Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia

Históricamente la biomasa residual sólida de palma de aceite ha sido la fuente de energía por excelencia para satisfacer las necesidades energéticas del proceso de extracción de aceite de palma. La biomasa de palma obtiene una atención especial a lo que concierne a su disponibilidad, dada las caract...

Full description

Autores:
Sousa Santos, Vladimir
Barrera Hernández, Juan
Cabello Eras, Juan José
Sagastume, Alexis
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6969
Acceso en línea:
https://hdl.handle.net/11323/6969
https://repositorio.cuc.edu.co/
Palabra clave:
Energía renovable
Biomasa
Biomasa residual de palma
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_c818cecf322f0c0cbe65acb675a153e0
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6969
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia
dc.title.translated.spa.fl_str_mv Estado del arte del proyecto
title Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia
spellingShingle Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia
Energía renovable
Biomasa
Biomasa residual de palma
title_short Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia
title_full Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia
title_fullStr Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia
title_full_unstemmed Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia
title_sort Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia
dc.creator.fl_str_mv Sousa Santos, Vladimir
Barrera Hernández, Juan
Cabello Eras, Juan José
Sagastume, Alexis
dc.contributor.author.spa.fl_str_mv Sousa Santos, Vladimir
Barrera Hernández, Juan
Cabello Eras, Juan José
Sagastume, Alexis
dc.subject.spa.fl_str_mv Energía renovable
Biomasa
Biomasa residual de palma
topic Energía renovable
Biomasa
Biomasa residual de palma
description Históricamente la biomasa residual sólida de palma de aceite ha sido la fuente de energía por excelencia para satisfacer las necesidades energéticas del proceso de extracción de aceite de palma. La biomasa de palma obtiene una atención especial a lo que concierne a su disponibilidad, dada las características de un cultivo perenne, la biomasa se genera durante todo el año, siendo esta una de las principales barreras económicas de los proyectos de energía renovable a partir de biomasa. Colombia como país mayor productor de aceite de palma en América, generando cerca de 3 millones de toneladas de biomasa al año. Considerando los altos volúmenes de producción de biomasa en Colombia, este estudio propone evaluar el potencial energético de la biomasa residual sólida con énfasis en plantas de generación de energía descentralizadas. La primera parte del estudio concierne a la revisión de las características fisicoquímicas de la biomasa residual de palma de aceite. Se desarrolla un inventario de biomasa para determinar los volúmenes de producción de biomasa en las distintas zonas palmeras Se incluye la realización de un inventario de tecnologías de conversión energética maduras comercialmente, con base a la información recolectada se estructuran los escenarios de evaluación considerando las tecnologías existentes. Finalmente se evalúa el potencial energético acorde a la eficiencia de los procesos, el costo de generación de energía y la mitigación de gases de efecto invernadero frente al consumo de fuentes fósiles.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-23T23:30:57Z
dc.date.available.none.fl_str_mv 2020-08-23T23:30:57Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6969
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/6969
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbas, T., Issa, M., & Ilinca, A. (2020). Biomass Cogeneration Technologies: A Review. Journal of Sustainable Bioenergy Systems, 10(01), 1–15. https://doi.org/10.4236/jsbs.2020.101001
Abdullah, N., & Sulaiman, F. (2013). The Oil Palm Wastes in Malysia. In Biomass Now - Sustainable Growth and Use (Vol. 3, pp. 97–103). https://doi.org/10.1016/j.jclepro.2012.04.004
Arrieta, F. R. P., Teixeira, F. N., Yáñez, E., Lora, E., & Castillo, E. (2007). Cogeneration potential in the Columbian palm oil industry: Three case studies. Biomass and Bioenergy, 31(7), 503–511. https://doi.org/10.1016/j.biombioe.2007.01.016
Asadullah, M. (2014). Barriers of commercial power generation using biomass gasification gas: A review. Renewable and Sustainable Energy Reviews, 29, 201–215. https://doi.org/10.1016/j.rser.2013.08.074
Aziz, M. K. A., Morad, N. A., Wambeck, N., & Shah, M. H. (2011). Optimizing palm biomass energy though size reduction. 2011
4th International Conference on Modeling, Simulation and Applied Optimization, ICMSAO 2011, (APRIL). https://doi.org/10.1109/ICMSAO.2011.5775516
Aziz, M., Kurniawan, T., Oda, T., & Kashiwagi, T. (2016). Advanced power generation using biomass wastes from palm oil mills. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2016.11.031
Basu, P. (2006). Combustion and Gasification in Fluidized Beds. In CRC Press. https://doi.org/10.1017/CBO9781107415324.004
Basu, P. (2018). Biomass characteristics. In Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. https://doi.org/10.1016/B978-0-12-812992-0.00003-0
Bevan Nyakuma, B., Johari, A., & Ahmad, A. (2013). Thermochemical analysis of palm oil wastes as fuel for biomass gasification. Jurnal Teknologi (Sciences and Engineering), 62(3), 73–76. https://doi.org/10.11113/jt.v62.1891
Börjesson, M., & Ahlgren, E. O. (2012). Biomass CHP energy systems: A critical assessment. In Comprehensive Renewable Energy (Vol. 5). https://doi.org/10.1016/B978-0-08-087872-0.00508-4
Caillat, S., & Vakkilainen, E. (2013). 9 – Large-scale biomass combustion plants: an overview. In Biomass Combustion Science, Technology and Engineering. https://doi.org/10.1533/9780857097439.3.189
Cala Gaitán, G., & Bernal Castillo, G. (2008). Procesos modernos de extracción de aceite de palma.
Chang, S. H. (2014). An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass and Bioenergy, 62, 174–181. https://doi.org/10.1016/j.biombioe.2014.01.002
Comision de Regulacion de Energia y Gas CREG. (2018). Resolución No. 30. Mme, p. 13. Retrieved from http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191/$FILE/Cre g030-2018.pdf
Congreso de la república de Colombia. Ley 1715 de 2014.
Corley, O. T., & Tinker, J. R. (2003). The Oil Palm. In West African Agriculture (pp. 93–104). https://doi.org/10.1017/CBO9781316530122.010
Dai, L., Wang, Y., Liu, Y., Ruan, R., He, C., Yu, Z., … Tian, X. (2019). Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 107(January), 20–36. https://doi.org/10.1016/j.rser.2019.02.015
Daud, Z. A. M., Kaur, D., & Khosla, P. (2012). 18 – Health and Nutritional Properties of Palm Oil and Its Components. Palm Oil, 545–560. https://doi.org/10.1016/B978-0-9818936-9-3.50021-6
Demirbas, A. (2007). Effects of moisture and hydrogen content on the heating value of fuels. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 29(7), 649–655. https://doi.org/10.1080/009083190957801
Eras, J. J. C., Morejón, M. B., Gutiérrez, A. S., García, A. P., Ulloa, M. C., Martínez, F. J. R., & Rueda-Bayona, J. G. (2019). A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1), 15–25. https://doi.org/10.32479/ijeep.7108
Fedepalma. (2016). Balance económico del sector palmero colombiano en 2015. Boletín Económico, 8. Retrieved from http://web.fedepalma.org/sites/default/files/files/BTE 2016_en baja.pdf
Fedepalma. (2018). Minianuario estadístico 2018. Retrieved from http://www.ift.org.mx/sites/default/files/contenidogeneral/estadisticas/anuarioestadistico2018-111018.pdf
García-Nunez, J. A., Ramírez-Contreras, N. E., Rodríguez, D. T., Silva-Lora, E., Frear, C. S., Stockle, C., & García-Pérez, M. (2016a). Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling, 110, 99–114. https://doi.org/10.1016/j.resconrec.2016.03.022
Garcia-Nunez, J. A., Ramirez-Contreras, N. E., Rodriguez, D. T., Silva-Lora, E., Frear, C. S., Stockle, C., & Garcia-Perez, M. (2016b). Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling, 110, 99–114. https://doi.org/10.1016/j.resconrec.2016.03.022
Garcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., … Garcia-Perez, M. (2016). Evaluation of alternatives for the evolution of palm oil mills into biorefineries. Biomass and Bioenergy, 95, 310–329. https://doi.org/10.1016/j.biombioe.2016.05.020
Gerssen-Gondelach, S. J., Saygin, D., Wicke, B., Patel, M. K., & Faaij, A. P. C. (2014). Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renewable and Sustainable Energy Reviews, 40(April), 964–998. https://doi.org/10.1016/j.rser.2014.07.197
Gómez-Navarro, T., & Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90(March), 131–141. https://doi.org/10.1016/j.rser.2018.03.015
Guercio, A., & Bini, R. (2017). Biomass-fired Organic Rankine Cycle combined heat and power systems. In Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications. https://doi.org/10.1016/B978-0-08-100510-1.00015-6
Hashim, K., Tahiruddin, S., & Asis, A. J. (2012). 8 – Palm and Palm Kernel Oil Production and Processing in Malaysia and Indonesia. Palm Oil, 2008, 235–250. https://doi.org/10.1016/B978-0-9818936-9-3.50011-3
Hossain, M. A., Jewaratnam, J., & Ganesan, P. (2016). Prospect of hydrogen production from oil palm biomass by thermochemical process, A review. International Journal of Hydrogen Energy, 41(38), 16637–16655.
Hu, X., & Gholizadeh, M. (2019). Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, 39(x), 109–143. https://doi.org/10.1016/j.jechem.2019.01.024
Hurskainen, M., & Vainikka, P. (2015). Technology options for large-scale solid-fuel combustion. In Fuel Flexible Energy Generation.
Husain, Z., Zainal, Z. A., & Abdullah, M. Z. (2002). Analysis of biomass-residue-based cogeneration system in palm oil mills. Biomass and Bioenergy, 24(2), 117–124. https://doi.org/10.1016/S0961-9534(02)00101-0
Idris, S. S., Rahman, N. A., & Ismail, K. (2012). Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresource Technology, 123, 581–591. https://doi.org/10.1016/j.biortech.2012.07.065
Index Mundi. (2019). Palm Oil Production by Country in 1000 MT. Retrieved October 11, 2019, from https://www.indexmundi.com/agriculture/?commodity=palm-oil
IRENA. (2018). International Renewable Energy Agency. Renewable Power Generation Costs in 2017. In International Renewable Energy Agency.
Loh, S. K. (2016). The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2016.08.081
Malico, I., Nepomuceno Pereira, R., Gonçalves, A. C., & Sousa, A. M. O. (2019). Current status and future perspectives for energy production from solid biomass in the European industry. Renewable and Sustainable Energy Reviews, 112 (November 2018), 960–977. https://doi.org/10.1016/j.rser.2019.06.022
Mba, O. I., Dumont, M. J., & Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry – A review. Food Bioscience, 10, 26–41. https://doi.org/10.1016/j.fbio.2015.01.003
Minagricultura, & UPRA. (2017). Colombia: 16 millones de hectáreas aptas para palma de aceite. Retrieved May 15, 2020, from Palma de aceite website: https://www.upra.gov.co/sala-de-prensa/noticias/-/asset_publisher/GEKyUuxHYSXZ/content/colombia-16-millones-de-hectareas-aptas-para-palma-de-aceite
Mohammed, M. A. A., Salmiaton, A., Wan Azlina, W. A. K. G., & Mohamad Amran, M. S. (2012). Gasification of oil palm empty fruit bunches: A characterization and kinetic study. Bioresource Technology, 110, 628–636. https://doi.org/10.1016/j.biortech.2012.01.056
Monroy, E. F. C. (2007). Integración energética en el proceso de extracción de aceite de palma. 28, 93–104.
Montero V, J. C., Díaz R, C. A., Guevara T, F. E., Cepeda R, A. H., & Barrera H, J. C. (2013). Modelo para medición de eficiencia real de producción y administración integrada de información en Planta de Beneficio Producción. In Boletin técnico No. 33.
Nanda, S., Mohammad, J., Reddy, S. N., Kozinski, J. A., & Dalai, A. K. (2014). Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 4(2), 157–191. https://doi.org/10.1007/s13399-013-0097-z
Ninduangdee, P., & Kuprianov, V. I. (2014). Combustion of palm kernel shell in a fluidized bed: Optimization of biomass particle size and operating conditions. Energy Conversion and Management, 85, 800–808. https://doi.org/10.1016/j.enconman.2014.01.054
Ninduangdee, P., & Kuprianov, V. I. (2015). Combustion of an oil palm residue with elevated potassium content in a fluidizedbed combustor using alternative bed materials for preventing bed agglomeration. Bioresource Technology, 182, 272–281. https://doi.org/10.1016/j.biortech.2015.01.128
Ninduangdee, P., & Kuprianov, V. I. (2016). A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition. Applied Energy, 176, 34–48. https://doi.org/10.1016/j.apenergy.2016.05.063
Ramirez-Contreras, N. E., Arévalo S, A., & Garcia-Nuñez, J. A. (2015). Inventario de la biomasa disponible en plantas de beneficio para su aprovechamiento y caracterización fisicoquímica de la tusa en Colombia. Revista Palmas, 36(4), 41–54. Retrieved from http://publicaciones.fedepalma.org/index.php/palmas/article/view/11644/11636
Ramirez-Contreras, N. E., Munar-Florez, D. A., Garcia-Nuñez, J. A., Mosquera-Montoya, M., & Faaij, A. P. C. (2020). The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. Journal of Cleaner Production, 258. https://doi.org/10.1016/j.jclepro.2020.120757
Ramirez-Contreras, N. E., Ramírez, Á. S. S., González, E. M. G., & Yañez A., E. E. (2011). Caracterización y manejo de subproductos del beneficio del fruto de palma de aceite. Boletín Técnico No. 30, (30), 1–46. https://doi.org/10.5897/AJB11.3582
Rincon Martinez, J. M., & Silva Lora, E. E. (2015). Bioenergía: Fuentes, conversion y sostenibilidad. Rivera-Méndez, Y. D., Rodríguez, D. T., & Romero, H. M. (2017). Carbon footprint of the production of oil palm (Elaeis guineensis) fresh fruit bunches in Colombia. Journal of Cleaner Production, 149, 743–750. https://doi.org/10.1016/j.jclepro.2017.02.149
Samiran, N. A., Jaafar, M. N. M., Ng, J. H., Lam, S. S., & Chong, C. T. (2016). Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production. Renewable and Sustainable Energy Reviews, 62, 1047–1062. https://doi.org/10.1016/j.rser.2016.04.049
Shafie, S. M., Mahlia, T. M. I., Masjuki, H. H., & Ahmad-Yazid, A. (2012). A review on electricity generation based on biomass residue in Malaysia. Renewable and Sustainable Energy Reviews, 16(8), 5879–5889. https://doi.org/10.1016/j.rser.2012.06.031
Sikarwar, V. S., & Zhao, M. (2017). Biomass Gasification. In Encyclopedia of Sustainable Technologies (Vol. 3). https://doi.org/10.1016/B978-0-12-409548-9.10533-0
SISPA. (2019). Evolución histórica anual del fruto procesado, el aceite de palma y el palmiste extraídos. Retrieved from http://sispa.fedepalma.org/sispaweb/default.aspx?Control=Pages/produccion
Sokhansanj, S. (2011). The Effect of Moisture on Heating Values. Biomass Energy Data Book, (C), 1–5. Retrieved from http://cta.ornl.gov/bedb
Sommart, K., & Pipatmanomai, S. (2011). Assessment and Improvement of Energy Utilization in Crude Palm Oil Mill. 10, 161–166.
Strzalka, R., Schneider, D., & Eicker, U. (2017). Current status of bioenergy technologies in Germany. Renewable and Sustainable Energy Reviews, 72, 801–820. https://doi.org/10.1016/j.rser.2017.01.091
Taylor, G. (2008). Biofuels and the biorefinery concept. Energy Policy, 36(12), 4406–4409. https://doi.org/10.1016/j.enpol.2008.09.069
Unidad de Planeación Minero Energética - UPME. (2018). Proyección de la demanda de energía eléctrica y potencia máxima en Colombia. Retrieved from http://www.siel.gov.co/siel/documentos/documentacion/Demanda/Proyeccion_Demanda_Energia_Electrica_Octubre2015.pdf
USDA. (2018). Oilseeds: World Markets and Trade.
Van Loo, S. (2008). The Handbook of Biomass Combustion and Cofiring.
Wambeck, N. (1999). Sinopsis del proceso de la palma de aceite. 107.
Wolf, J. P., & Dong. (2013). 1 – Biomass combustion for power generation: an introduction. In Biomass Combustion Science, Technology and Engineering. https://doi.org/10.1533/9780857097439.1.3
De la Peña, Y., Bordeth, G., Campo, H., & Murillo, U. (2018). Energías limpias: una oportunidad para salvar el planeta. IJMSOR: Revista Internacional de Ciencias de la Gestión e Investigación de Operaciones, 3(1), 21-25. Obtenido de http://ijmsoridi.com/index.php/ijmsor/article/view/91
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/54adf151-c146-45a4-b506-036c78e24588/download
https://repositorio.cuc.edu.co/bitstreams/23235e4d-f4b2-42b0-8c96-4a4646c4b5ab/download
https://repositorio.cuc.edu.co/bitstreams/59810f85-f66d-4f31-a0c9-b91390961079/download
https://repositorio.cuc.edu.co/bitstreams/4ac3dbb3-8aa7-42d9-8716-4f02819993a1/download
https://repositorio.cuc.edu.co/bitstreams/498002ab-5f17-4484-be2a-261aaaf93d8c/download
bitstream.checksum.fl_str_mv 0f578d89c0e27ae2fb3d2da2bfd96224
934f4ca17e109e0a05eaeaba504d7ce4
e30e9215131d99561d40d6b0abbe9bad
43139019a8b039971dcf3e364e90ef7c
c7c079d5737eec3ea256d957cb5618fb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166864254009344
spelling Sousa Santos, VladimirBarrera Hernández, JuanCabello Eras, Juan JoséSagastume, Alexis2020-08-23T23:30:57Z2020-08-23T23:30:57Z2020https://hdl.handle.net/11323/6969Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Históricamente la biomasa residual sólida de palma de aceite ha sido la fuente de energía por excelencia para satisfacer las necesidades energéticas del proceso de extracción de aceite de palma. La biomasa de palma obtiene una atención especial a lo que concierne a su disponibilidad, dada las características de un cultivo perenne, la biomasa se genera durante todo el año, siendo esta una de las principales barreras económicas de los proyectos de energía renovable a partir de biomasa. Colombia como país mayor productor de aceite de palma en América, generando cerca de 3 millones de toneladas de biomasa al año. Considerando los altos volúmenes de producción de biomasa en Colombia, este estudio propone evaluar el potencial energético de la biomasa residual sólida con énfasis en plantas de generación de energía descentralizadas. La primera parte del estudio concierne a la revisión de las características fisicoquímicas de la biomasa residual de palma de aceite. Se desarrolla un inventario de biomasa para determinar los volúmenes de producción de biomasa en las distintas zonas palmeras Se incluye la realización de un inventario de tecnologías de conversión energética maduras comercialmente, con base a la información recolectada se estructuran los escenarios de evaluación considerando las tecnologías existentes. Finalmente se evalúa el potencial energético acorde a la eficiencia de los procesos, el costo de generación de energía y la mitigación de gases de efecto invernadero frente al consumo de fuentes fósiles.Sousa Santos, Vladimir-will be generated-orcid-0000-0001-8808-1914-600Barrera Hernández, JuanCabello Eras, Juan José-will be generated-orcid-0000-0003-0949-0862-600Sagastume, Alexis-will be generated-orcid-0000-0003-0188-7101-600spaCorporación Universidad de la CostaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energía renovableBiomasaBiomasa residual de palmaEvaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en ColombiaEstado del arte del proyectoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAbbas, T., Issa, M., & Ilinca, A. (2020). Biomass Cogeneration Technologies: A Review. Journal of Sustainable Bioenergy Systems, 10(01), 1–15. https://doi.org/10.4236/jsbs.2020.101001Abdullah, N., & Sulaiman, F. (2013). The Oil Palm Wastes in Malysia. In Biomass Now - Sustainable Growth and Use (Vol. 3, pp. 97–103). https://doi.org/10.1016/j.jclepro.2012.04.004Arrieta, F. R. P., Teixeira, F. N., Yáñez, E., Lora, E., & Castillo, E. (2007). Cogeneration potential in the Columbian palm oil industry: Three case studies. Biomass and Bioenergy, 31(7), 503–511. https://doi.org/10.1016/j.biombioe.2007.01.016Asadullah, M. (2014). Barriers of commercial power generation using biomass gasification gas: A review. Renewable and Sustainable Energy Reviews, 29, 201–215. https://doi.org/10.1016/j.rser.2013.08.074Aziz, M. K. A., Morad, N. A., Wambeck, N., & Shah, M. H. (2011). Optimizing palm biomass energy though size reduction. 20114th International Conference on Modeling, Simulation and Applied Optimization, ICMSAO 2011, (APRIL). https://doi.org/10.1109/ICMSAO.2011.5775516Aziz, M., Kurniawan, T., Oda, T., & Kashiwagi, T. (2016). Advanced power generation using biomass wastes from palm oil mills. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2016.11.031Basu, P. (2006). Combustion and Gasification in Fluidized Beds. In CRC Press. https://doi.org/10.1017/CBO9781107415324.004Basu, P. (2018). Biomass characteristics. In Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. https://doi.org/10.1016/B978-0-12-812992-0.00003-0Bevan Nyakuma, B., Johari, A., & Ahmad, A. (2013). Thermochemical analysis of palm oil wastes as fuel for biomass gasification. Jurnal Teknologi (Sciences and Engineering), 62(3), 73–76. https://doi.org/10.11113/jt.v62.1891Börjesson, M., & Ahlgren, E. O. (2012). Biomass CHP energy systems: A critical assessment. In Comprehensive Renewable Energy (Vol. 5). https://doi.org/10.1016/B978-0-08-087872-0.00508-4Caillat, S., & Vakkilainen, E. (2013). 9 – Large-scale biomass combustion plants: an overview. In Biomass Combustion Science, Technology and Engineering. https://doi.org/10.1533/9780857097439.3.189Cala Gaitán, G., & Bernal Castillo, G. (2008). Procesos modernos de extracción de aceite de palma.Chang, S. H. (2014). An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass and Bioenergy, 62, 174–181. https://doi.org/10.1016/j.biombioe.2014.01.002Comision de Regulacion de Energia y Gas CREG. (2018). Resolución No. 30. Mme, p. 13. Retrieved from http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191/$FILE/Cre g030-2018.pdfCongreso de la república de Colombia. Ley 1715 de 2014.Corley, O. T., & Tinker, J. R. (2003). The Oil Palm. In West African Agriculture (pp. 93–104). https://doi.org/10.1017/CBO9781316530122.010Dai, L., Wang, Y., Liu, Y., Ruan, R., He, C., Yu, Z., … Tian, X. (2019). Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 107(January), 20–36. https://doi.org/10.1016/j.rser.2019.02.015Daud, Z. A. M., Kaur, D., & Khosla, P. (2012). 18 – Health and Nutritional Properties of Palm Oil and Its Components. Palm Oil, 545–560. https://doi.org/10.1016/B978-0-9818936-9-3.50021-6Demirbas, A. (2007). Effects of moisture and hydrogen content on the heating value of fuels. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 29(7), 649–655. https://doi.org/10.1080/009083190957801Eras, J. J. C., Morejón, M. B., Gutiérrez, A. S., García, A. P., Ulloa, M. C., Martínez, F. J. R., & Rueda-Bayona, J. G. (2019). A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1), 15–25. https://doi.org/10.32479/ijeep.7108Fedepalma. (2016). Balance económico del sector palmero colombiano en 2015. Boletín Económico, 8. Retrieved from http://web.fedepalma.org/sites/default/files/files/BTE 2016_en baja.pdfFedepalma. (2018). Minianuario estadístico 2018. Retrieved from http://www.ift.org.mx/sites/default/files/contenidogeneral/estadisticas/anuarioestadistico2018-111018.pdfGarcía-Nunez, J. A., Ramírez-Contreras, N. E., Rodríguez, D. T., Silva-Lora, E., Frear, C. S., Stockle, C., & García-Pérez, M. (2016a). Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling, 110, 99–114. https://doi.org/10.1016/j.resconrec.2016.03.022Garcia-Nunez, J. A., Ramirez-Contreras, N. E., Rodriguez, D. T., Silva-Lora, E., Frear, C. S., Stockle, C., & Garcia-Perez, M. (2016b). Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling, 110, 99–114. https://doi.org/10.1016/j.resconrec.2016.03.022Garcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., … Garcia-Perez, M. (2016). Evaluation of alternatives for the evolution of palm oil mills into biorefineries. Biomass and Bioenergy, 95, 310–329. https://doi.org/10.1016/j.biombioe.2016.05.020Gerssen-Gondelach, S. J., Saygin, D., Wicke, B., Patel, M. K., & Faaij, A. P. C. (2014). Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renewable and Sustainable Energy Reviews, 40(April), 964–998. https://doi.org/10.1016/j.rser.2014.07.197Gómez-Navarro, T., & Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90(March), 131–141. https://doi.org/10.1016/j.rser.2018.03.015Guercio, A., & Bini, R. (2017). Biomass-fired Organic Rankine Cycle combined heat and power systems. In Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications. https://doi.org/10.1016/B978-0-08-100510-1.00015-6Hashim, K., Tahiruddin, S., & Asis, A. J. (2012). 8 – Palm and Palm Kernel Oil Production and Processing in Malaysia and Indonesia. Palm Oil, 2008, 235–250. https://doi.org/10.1016/B978-0-9818936-9-3.50011-3Hossain, M. A., Jewaratnam, J., & Ganesan, P. (2016). Prospect of hydrogen production from oil palm biomass by thermochemical process, A review. International Journal of Hydrogen Energy, 41(38), 16637–16655.Hu, X., & Gholizadeh, M. (2019). Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, 39(x), 109–143. https://doi.org/10.1016/j.jechem.2019.01.024Hurskainen, M., & Vainikka, P. (2015). Technology options for large-scale solid-fuel combustion. In Fuel Flexible Energy Generation.Husain, Z., Zainal, Z. A., & Abdullah, M. Z. (2002). Analysis of biomass-residue-based cogeneration system in palm oil mills. Biomass and Bioenergy, 24(2), 117–124. https://doi.org/10.1016/S0961-9534(02)00101-0Idris, S. S., Rahman, N. A., & Ismail, K. (2012). Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresource Technology, 123, 581–591. https://doi.org/10.1016/j.biortech.2012.07.065Index Mundi. (2019). Palm Oil Production by Country in 1000 MT. Retrieved October 11, 2019, from https://www.indexmundi.com/agriculture/?commodity=palm-oilIRENA. (2018). International Renewable Energy Agency. Renewable Power Generation Costs in 2017. In International Renewable Energy Agency.Loh, S. K. (2016). The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2016.08.081Malico, I., Nepomuceno Pereira, R., Gonçalves, A. C., & Sousa, A. M. O. (2019). Current status and future perspectives for energy production from solid biomass in the European industry. Renewable and Sustainable Energy Reviews, 112 (November 2018), 960–977. https://doi.org/10.1016/j.rser.2019.06.022Mba, O. I., Dumont, M. J., & Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry – A review. Food Bioscience, 10, 26–41. https://doi.org/10.1016/j.fbio.2015.01.003Minagricultura, & UPRA. (2017). Colombia: 16 millones de hectáreas aptas para palma de aceite. Retrieved May 15, 2020, from Palma de aceite website: https://www.upra.gov.co/sala-de-prensa/noticias/-/asset_publisher/GEKyUuxHYSXZ/content/colombia-16-millones-de-hectareas-aptas-para-palma-de-aceiteMohammed, M. A. A., Salmiaton, A., Wan Azlina, W. A. K. G., & Mohamad Amran, M. S. (2012). Gasification of oil palm empty fruit bunches: A characterization and kinetic study. Bioresource Technology, 110, 628–636. https://doi.org/10.1016/j.biortech.2012.01.056Monroy, E. F. C. (2007). Integración energética en el proceso de extracción de aceite de palma. 28, 93–104.Montero V, J. C., Díaz R, C. A., Guevara T, F. E., Cepeda R, A. H., & Barrera H, J. C. (2013). Modelo para medición de eficiencia real de producción y administración integrada de información en Planta de Beneficio Producción. In Boletin técnico No. 33.Nanda, S., Mohammad, J., Reddy, S. N., Kozinski, J. A., & Dalai, A. K. (2014). Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 4(2), 157–191. https://doi.org/10.1007/s13399-013-0097-zNinduangdee, P., & Kuprianov, V. I. (2014). Combustion of palm kernel shell in a fluidized bed: Optimization of biomass particle size and operating conditions. Energy Conversion and Management, 85, 800–808. https://doi.org/10.1016/j.enconman.2014.01.054Ninduangdee, P., & Kuprianov, V. I. (2015). Combustion of an oil palm residue with elevated potassium content in a fluidizedbed combustor using alternative bed materials for preventing bed agglomeration. Bioresource Technology, 182, 272–281. https://doi.org/10.1016/j.biortech.2015.01.128Ninduangdee, P., & Kuprianov, V. I. (2016). A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition. Applied Energy, 176, 34–48. https://doi.org/10.1016/j.apenergy.2016.05.063Ramirez-Contreras, N. E., Arévalo S, A., & Garcia-Nuñez, J. A. (2015). Inventario de la biomasa disponible en plantas de beneficio para su aprovechamiento y caracterización fisicoquímica de la tusa en Colombia. Revista Palmas, 36(4), 41–54. Retrieved from http://publicaciones.fedepalma.org/index.php/palmas/article/view/11644/11636Ramirez-Contreras, N. E., Munar-Florez, D. A., Garcia-Nuñez, J. A., Mosquera-Montoya, M., & Faaij, A. P. C. (2020). The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. Journal of Cleaner Production, 258. https://doi.org/10.1016/j.jclepro.2020.120757Ramirez-Contreras, N. E., Ramírez, Á. S. S., González, E. M. G., & Yañez A., E. E. (2011). Caracterización y manejo de subproductos del beneficio del fruto de palma de aceite. Boletín Técnico No. 30, (30), 1–46. https://doi.org/10.5897/AJB11.3582Rincon Martinez, J. M., & Silva Lora, E. E. (2015). Bioenergía: Fuentes, conversion y sostenibilidad. Rivera-Méndez, Y. D., Rodríguez, D. T., & Romero, H. M. (2017). Carbon footprint of the production of oil palm (Elaeis guineensis) fresh fruit bunches in Colombia. Journal of Cleaner Production, 149, 743–750. https://doi.org/10.1016/j.jclepro.2017.02.149Samiran, N. A., Jaafar, M. N. M., Ng, J. H., Lam, S. S., & Chong, C. T. (2016). Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production. Renewable and Sustainable Energy Reviews, 62, 1047–1062. https://doi.org/10.1016/j.rser.2016.04.049Shafie, S. M., Mahlia, T. M. I., Masjuki, H. H., & Ahmad-Yazid, A. (2012). A review on electricity generation based on biomass residue in Malaysia. Renewable and Sustainable Energy Reviews, 16(8), 5879–5889. https://doi.org/10.1016/j.rser.2012.06.031Sikarwar, V. S., & Zhao, M. (2017). Biomass Gasification. In Encyclopedia of Sustainable Technologies (Vol. 3). https://doi.org/10.1016/B978-0-12-409548-9.10533-0SISPA. (2019). Evolución histórica anual del fruto procesado, el aceite de palma y el palmiste extraídos. Retrieved from http://sispa.fedepalma.org/sispaweb/default.aspx?Control=Pages/produccionSokhansanj, S. (2011). The Effect of Moisture on Heating Values. Biomass Energy Data Book, (C), 1–5. Retrieved from http://cta.ornl.gov/bedbSommart, K., & Pipatmanomai, S. (2011). Assessment and Improvement of Energy Utilization in Crude Palm Oil Mill. 10, 161–166.Strzalka, R., Schneider, D., & Eicker, U. (2017). Current status of bioenergy technologies in Germany. Renewable and Sustainable Energy Reviews, 72, 801–820. https://doi.org/10.1016/j.rser.2017.01.091Taylor, G. (2008). Biofuels and the biorefinery concept. Energy Policy, 36(12), 4406–4409. https://doi.org/10.1016/j.enpol.2008.09.069Unidad de Planeación Minero Energética - UPME. (2018). Proyección de la demanda de energía eléctrica y potencia máxima en Colombia. Retrieved from http://www.siel.gov.co/siel/documentos/documentacion/Demanda/Proyeccion_Demanda_Energia_Electrica_Octubre2015.pdfUSDA. (2018). Oilseeds: World Markets and Trade.Van Loo, S. (2008). The Handbook of Biomass Combustion and Cofiring.Wambeck, N. (1999). Sinopsis del proceso de la palma de aceite. 107.Wolf, J. P., & Dong. (2013). 1 – Biomass combustion for power generation: an introduction. In Biomass Combustion Science, Technology and Engineering. https://doi.org/10.1533/9780857097439.1.3De la Peña, Y., Bordeth, G., Campo, H., & Murillo, U. (2018). Energías limpias: una oportunidad para salvar el planeta. IJMSOR: Revista Internacional de Ciencias de la Gestión e Investigación de Operaciones, 3(1), 21-25. Obtenido de http://ijmsoridi.com/index.php/ijmsor/article/view/91PublicationORIGINALS.U Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia..pdfS.U Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia..pdfapplication/pdf803208https://repositorio.cuc.edu.co/bitstreams/54adf151-c146-45a4-b506-036c78e24588/download0f578d89c0e27ae2fb3d2da2bfd96224MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/23235e4d-f4b2-42b0-8c96-4a4646c4b5ab/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/59810f85-f66d-4f31-a0c9-b91390961079/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILS.U Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia..pdf.jpgS.U Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia..pdf.jpgimage/jpeg64524https://repositorio.cuc.edu.co/bitstreams/4ac3dbb3-8aa7-42d9-8716-4f02819993a1/download43139019a8b039971dcf3e364e90ef7cMD54TEXTS.U Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia..pdf.txtS.U Evaluación del potencial energético de la biomasa residual del procesamiento de la palma de aceite en Colombia..pdf.txttext/plain33819https://repositorio.cuc.edu.co/bitstreams/498002ab-5f17-4484-be2a-261aaaf93d8c/downloadc7c079d5737eec3ea256d957cb5618fbMD5511323/6969oai:repositorio.cuc.edu.co:11323/69692024-09-17 14:19:24.115http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==