An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon

In this study, six statistical physics (sta-phy) models were used to further describe and enlighten the mechanisms behind the adsorption of a low interaction model molecule through the interpretations of the real and ideal gas. Density functional theory (DFT) was employed for the simulation of elect...

Full description

Autores:
Vieira, Yasmin
Schnorr, Carlos
Piazzi,Ana C.
Netto, Matias S.
Piccini, William M.
Franco, Dison S.P.
Mallmann, Evandro S.
Georgin, Jordana
Silva Oliveira, Luis Felipe
Dotto, Guilherme Luiz
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13391
Acceso en línea:
https://hdl.handle.net/11323/13391
https://repositorio.cuc.edu.co/
Palabra clave:
Adsorption
DFT modeling
Electrostatic repulsion
Sta-phy modeling
Van der Waals
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_c83711fb50587e65baa1a828c738bad7
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13391
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon
title An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon
spellingShingle An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon
Adsorption
DFT modeling
Electrostatic repulsion
Sta-phy modeling
Van der Waals
title_short An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon
title_full An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon
title_fullStr An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon
title_full_unstemmed An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon
title_sort An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon
dc.creator.fl_str_mv Vieira, Yasmin
Schnorr, Carlos
Piazzi,Ana C.
Netto, Matias S.
Piccini, William M.
Franco, Dison S.P.
Mallmann, Evandro S.
Georgin, Jordana
Silva Oliveira, Luis Felipe
Dotto, Guilherme Luiz
dc.contributor.author.none.fl_str_mv Vieira, Yasmin
Schnorr, Carlos
Piazzi,Ana C.
Netto, Matias S.
Piccini, William M.
Franco, Dison S.P.
Mallmann, Evandro S.
Georgin, Jordana
Silva Oliveira, Luis Felipe
Dotto, Guilherme Luiz
dc.subject.proposal.eng.fl_str_mv Adsorption
DFT modeling
Electrostatic repulsion
Sta-phy modeling
Van der Waals
topic Adsorption
DFT modeling
Electrostatic repulsion
Sta-phy modeling
Van der Waals
description In this study, six statistical physics (sta-phy) models were used to further describe and enlighten the mechanisms behind the adsorption of a low interaction model molecule through the interpretations of the real and ideal gas. Density functional theory (DFT) was employed for the simulation of electronic structure and reactivity parameters ( , η, μ, and ω). Experimental assays were carried out with a representative activated carbon sample and 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide as a base for the modeling and simulation. According to the classical interpretations, the adsorption was a monolayer exothermic process dependent on temperature. From the sta-phy perspective, the Hill model for monolayer adsorption with two energies best described the process. According to the estimations, the number of molecules adsorbed increases with increasing temperature, yet the number of primary adsorption sites () decreases with increasing temperature. The concentrations at a half-saturation (), in turn, increase with the increase in temperature. At last, by combining the sta-phy estimations with the DFT interpretations, it was possible to infer that, in addition to the thermal effects, electrostatic repulsion is a possible contribution that increases as the primary receptor sites are occupied. Therefore, the combination of simulations can provide answers to unclear mechanistic steps and help predict the contribution of the adsorbate to the estimated sta-phy parameters, with a very high degree of precision as statistically validated.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-09
dc.date.accessioned.none.fl_str_mv 2024-09-26T21:34:56Z
dc.date.available.none.fl_str_mv 2024-09
2024-09-26T21:34:56Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Yasmin Vieira, Carlos Schnorr, Ana C. Piazzi, Matias S. Netto, William M. Piccini, Dison S.P. Franco, Evandro S. Mallmann, Jordana Georgin, Luis F.O. Silva, Guilherme L. Dotto, An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon, Journal of Molecular Liquids, Volume 361, 2022, 119639, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2022.119639.
dc.identifier.issn.none.fl_str_mv 0167-7322
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13391
dc.identifier.doi.none.fl_str_mv 10.1016/j.molliq.2022.119639
dc.identifier.eissn.none.fl_str_mv 1873-3166
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Yasmin Vieira, Carlos Schnorr, Ana C. Piazzi, Matias S. Netto, William M. Piccini, Dison S.P. Franco, Evandro S. Mallmann, Jordana Georgin, Luis F.O. Silva, Guilherme L. Dotto, An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon, Journal of Molecular Liquids, Volume 361, 2022, 119639, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2022.119639.
0167-7322
10.1016/j.molliq.2022.119639
1873-3166
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13391
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Journal of Molecular Liquids
dc.relation.references.none.fl_str_mv [1] G.S. Simate, N. Maledi, A. Ochieng, S. Ndlovu, J. Zhang, L.F. Walubita, Coalbased adsorbents for water and wastewater treatment, J. Environ. Chem. Eng. 4 (2016) 2291–2312, https://doi.org/10.1016/J.JECE.2016.03.051.
[2] M.M. Titirici, R.J. White, N. Brun, V.L. Budarin, D.S. Su, F. Del Monte, J.H. Clark, M.J. MacLachlan, Sustainable carbon materials, Chem. Soc. Rev. 44 (2014) 250– 290, https://doi.org/10.1039/C4CS00232F.
[3] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A. Ben Lamine, Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon, Fluid Phase Equilib. 387 (2015) 103–110, https://doi.org/10.1016/J.FLUID.2014.12.018.
[4] L. Sellaoui, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, A. Bonilla-Petriciolet, A. Ben Lamine, A. Erto, A new statistical physics model for the ternary adsorption of Cu2+, Cd2+ and Zn2+ ions on bone char: Experimental investigation and simulations, Chem. Eng. J. 343 (2018) 544–553, https://doi.org/10.1016/J. CEJ.2018.03.033
[5] L. Sellaoui, É.C. Lima, G.L. Dotto, S.L.P. Dias, A. Ben Lamine, Physicochemical modeling of reactive violet 5 dye adsorption on home-made cocoa shell and commercial activated carbons using the statistical physics theory, Results Phys. 7 (2017) 233–237, https://doi.org/10.1016/J.RINP.2016.12.014.
[6] L. Sellaoui, N. Mechi, É.C. Lima, G.L. Dotto, A. Ben Lamine, Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size, J. Phys. Chem. Solids. 109 (2017) 117–123, https:// doi.org/10.1016/J.JPCS.2017.05.019.
[7] O. Amrhar, L. El Gana, M. Mobarak, Calculation of adsorption isotherms by statistical physics models: a review, Environ. Chem. Lett. 19 (2021) 4519– 4547, https://doi.org/10.1007/S10311-021-01279-8/FIGURES/2.
[8] P.H. Nicholls, A.A. Evans, Sorption of lonisable organic compounds by field soils. Part 2: Cations, bases and zwitterions, Pestic. Sci. 33 (1991) 331–345, https://doi.org/10.1002/PS.2780330307.
[9] Z. Gu, M. Gao, L. Lu, Y. Liu, S. Yang, Montmorillonite Functionalized with Zwitterionic Surfactant as a Highly Efficient Adsorbent for Herbicides, Ind. Eng. Chem. Res. 54 (2015) 4947–4955, https://doi.org/10.1021/ACS.IECR.5B00438/ SUPPL_FILE/IE5B00438_SI_001.PDF.
[10] M.H. Dehghani, A.H. Hassani, R.R. Karri, B. Younesi, M. Shayeghi, M. Salari, A. Zarei, M. Yousefi, Z. Heidarinejad, Process optimization and enhancement of pesticide adsorption by porous adsorbents by regression analysis and parametric modelling, Sci. Reports 2021 111 (11) (2021) 1–15, https://doi. org/10.1038/s41598-021-91178-3.
[11] S. Cosgrove, B. Jefferson, P. Jarvis, Pesticide removal from drinking water sources by adsorption: a review, 8 (2019) 1–24. https://doi.org/10.1080/ 21622515.2019.1593514.
[12] O.A. Ioannidou, A.A. Zabaniotou, G.G. Stavropoulos, M.A. Islam, T.A. Albanis, Preparation of activated carbons from agricultural residues for pesticide adsorption, Chemosphere 80 (2010) 1328–1336, https://doi.org/10.1016/J. CHEMOSPHERE.2010.06.044.
[13] A. Regti, H.B. El Ayouchia, M.R. Laamari, S.E. Stiriba, H. Anane, M. El Haddad, Experimental and theoretical study using DFT method for the competitive adsorption of two cationic dyes from wastewaters, Appl. Surf. Sci. 390 (2016) 311–319, https://doi.org/10.1016/J.APSUSC.2016.08.059.
[14] K. Fukui, Role of frontier orbitals in chemical reactions, Science (80-.). 218 (1982) 747–754. doi: 10.1126/SCIENCE.218.4574.747/ASSET/B9BD09F7-1601- 4DAF-A19F-C5E58CF6CA9A/ASSETS/SCIENCE.218.4574.747.FP.PNG.
[15] F.K. Rodrigues, N.P.G. Salau, G.L. Dotto, New insights about reactive red 141 adsorption onto multi–walled carbon nanotubes using statistical physics coupled with Van der Waals equation, Sep. Purif. Technol. 224 (2019) 290– 294, https://doi.org/10.1016/J.SEPPUR.2019.05.042.
[16] F. Ayachi, E.C. Lima, A. Sakly, H. Mejri, A. Ben Lamine, Modeling of adsorption isotherms of reactive red RR-120 on spirulina platensis by statistical physics formalism involving interaction effect between adsorbate molecules, Prog. Biophys. Mol. Biol. 141 (2019) 47–59, https://doi.org/10.1016/J. PBIOMOLBIO.2018.07.004.
[17] A. da Silva Vasconcelos de Almeida, W.T. Vieira, M.D. Bispo, S.F. de Melo, T.L. da Silva, T.L. Balliano, M.G.A. Vieira, J.I. Soletti, Caffeine removal using activated biochar from açaí seed (Euterpe oleracea Mart): Experimental study and description of adsorbate properties using Density Functional Theory (DFT), J. Environ Chem. Eng. 9 (1) (2021) 104891.
[18] T.N.V. de Souza, S.M.L. de Carvalho, M.G.A. Vieira, M.G.C. da Silva, D. do S.B. Brasil, Adsorption of basic dyes onto activated carbon: Experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors, Appl. Surf. Sci. 448 (2018) 662–670, https://doi.org/10.1016/J. APSUSC.2018.04.087.
[19] N.R. Khalili, M. Campbell, G. Sandi, J. Golas´, Production of micro- and mesoporous activated carbon from paper mill sludge: I. Effect of zinc chloride activation, Carbon N. Y. 38 (14) (2000) 1905–1915.
[20] T.H. Liou, Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation, Chem. Eng. J. 158 (2010) 129–142, https://doi.org/10.1016/J. CEJ.2009.12.016.
[21] D.C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, 2001. www.Wiley.com. (accessed April 13, 2022).
[22] S.S. Stevens, On the psychophysical law, Psychol. Rev. 64 (1958) 153, https:// doi.org/10.1037/H0046162.
[23] S. Knani, M. Mathlouthi, A. Ben Lamine, Modeling of the psychophysical response curves using the grand canonical ensemble in statistical physics, Food Biophys. 2 (2007) 183–192, https://doi.org/10.1007/S11483-007-9042-7/ FIGURES/3.
[24] M. Khalfaoui, S. Knani, M.A. Hachicha, A.B. Lamine, New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment, J. Colloid Interface Sci. 263 (2) (2003) 350– 356.
[25] L. Meili, P.V.S. Lins, M.T. Costa, R.L. Almeida, A.K.S. Abud, J.I. Soletti, G.L. Dotto, E.H. Tanabe, L. Sellaoui, S.H.V. Carvalho, A. Erto, Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling, Prog. Biophys. Mol. Biol. 141 (2019) 60–71, https://doi.org/ 10.1016/J.PBIOMOLBIO.2018.07.011.
[26] K.H. Toumi, Y. Benguerba, A. Erto, G.L. Dotto, M. Khalfaoui, C. Tiar, S. Nacef, A. Amrane, Molecular modeling of cationic dyes adsorption on agricultural Algerian olive cake waste, J. Mol. Liq. 264 (2018) 127–133, https://doi.org/ 10.1016/J.MOLLIQ.2018.05.045.
[27] L. Sellaoui, T. Depci, A.R. Kul, S. Knani, A. Ben Lamine, A new statistical physics model to interpret the binary adsorption isotherms of lead and zinc on activated carbon, J. Mol. Liq. 214 (2016) 220–230, https://doi.org/10.1016/J. MOLLIQ.2015.12.080.
[28] M. Schwaab, E.C. Biscaia, J.L. Monteiro, J.C. Pinto, Nonlinear parameter estimation through particle swarm optimization, Chem. Eng. Sci. 63 (2008) 1542–1552, https://doi.org/10.1016/J.CES.2007.11.024.
[29] M. Clerc, Stagnation Analysis in Particle Swarm Optimisation or What Happens When Nothing Happens, (n.d.). https://hal.archives-ouvertes.fr/hal-00122031 (accessed May 7, 2022).
[30] E. Mezura-Montes, C.A. Coello Coello, Constraint-handling in nature-inspired numerical optimization: Past, present and future, Swarm Evol. Comput. 1 (2011) 173–194, https://doi.org/10.1016/J.SWEVO.2011.10.001.
[31] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intell. 11 (1) (2007) 33–57, https://doi.org/10.1007/S11721-007-0002-0
[32] K. Levenberg, A METHOD FOR THE SOLUTION OF CERTAIN NON-LINEAR PROBLEMS IN LEAST SQUARES, Q. Appl. Math. 2 (2) (1944) 164–168.
[33] D.W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Indust. Appl. Math. 11 (1963) 431–441, https://doi.org/ 10.1137/0111030.
[34] F. Guo, X. Li, Y. Liu, K. Peng, C. Guo, Z. Rao, Catalytic cracking of biomass pyrolysis tar over char-supported catalysts, Energy Convers. Manag. 167 (2018) 81–90, https://doi.org/10.1016/J.ENCONMAN.2018.04.094.
[35] A.H. Jawad, R.A. Rashid, M.A.M. Ishak, K. Ismail, Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (Musa sapientum) peels, J. Taibah University Sci. 12 (6) (2018) 809–819.
[36] A.H. Jawad, R. Razuan, J.N. Appaturi, L.D. Wilson, Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation, Surfaces and Interfaces 16 (2019) 76–84, https://doi.org/10.1016/J. SURFIN.2019.04.012.
[37] J. Georgin, B.S. Marques, E.C. Peres, D. Allasia, G.L. Dotto, Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa), Water Sci. Technol. 77 (2018) 1612–1621, https://doi.org/10.2166/WST.2018.041.
[38] J. Georgin, D.S.P. Franco, M. Schadeck Netto, D. Allasia, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto, Transforming shrub waste into a high-efficiency adsorbent: Application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide, J. Environ. Chem. Eng. 9 (1) (2021) 104574
[39] J. Georgin, D. Franco, F.C. Drumm, P. Grassi, M.S. Netto, D. Allasia, G.L. Dotto, Powdered biosorbent from the mandacaru cactus (cereus jamacaru) for discontinuous and continuous removal of Basic Fuchsin from aqueous solutions, Powder Technol. 364 (2020) 584–592, https://doi.org/10.1016/J. POWTEC.2020.01.064.
[40] P.S. Thue, C.S. Umpierres, E.C. Lima, D.R. Lima, F.M. Machado, G.S. dos Reis, R.S. da Silva, F.A. Pavan, H.N. Tran, Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol, J. Hazard. Mater. 398 (2020), https://doi.org/10.1016/J. JHAZMAT.2020.122903 122903.
[41] D.R. Lima, E.C. Lima, P.S. Thue, S.L.P. Dias, F.M. Machado, M.K. Seliem, F. Sher, G. S. dos Reis, M.R. Saeb, J. Rinklebe, Comparison of acidic leaching using a conventional and ultrasound-assisted method for preparation of magneticactivated biochar, J. Environ. Chem. Eng. 9 (5) (2021) 105865.
[42] D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, C.S. Umpierres, S.L.P. Dias, H.N. Tran, Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells, Colloids Surfaces A Physicochem. Eng. Asp. 583 (2019), https://doi.org/10.1016/J. COLSURFA.2019.123966 123966.
[43] Y. Vieira, J.M.N. dos Santos, J. Georgin, M.L.S. Oliveira, D. Pinto, G.L. Dotto, An overview of forest residues as promising low-cost adsorbents, Gondwana Res. (2021), https://doi.org/10.1016/J.GR.2021.06.018.
[44] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/PAC-2014- 1117.
[45] J. Leichtweis, S. Silvestri, N. Welter, Y. Vieira, P.I. Zaragoza-Sánchez, A.C. Chávez-Mejía, E. Carissimi, Wastewater containing emerging contaminants treated by residues from the brewing industry based on biochar as a new CuFe2O4 / biochar photocatalyst, Process Saf. Environ. Prot. 150 (2021) 497– 509, https://doi.org/10.1016/J.PSEP.2021.04.041.
[46] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703, https://doi.org/ 10.2166/wst.2018.448.
[47] P.T. Hernandes, M.L.S. Oliveira, J. Georgin, D.S.P. Franco, D. Allasia, G.L. Dotto, Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus), Environ. Sci. Pollut. Res. 26 (2019) 31924–31933, https://doi.org/10.1007/s11356-019-06353-x
[48] Z. Mahdi, A. El Hanandeh, Q.J. Yu, Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions, J. Environ. Chem. Eng. 7 (5) (2019) 103379.
[49] A. Subratti, J.L. Vidal, L.J. Lalgee, F.M. Kerton, N.K. Jalsa, Preparation and characterization of biochar derived from the fruit seed of Cedrela odorata L and evaluation of its adsorption capacity with methylene blue, Sustain. Chem. Pharm. 21 (2021), https://doi.org/10.1016/j.scp.2021.100421 100421.
[50] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Adsorption processes for water treatment and purification, Adsorpt. Process. Water Treat. Purif. (2017) 1–256, https://doi.org/10.1007/978-3-319-58136-1.
[51] J.H. Park, Y.S. Ok, S.H. Kim, J.S. Cho, J.S. Heo, R.D. Delaune, D.C. Seo, Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions, Chemosphere 142 (2016) 77–83, https://doi.org/10.1016/J. CHEMOSPHERE.2015.05.093.
[52] Z. Liu, F.S. Zhang, Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass, J. Hazard. Mater. 167 (2009) 933–939, https://doi.org/10.1016/J.JHAZMAT.2009.01.085.
[53] Y. Yao, B. Gao, M. Inyang, A.R. Zimmerman, X. Cao, P. Pullammanappallil, L. Yang, Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings, J. Hazard. Mater. 190 (2011) 501– 507, https://doi.org/10.1016/J.JHAZMAT.2011.03.083.
[54] H. Qiu, L. Lv, B.C. Pan, Q.J. Zhang, W.M. Zhang, Q.X. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. A 105 (10) (2009) 716–724, https://doi.org/10.1631/JZUS.A0820524.
[55] Y. Tong, P.J. McNamara, B.K. Mayer, Adsorption of organic micropollutants onto biochar: a review of relevant kinetics, mechanisms and equilibrium, Environ. Sci. Water Res. Technol. 5 (2019) 821–838, https://doi.org/10.1039/ C8EW00938D.
[56] I. Anastopoulos, G.Z. Kyzas, Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena?, J Mol. Liq. 218 (2016) 174– 185, https://doi.org/10.1016/J.MOLLIQ.2016.02.059.
[57] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.
[58] É.C. Lima, M.H. Dehghani, A. Guleria, F. Sher, R.R. Karri, G.L. Dotto, H.N. Tran, Adsorption: Fundamental aspects and applications of adsorption for effluent treatment, Green Technol. Defluoridation Water. (2021) 41–88, https://doi. org/10.1016/B978-0-323-85768-0.00004-X.
[59] K. Zhou, W. Ma, Z. Zeng, X. Ma, X. Xu, Y. Guo, H. Li, L. Li, Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites, Chem. Eng. J. 372 (2019) 1122–1133, https://doi.org/10.1016/J. CEJ.2019.04.218.
[60] S. Martinez, Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms, Mater. Chem. Phys. 77 (2003) 97–102, https://doi.org/10.1016/S0254-0584(01)00569-7.
[61] J. Beheshtian, M. Kamfiroozi, Z. Bagheri, A. Ahmadi, Theoretical study of hydrogen adsorption on the B12P12 fullerene-like nanocluster, Comput. Mater. Sci. 54 (2012) 115–118, https://doi.org/10.1016/J. COMMATSCI.2011.09.039
[62] G. Zhang, C.B. Musgrave, Comparison of DFT methods for molecular orbital eigenvalue calculations, J. Phys. Chem. A 111 (2007) 1554–1561, https://doi. org/10.1021/JP061633O/SUPPL_FILE/JP061633OSI20060315_114649.PDF.
[63] G. Job, F. Herrmann, Chemical potential—a quantity in search of recognition, Eur. J. Phys. 27 (2) (2006) 353–371.
[64] M. Franco-Pérez, C.A. Polanco-Ramírez, J.L. Gázquez, P.W. Ayers, Local and nonlocal counterparts of global descriptors: the cases of chemical softness and hardness, J. Mol. Model. 24 (2018) 1–8, https://doi.org/10.1007/S00894-018- 3823-4/TABLES/3
[65] A.G. Al-Sehemi, A. Irfan, Effect of donor and acceptor groups on radical scavenging activity of phenol by density functional theory, Arab. J. Chem. 10 (2017) S1703–S1710, https://doi.org/10.1016/J.ARABJC.2013.06.019.
[66] L.R. Domingo, M.J. Aurell, P. Pérez, R. Contreras, Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions, Tetrahedron. 58 (2002) 4417–4423, https://doi.org/ 10.1016/S0040-4020(02)00410-6.
[67] R.G. Parr, L.V. Szentpály, S. Liu, Electrophilicity Index, J. Am. Chem. Soc. 121 (1999) 1922–1924, https://doi.org/10.1021/JA983494X.
[68] A. Deepatana, M. Valix, Steric hindrance effect on adsorption of metal–organic complexes onto aminophosphonate chelating resin, Desalination 218 (2008) 297–303, https://doi.org/10.1016/J.DESAL.2007.02.025.
[69] A.V. Dordio, S. Miranda, J.P. Prates Ramalho, A.J.P. Carvalho, Mechanisms of removal of three widespread pharmaceuticals by two clay materials, J. Hazard. Mater. 323 (2017) 575–583, https://doi.org/10.1016/J.JHAZMAT.2016.05.091.
[70] I.I. Salame, T.J. Bandosz, Role of surface chemistry in adsorption of phenol on activated carbons, J. Colloid Interface Sci. 264 (2003) 307–312, https://doi.org/ 10.1016/S0021-9797(03)00420-X.
[71] M. Ben Yahia, S. Knani, H. Dhaou, M.A. Hachicha, A. Jemni, A. Ben Lamine, Modeling and interpretations by the statistical physics formalism of hydrogen adsorption isotherm on LaNi4.75Fe0.25, Int. J. Hydrogen Energy 38 (2013) 11536–11542, https://doi.org/10.1016/J.IJHYDENE.2013.03.083.
dc.relation.citationendpage.none.fl_str_mv 13
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 361
dc.rights.eng.fl_str_mv © 2022 Elsevier B.V. All rights reserved.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2022 Elsevier B.V. All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 13 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv Netherlands
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0167732222011771?pes=vor
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/572cc8d0-2bbc-486f-8685-5a3d6a585176/download
https://repositorio.cuc.edu.co/bitstreams/7a146608-07a7-47ac-9c11-d5b5c3e28a09/download
https://repositorio.cuc.edu.co/bitstreams/1719f839-d03a-4aaf-8f9f-082db7eb4eff/download
https://repositorio.cuc.edu.co/bitstreams/4222e19c-8a00-4775-8186-8837f6090e68/download
bitstream.checksum.fl_str_mv 91e79e9960810966fa3f3832ccf0db4e
73a5432e0b76442b22b026844140d683
626bc86c9a6132f754e21e5310f0179d
e59df4952b3f6aa1cbfd18ec24c8faa3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760838247186432
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Elsevier B.V. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfVieira, YasminSchnorr, CarlosPiazzi,Ana C.Netto, Matias S.Piccini, William M.Franco, Dison S.P.Mallmann, Evandro S.Georgin, JordanaSilva Oliveira, Luis FelipeDotto, Guilherme Luiz2024-09-26T21:34:56Z2024-092024-09-26T21:34:56Z2022-09Yasmin Vieira, Carlos Schnorr, Ana C. Piazzi, Matias S. Netto, William M. Piccini, Dison S.P. Franco, Evandro S. Mallmann, Jordana Georgin, Luis F.O. Silva, Guilherme L. Dotto, An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon, Journal of Molecular Liquids, Volume 361, 2022, 119639, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2022.119639.0167-7322https://hdl.handle.net/11323/1339110.1016/j.molliq.2022.1196391873-3166Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this study, six statistical physics (sta-phy) models were used to further describe and enlighten the mechanisms behind the adsorption of a low interaction model molecule through the interpretations of the real and ideal gas. Density functional theory (DFT) was employed for the simulation of electronic structure and reactivity parameters ( , η, μ, and ω). Experimental assays were carried out with a representative activated carbon sample and 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide as a base for the modeling and simulation. According to the classical interpretations, the adsorption was a monolayer exothermic process dependent on temperature. From the sta-phy perspective, the Hill model for monolayer adsorption with two energies best described the process. According to the estimations, the number of molecules adsorbed increases with increasing temperature, yet the number of primary adsorption sites () decreases with increasing temperature. The concentrations at a half-saturation (), in turn, increase with the increase in temperature. At last, by combining the sta-phy estimations with the DFT interpretations, it was possible to infer that, in addition to the thermal effects, electrostatic repulsion is a possible contribution that increases as the primary receptor sites are occupied. Therefore, the combination of simulations can provide answers to unclear mechanistic steps and help predict the contribution of the adsorbate to the estimated sta-phy parameters, with a very high degree of precision as statistically validated.13 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S0167732222011771?pes=vorAn advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbonArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Molecular Liquids[1] G.S. Simate, N. Maledi, A. Ochieng, S. Ndlovu, J. Zhang, L.F. Walubita, Coalbased adsorbents for water and wastewater treatment, J. Environ. Chem. Eng. 4 (2016) 2291–2312, https://doi.org/10.1016/J.JECE.2016.03.051.[2] M.M. Titirici, R.J. White, N. Brun, V.L. Budarin, D.S. Su, F. Del Monte, J.H. Clark, M.J. MacLachlan, Sustainable carbon materials, Chem. Soc. Rev. 44 (2014) 250– 290, https://doi.org/10.1039/C4CS00232F.[3] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A. Ben Lamine, Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon, Fluid Phase Equilib. 387 (2015) 103–110, https://doi.org/10.1016/J.FLUID.2014.12.018.[4] L. Sellaoui, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, A. Bonilla-Petriciolet, A. Ben Lamine, A. Erto, A new statistical physics model for the ternary adsorption of Cu2+, Cd2+ and Zn2+ ions on bone char: Experimental investigation and simulations, Chem. Eng. J. 343 (2018) 544–553, https://doi.org/10.1016/J. CEJ.2018.03.033[5] L. Sellaoui, É.C. Lima, G.L. Dotto, S.L.P. Dias, A. Ben Lamine, Physicochemical modeling of reactive violet 5 dye adsorption on home-made cocoa shell and commercial activated carbons using the statistical physics theory, Results Phys. 7 (2017) 233–237, https://doi.org/10.1016/J.RINP.2016.12.014.[6] L. Sellaoui, N. Mechi, É.C. Lima, G.L. Dotto, A. Ben Lamine, Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size, J. Phys. Chem. Solids. 109 (2017) 117–123, https:// doi.org/10.1016/J.JPCS.2017.05.019.[7] O. Amrhar, L. El Gana, M. Mobarak, Calculation of adsorption isotherms by statistical physics models: a review, Environ. Chem. Lett. 19 (2021) 4519– 4547, https://doi.org/10.1007/S10311-021-01279-8/FIGURES/2.[8] P.H. Nicholls, A.A. Evans, Sorption of lonisable organic compounds by field soils. Part 2: Cations, bases and zwitterions, Pestic. Sci. 33 (1991) 331–345, https://doi.org/10.1002/PS.2780330307.[9] Z. Gu, M. Gao, L. Lu, Y. Liu, S. Yang, Montmorillonite Functionalized with Zwitterionic Surfactant as a Highly Efficient Adsorbent for Herbicides, Ind. Eng. Chem. Res. 54 (2015) 4947–4955, https://doi.org/10.1021/ACS.IECR.5B00438/ SUPPL_FILE/IE5B00438_SI_001.PDF.[10] M.H. Dehghani, A.H. Hassani, R.R. Karri, B. Younesi, M. Shayeghi, M. Salari, A. Zarei, M. Yousefi, Z. Heidarinejad, Process optimization and enhancement of pesticide adsorption by porous adsorbents by regression analysis and parametric modelling, Sci. Reports 2021 111 (11) (2021) 1–15, https://doi. org/10.1038/s41598-021-91178-3.[11] S. Cosgrove, B. Jefferson, P. Jarvis, Pesticide removal from drinking water sources by adsorption: a review, 8 (2019) 1–24. https://doi.org/10.1080/ 21622515.2019.1593514.[12] O.A. Ioannidou, A.A. Zabaniotou, G.G. Stavropoulos, M.A. Islam, T.A. Albanis, Preparation of activated carbons from agricultural residues for pesticide adsorption, Chemosphere 80 (2010) 1328–1336, https://doi.org/10.1016/J. CHEMOSPHERE.2010.06.044.[13] A. Regti, H.B. El Ayouchia, M.R. Laamari, S.E. Stiriba, H. Anane, M. El Haddad, Experimental and theoretical study using DFT method for the competitive adsorption of two cationic dyes from wastewaters, Appl. Surf. Sci. 390 (2016) 311–319, https://doi.org/10.1016/J.APSUSC.2016.08.059.[14] K. Fukui, Role of frontier orbitals in chemical reactions, Science (80-.). 218 (1982) 747–754. doi: 10.1126/SCIENCE.218.4574.747/ASSET/B9BD09F7-1601- 4DAF-A19F-C5E58CF6CA9A/ASSETS/SCIENCE.218.4574.747.FP.PNG.[15] F.K. Rodrigues, N.P.G. Salau, G.L. Dotto, New insights about reactive red 141 adsorption onto multi–walled carbon nanotubes using statistical physics coupled with Van der Waals equation, Sep. Purif. Technol. 224 (2019) 290– 294, https://doi.org/10.1016/J.SEPPUR.2019.05.042.[16] F. Ayachi, E.C. Lima, A. Sakly, H. Mejri, A. Ben Lamine, Modeling of adsorption isotherms of reactive red RR-120 on spirulina platensis by statistical physics formalism involving interaction effect between adsorbate molecules, Prog. Biophys. Mol. Biol. 141 (2019) 47–59, https://doi.org/10.1016/J. PBIOMOLBIO.2018.07.004.[17] A. da Silva Vasconcelos de Almeida, W.T. Vieira, M.D. Bispo, S.F. de Melo, T.L. da Silva, T.L. Balliano, M.G.A. Vieira, J.I. Soletti, Caffeine removal using activated biochar from açaí seed (Euterpe oleracea Mart): Experimental study and description of adsorbate properties using Density Functional Theory (DFT), J. Environ Chem. Eng. 9 (1) (2021) 104891.[18] T.N.V. de Souza, S.M.L. de Carvalho, M.G.A. Vieira, M.G.C. da Silva, D. do S.B. Brasil, Adsorption of basic dyes onto activated carbon: Experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors, Appl. Surf. Sci. 448 (2018) 662–670, https://doi.org/10.1016/J. APSUSC.2018.04.087.[19] N.R. Khalili, M. Campbell, G. Sandi, J. Golas´, Production of micro- and mesoporous activated carbon from paper mill sludge: I. Effect of zinc chloride activation, Carbon N. Y. 38 (14) (2000) 1905–1915.[20] T.H. Liou, Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation, Chem. Eng. J. 158 (2010) 129–142, https://doi.org/10.1016/J. CEJ.2009.12.016.[21] D.C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, 2001. www.Wiley.com. (accessed April 13, 2022).[22] S.S. Stevens, On the psychophysical law, Psychol. Rev. 64 (1958) 153, https:// doi.org/10.1037/H0046162.[23] S. Knani, M. Mathlouthi, A. Ben Lamine, Modeling of the psychophysical response curves using the grand canonical ensemble in statistical physics, Food Biophys. 2 (2007) 183–192, https://doi.org/10.1007/S11483-007-9042-7/ FIGURES/3.[24] M. Khalfaoui, S. Knani, M.A. Hachicha, A.B. Lamine, New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment, J. Colloid Interface Sci. 263 (2) (2003) 350– 356.[25] L. Meili, P.V.S. Lins, M.T. Costa, R.L. Almeida, A.K.S. Abud, J.I. Soletti, G.L. Dotto, E.H. Tanabe, L. Sellaoui, S.H.V. Carvalho, A. Erto, Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling, Prog. Biophys. Mol. Biol. 141 (2019) 60–71, https://doi.org/ 10.1016/J.PBIOMOLBIO.2018.07.011.[26] K.H. Toumi, Y. Benguerba, A. Erto, G.L. Dotto, M. Khalfaoui, C. Tiar, S. Nacef, A. Amrane, Molecular modeling of cationic dyes adsorption on agricultural Algerian olive cake waste, J. Mol. Liq. 264 (2018) 127–133, https://doi.org/ 10.1016/J.MOLLIQ.2018.05.045.[27] L. Sellaoui, T. Depci, A.R. Kul, S. Knani, A. Ben Lamine, A new statistical physics model to interpret the binary adsorption isotherms of lead and zinc on activated carbon, J. Mol. Liq. 214 (2016) 220–230, https://doi.org/10.1016/J. MOLLIQ.2015.12.080.[28] M. Schwaab, E.C. Biscaia, J.L. Monteiro, J.C. Pinto, Nonlinear parameter estimation through particle swarm optimization, Chem. Eng. Sci. 63 (2008) 1542–1552, https://doi.org/10.1016/J.CES.2007.11.024.[29] M. Clerc, Stagnation Analysis in Particle Swarm Optimisation or What Happens When Nothing Happens, (n.d.). https://hal.archives-ouvertes.fr/hal-00122031 (accessed May 7, 2022).[30] E. Mezura-Montes, C.A. Coello Coello, Constraint-handling in nature-inspired numerical optimization: Past, present and future, Swarm Evol. Comput. 1 (2011) 173–194, https://doi.org/10.1016/J.SWEVO.2011.10.001.[31] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intell. 11 (1) (2007) 33–57, https://doi.org/10.1007/S11721-007-0002-0[32] K. Levenberg, A METHOD FOR THE SOLUTION OF CERTAIN NON-LINEAR PROBLEMS IN LEAST SQUARES, Q. Appl. Math. 2 (2) (1944) 164–168.[33] D.W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Indust. Appl. Math. 11 (1963) 431–441, https://doi.org/ 10.1137/0111030.[34] F. Guo, X. Li, Y. Liu, K. Peng, C. Guo, Z. Rao, Catalytic cracking of biomass pyrolysis tar over char-supported catalysts, Energy Convers. Manag. 167 (2018) 81–90, https://doi.org/10.1016/J.ENCONMAN.2018.04.094.[35] A.H. Jawad, R.A. Rashid, M.A.M. Ishak, K. Ismail, Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (Musa sapientum) peels, J. Taibah University Sci. 12 (6) (2018) 809–819.[36] A.H. Jawad, R. Razuan, J.N. Appaturi, L.D. Wilson, Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation, Surfaces and Interfaces 16 (2019) 76–84, https://doi.org/10.1016/J. SURFIN.2019.04.012.[37] J. Georgin, B.S. Marques, E.C. Peres, D. Allasia, G.L. Dotto, Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa), Water Sci. Technol. 77 (2018) 1612–1621, https://doi.org/10.2166/WST.2018.041.[38] J. Georgin, D.S.P. Franco, M. Schadeck Netto, D. Allasia, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto, Transforming shrub waste into a high-efficiency adsorbent: Application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide, J. Environ. Chem. Eng. 9 (1) (2021) 104574[39] J. Georgin, D. Franco, F.C. Drumm, P. Grassi, M.S. Netto, D. Allasia, G.L. Dotto, Powdered biosorbent from the mandacaru cactus (cereus jamacaru) for discontinuous and continuous removal of Basic Fuchsin from aqueous solutions, Powder Technol. 364 (2020) 584–592, https://doi.org/10.1016/J. POWTEC.2020.01.064.[40] P.S. Thue, C.S. Umpierres, E.C. Lima, D.R. Lima, F.M. Machado, G.S. dos Reis, R.S. da Silva, F.A. Pavan, H.N. Tran, Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol, J. Hazard. Mater. 398 (2020), https://doi.org/10.1016/J. JHAZMAT.2020.122903 122903.[41] D.R. Lima, E.C. Lima, P.S. Thue, S.L.P. Dias, F.M. Machado, M.K. Seliem, F. Sher, G. S. dos Reis, M.R. Saeb, J. Rinklebe, Comparison of acidic leaching using a conventional and ultrasound-assisted method for preparation of magneticactivated biochar, J. Environ. Chem. Eng. 9 (5) (2021) 105865.[42] D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, C.S. Umpierres, S.L.P. Dias, H.N. Tran, Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells, Colloids Surfaces A Physicochem. Eng. Asp. 583 (2019), https://doi.org/10.1016/J. COLSURFA.2019.123966 123966.[43] Y. Vieira, J.M.N. dos Santos, J. Georgin, M.L.S. Oliveira, D. Pinto, G.L. Dotto, An overview of forest residues as promising low-cost adsorbents, Gondwana Res. (2021), https://doi.org/10.1016/J.GR.2021.06.018.[44] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/PAC-2014- 1117.[45] J. Leichtweis, S. Silvestri, N. Welter, Y. Vieira, P.I. Zaragoza-Sánchez, A.C. Chávez-Mejía, E. Carissimi, Wastewater containing emerging contaminants treated by residues from the brewing industry based on biochar as a new CuFe2O4 / biochar photocatalyst, Process Saf. Environ. Prot. 150 (2021) 497– 509, https://doi.org/10.1016/J.PSEP.2021.04.041.[46] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703, https://doi.org/ 10.2166/wst.2018.448.[47] P.T. Hernandes, M.L.S. Oliveira, J. Georgin, D.S.P. Franco, D. Allasia, G.L. Dotto, Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus), Environ. Sci. Pollut. Res. 26 (2019) 31924–31933, https://doi.org/10.1007/s11356-019-06353-x[48] Z. Mahdi, A. El Hanandeh, Q.J. Yu, Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions, J. Environ. Chem. Eng. 7 (5) (2019) 103379.[49] A. Subratti, J.L. Vidal, L.J. Lalgee, F.M. Kerton, N.K. Jalsa, Preparation and characterization of biochar derived from the fruit seed of Cedrela odorata L and evaluation of its adsorption capacity with methylene blue, Sustain. Chem. Pharm. 21 (2021), https://doi.org/10.1016/j.scp.2021.100421 100421.[50] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Adsorption processes for water treatment and purification, Adsorpt. Process. Water Treat. Purif. (2017) 1–256, https://doi.org/10.1007/978-3-319-58136-1.[51] J.H. Park, Y.S. Ok, S.H. Kim, J.S. Cho, J.S. Heo, R.D. Delaune, D.C. Seo, Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions, Chemosphere 142 (2016) 77–83, https://doi.org/10.1016/J. CHEMOSPHERE.2015.05.093.[52] Z. Liu, F.S. Zhang, Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass, J. Hazard. Mater. 167 (2009) 933–939, https://doi.org/10.1016/J.JHAZMAT.2009.01.085.[53] Y. Yao, B. Gao, M. Inyang, A.R. Zimmerman, X. Cao, P. Pullammanappallil, L. Yang, Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings, J. Hazard. Mater. 190 (2011) 501– 507, https://doi.org/10.1016/J.JHAZMAT.2011.03.083.[54] H. Qiu, L. Lv, B.C. Pan, Q.J. Zhang, W.M. Zhang, Q.X. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. A 105 (10) (2009) 716–724, https://doi.org/10.1631/JZUS.A0820524.[55] Y. Tong, P.J. McNamara, B.K. Mayer, Adsorption of organic micropollutants onto biochar: a review of relevant kinetics, mechanisms and equilibrium, Environ. Sci. Water Res. Technol. 5 (2019) 821–838, https://doi.org/10.1039/ C8EW00938D.[56] I. Anastopoulos, G.Z. Kyzas, Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena?, J Mol. Liq. 218 (2016) 174– 185, https://doi.org/10.1016/J.MOLLIQ.2016.02.059.[57] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.[58] É.C. Lima, M.H. Dehghani, A. Guleria, F. Sher, R.R. Karri, G.L. Dotto, H.N. Tran, Adsorption: Fundamental aspects and applications of adsorption for effluent treatment, Green Technol. Defluoridation Water. (2021) 41–88, https://doi. org/10.1016/B978-0-323-85768-0.00004-X.[59] K. Zhou, W. Ma, Z. Zeng, X. Ma, X. Xu, Y. Guo, H. Li, L. Li, Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites, Chem. Eng. J. 372 (2019) 1122–1133, https://doi.org/10.1016/J. CEJ.2019.04.218.[60] S. Martinez, Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms, Mater. Chem. Phys. 77 (2003) 97–102, https://doi.org/10.1016/S0254-0584(01)00569-7.[61] J. Beheshtian, M. Kamfiroozi, Z. Bagheri, A. Ahmadi, Theoretical study of hydrogen adsorption on the B12P12 fullerene-like nanocluster, Comput. Mater. Sci. 54 (2012) 115–118, https://doi.org/10.1016/J. COMMATSCI.2011.09.039[62] G. Zhang, C.B. Musgrave, Comparison of DFT methods for molecular orbital eigenvalue calculations, J. Phys. Chem. A 111 (2007) 1554–1561, https://doi. org/10.1021/JP061633O/SUPPL_FILE/JP061633OSI20060315_114649.PDF.[63] G. Job, F. Herrmann, Chemical potential—a quantity in search of recognition, Eur. J. Phys. 27 (2) (2006) 353–371.[64] M. Franco-Pérez, C.A. Polanco-Ramírez, J.L. Gázquez, P.W. Ayers, Local and nonlocal counterparts of global descriptors: the cases of chemical softness and hardness, J. Mol. Model. 24 (2018) 1–8, https://doi.org/10.1007/S00894-018- 3823-4/TABLES/3[65] A.G. Al-Sehemi, A. Irfan, Effect of donor and acceptor groups on radical scavenging activity of phenol by density functional theory, Arab. J. Chem. 10 (2017) S1703–S1710, https://doi.org/10.1016/J.ARABJC.2013.06.019.[66] L.R. Domingo, M.J. Aurell, P. Pérez, R. Contreras, Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions, Tetrahedron. 58 (2002) 4417–4423, https://doi.org/ 10.1016/S0040-4020(02)00410-6.[67] R.G. Parr, L.V. Szentpály, S. Liu, Electrophilicity Index, J. Am. Chem. Soc. 121 (1999) 1922–1924, https://doi.org/10.1021/JA983494X.[68] A. Deepatana, M. Valix, Steric hindrance effect on adsorption of metal–organic complexes onto aminophosphonate chelating resin, Desalination 218 (2008) 297–303, https://doi.org/10.1016/J.DESAL.2007.02.025.[69] A.V. Dordio, S. Miranda, J.P. Prates Ramalho, A.J.P. Carvalho, Mechanisms of removal of three widespread pharmaceuticals by two clay materials, J. Hazard. Mater. 323 (2017) 575–583, https://doi.org/10.1016/J.JHAZMAT.2016.05.091.[70] I.I. Salame, T.J. Bandosz, Role of surface chemistry in adsorption of phenol on activated carbons, J. Colloid Interface Sci. 264 (2003) 307–312, https://doi.org/ 10.1016/S0021-9797(03)00420-X.[71] M. Ben Yahia, S. Knani, H. Dhaou, M.A. Hachicha, A. Jemni, A. Ben Lamine, Modeling and interpretations by the statistical physics formalism of hydrogen adsorption isotherm on LaNi4.75Fe0.25, Int. J. Hydrogen Energy 38 (2013) 11536–11542, https://doi.org/10.1016/J.IJHYDENE.2013.03.083.131361AdsorptionDFT modelingElectrostatic repulsionSta-phy modelingVan der WaalsPublicationORIGINALAn advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon.pdfAn advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon.pdfapplication/pdf1790307https://repositorio.cuc.edu.co/bitstreams/572cc8d0-2bbc-486f-8685-5a3d6a585176/download91e79e9960810966fa3f3832ccf0db4eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/7a146608-07a7-47ac-9c11-d5b5c3e28a09/download73a5432e0b76442b22b026844140d683MD52TEXTAn advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon.pdf.txtAn advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon.pdf.txtExtracted texttext/plain76534https://repositorio.cuc.edu.co/bitstreams/1719f839-d03a-4aaf-8f9f-082db7eb4eff/download626bc86c9a6132f754e21e5310f0179dMD53THUMBNAILAn advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon.pdf.jpgAn advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon.pdf.jpgGenerated Thumbnailimage/jpeg16051https://repositorio.cuc.edu.co/bitstreams/4222e19c-8a00-4775-8186-8837f6090e68/downloade59df4952b3f6aa1cbfd18ec24c8faa3MD5411323/13391oai:repositorio.cuc.edu.co:11323/133912024-09-27 03:01:41.989https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Elsevier B.V. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K