algorithms for data mining problems,” Soft Comput., vol. 13, no. 3, pp. 307–318, 2009. Disponible: //www.keel.es/
dc.relation.citationendpage.none.fl_str_mv 84
dc.relation.citationstartpage.none.fl_str_mv 79
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/382/2015108
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2015 : (Enero - Junio)
dc.rights.spa.fl_str_mv INGE CUC - 2015
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2015
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/382
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/7820a156-8b76-4ea5-97d6-a34d8836b9a6/download
bitstream.checksum.fl_str_mv 59275fa698ec8b2c63d01fef3b696c7f
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760798823874560
spelling Guevara Maldonado, Cesar Byron2015-01-05 00:00:002024-04-09T20:13:32Z2015-01-05 00:00:002024-04-09T20:13:32Z2015-01-050122-6517https://hdl.handle.net/11323/12100https://revistascientificas.cuc.edu.co/ingecuc/article/view/3822382-4700La fuga de información es un problema que está presente en instituciones públicas y privadas alrededor del mundo. El principal problema que se presenta es identificar de forma eficiente el filtrado de la información. Para solucionar este problema en el presente trabajo desarrolla una estructura de datos adaptable al comportamiento humano, utilizando como base las actividades ejecutadas dentro del sistema informático. Al aplicar esta estructura se modela un comportamiento NORMAL de cada uno de los usuarios y de esta manera detecta cualquier comportamiento ANÓ- MALO en tiempo real. Además, permite la aplicación de varias técnicas de clasificación como los árboles de decisión (C4.5), UCS y Naive Bayes las cuales han demostrado un eficiente resultado en la detección de intrusiones. Para probar este modelo se ha diseñado un escenario que sirve para demostrar la validez de la propuesta con información real de una institución gubernamental y para acreditar líneas futuras de trabajo.Data leakage is a permanent problem in public and private institutions around the world; particularly, identifying the information leakage efficiently. In order to solve this problem, this paper poses an adaptable data structure based on human behavior using all the activities executed within the computer system. When applying this structure, the normal behavior is modeled for each user, so in this way, detects any abnormal behavior in real time. Moreover, this structure enables the application of several classification techniques such as decision trees (C4.5), UCS, and Naive Bayes, these techniques have proven efficient outcomes in intrusion detection. In the testing of this model, a scenario demonstrating the proposal’s effectiveness with real information from a government institution was designed so as to establish future lines of work.application/pdfspaUniversidad de la CostaINGE CUC - 2015https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/382Fuga de InformaciónEstructura de DatosÁrbol de decisión C4.5UCSNaive BayesData LeakageData StructureDecision Tree C4.5UCSNaive BayesDetección de Fugas de Información Aplicando Estructura de Dinámica de Datos y Técnicas de ClasificaciónData Leakage Detection Using Dynamic Data Structure and Classification TechniquesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucA. Kumar, A. Goyal, N. K. Chaudhary, and S. Sowmya Kamath, “Comparative evaluation of algorithms for effective data leakage detection,” in Information & Communication Technologies (ICT), IEEE Conference, 2013, pp. 177–182. DOI:10.1109/CICT.2013.6558085 [2] E. Summary, “Data Leakage Worldwide: Common Risks and Mistakes Employees Make,” Europe, pp. 1–8, 2008. [3] InfoWatch Research Center, "Global Data Leakages & Insider Threats Report, 2012". Disponible en: http://tech-titan.com/infowatch/pdf/InfoWatch%20Global%20Data%20Leakages%20and%20Insider%20Threats%20Report%202012.pdf [4] W. L. W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining framework for building intrusion detection models,” IEEE Symp. Secur. Priv., vol. 00, no. c, pp. 120–132, 1999. DOI:10.1109/SECPRI.1999.766909 [5] C. Guevara, M. Santos and J. A. Martín, "Método para la Detección de Intrusos basado en la Sinergia de Técnicas de Inteligencia Artificial," in Proceedings of the IV Congreso Español de Informática CEDI 2013, pp. 963-972. [6] NSL-KDD. Disponible en: http://nsl.cs.unb.ca/NSL-KDD/ [7] J. McHugh, “Testing Intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory,” ACM Transactions on Information and System Security, vol. 3. pp. 262–294, 2000. DOI:10.1145/382912.382923 [8] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99 data set,” in IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2009, 2009. DOI:10.1109/CISDA.2009.5356528 [9] M. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural networks, vol. 6, pp. 525–533, 1993. DOI:10.1016/S0893-6080(05)80056-5 [10] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: Perceptron, Madaline, and backpropagation,” Proc. IEEE, vol. 78, no. 9, pp. 1415–1442, 1990. DOI:10.1109/5.58323 [11] J. Quinlan, C4.5: Programs for Machine Learning, 240th ed. Londres: Morgan Kaufmann, 1993. [12] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, pp. 81–106, 1986. DOI:10.1023/A:1022643204877 [13] J. C. Platt, “Sequential minimal optimization: A fast algorithm for training support vector machines,” Adv. Kernel Methods Support Vector Learn., vol. 208, pp. 1–21, 1998. [14] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt’s SMO Algorithm for SVM Classifier Design,” Neural Computation, vol. 13, no. 3. pp. 637–649, 2001. DOI:10.1162/089976601300014493 [15] D. Heckerman, “Bayesian Networks for Data Mining,” Data Min. Knowl. Discov., vol. 119, no. 1, pp. 79–119, 1997. DOI:10.1023/A:1009730122752 [16] S. W. Wilson, “Classifier Fitness Based on Accuracy,” Evolutionary Computation, vol. 3, no. 2. pp. 149–175, 1995. DOI:10.1162/evco.1995.3.2.149 [17] T. G. Dietterich, “Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms,” Neural Computation, vol. 10, no. 7. pp. 1895–1923, 1998. DOI:10.1162/089976698300017197 [18] E. Bernadó-Mansilla and J. M. Garrell-Guiu, “Accuracy-based learning classifier systems: models, analysis and applications to classification tasks,” Evol. Comput., vol. 11, no. 3, pp. 209–238, 2003. DOI:10.1162/106365603322365289 [19] P. Domingos and M. Pazzani, “On the Optimality of the Simple Bayesian Classifier under Zero-One Los,” Mach. Learn., vol. 29, no. 2–3, pp. 103–130, 1997. [20] D. Pyle, Data Preparation for Data Mining, 1st ed., vol. 1. San Francisco: Morgan Kaufmann, 1999. DOI:10.1023/A:1007413511361 [21] M. Basu, “Complexity measures of supervised classification problems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 289–300, 2002. DOI:10.1109/34.990132 [22] H. Brighton and C. Mellish, “Advances in instance selection for instance-based learning algorithms,” Data Mining and Knowledge Discovery, vol. 6, no. 2. pp. 153–172, 2002. DOI:10.1023/A:1014043630878 [23] F. Ceballos, L. E. Muñoz, and J. Moreno, “Selección de perceptrones multicapa usando aprendizaje bayesiano,” Sci. Tech., no. 49, pp. 110–115, 2011. [24] L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33, no. 1–2, pp. 1–39, 2010. DOI:10.1007/s10462-009-9124-7 [25] H. Liu and R. Setiono, “Feature Selection and Classification: A Probabilistic Wrapper Approach,” in Proceedings of the 9th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, 1996, pp. 419–424. [26] J. Alcala-Fdez, L. Sanchez, S. Garcia, M. J. del Jesus, S. Ventura, J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernandez, and F. Herrera, “KEEL: a software tool to assess evolutionary algorithms for data mining problems,” Soft Comput., vol. 13, no. 3, pp. 307–318, 2009. Disponible: //www.keel.es/8479111https://revistascientificas.cuc.edu.co/ingecuc/article/download/382/2015108Núm. 1 , Año 2015 : (Enero - Junio)PublicationOREORE.xmltext/xml2597https://repositorio.cuc.edu.co/bitstreams/7820a156-8b76-4ea5-97d6-a34d8836b9a6/download59275fa698ec8b2c63d01fef3b696c7fMD5111323/12100oai:repositorio.cuc.edu.co:11323/121002024-09-17 12:45:22.82https://creativecommons.org/licenses/by-nc-sa/4.0/INGE CUC - 2015metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co