Neural networks as tool to improve the intrusion detection system

Nowadays, computer programs affecting computers both locally and network-wide have led to the design and development of different preventive and corrective strategies to remedy computer security problems. This dynamic has been important for the understanding of the structure of attacks and how best...

Full description

Autores:
Esmeral, Ernesto
Mardini, Johan
Salcedo, Dixon
De-La-Hoz-Franco, Emiro
Avendaño, Inirida
Henriquez, Carlos
Tipo de recurso:
Part of book
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8828
Acceso en línea:
https://hdl.handle.net/11323/8828
https://repositorio.cuc.edu.co/
Palabra clave:
GHSOM neural networks
IDS
NSL_KDD
SOM neural networks
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_c7a35ed3613fa5994679e47ba18ecd56
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8828
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Neural networks as tool to improve the intrusion detection system
title Neural networks as tool to improve the intrusion detection system
spellingShingle Neural networks as tool to improve the intrusion detection system
GHSOM neural networks
IDS
NSL_KDD
SOM neural networks
title_short Neural networks as tool to improve the intrusion detection system
title_full Neural networks as tool to improve the intrusion detection system
title_fullStr Neural networks as tool to improve the intrusion detection system
title_full_unstemmed Neural networks as tool to improve the intrusion detection system
title_sort Neural networks as tool to improve the intrusion detection system
dc.creator.fl_str_mv Esmeral, Ernesto
Mardini, Johan
Salcedo, Dixon
De-La-Hoz-Franco, Emiro
Avendaño, Inirida
Henriquez, Carlos
dc.contributor.author.spa.fl_str_mv Esmeral, Ernesto
Mardini, Johan
Salcedo, Dixon
De-La-Hoz-Franco, Emiro
Avendaño, Inirida
Henriquez, Carlos
dc.subject.spa.fl_str_mv GHSOM neural networks
IDS
NSL_KDD
SOM neural networks
topic GHSOM neural networks
IDS
NSL_KDD
SOM neural networks
description Nowadays, computer programs affecting computers both locally and network-wide have led to the design and development of different preventive and corrective strategies to remedy computer security problems. This dynamic has been important for the understanding of the structure of attacks and how best to counteract them, making sure that their impact is less than expected by the attacker. For this research, a simulation was carried out using the DATASET-KDD NSL at 100%, generating an experimental environment, where processes of pre-processing, training, classification, and evaluation of model quality metrics were carried out. Likewise, a comparative analysis of the results obtained after implementing different feature selection techniques (INFO.GAIN, GAIN RATIO, and ONE R), and classification techniques based on neural networks that use an unsupervised learning algorithm based on self-organizing maps (SOM and GHSOM), with the purpose of classifying bi-class network traffic automatically. From the above, a 97.09% hit rate was obtained with 21 features by implementing the GHSOM classifier with 10-fold cross-validation with the ONE R feature selection technique, which would improve the efficiency and performance of Intrusion Detection Systems (IDS).
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-02T20:11:09Z
dc.date.available.none.fl_str_mv 2021-11-02T20:11:09Z
dc.date.issued.none.fl_str_mv 2021-09-17
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_3248
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 03029743
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8828
dc.identifier.doi.spa.fl_str_mv 10.1007/978-3-030-84340-3_10
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 03029743
10.1007/978-3-030-84340-3_10
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8828
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Kimani, K., Oduol, V., Langat, K.: Cyber security challenges for IoT-based smart grid networks. Int. J. Crit. Infrastruct. Protect. 25, 36–49 (2019)
Guerrero, C.D., Salcedo, D., Lamos, H.: A clustering approach to reduce the available bandwidth estimation error. IEEE Lat. Am. Trans. 11(3), 927–932 (2013)
Kumar Kundu, M., Mohapatra, D.P., Konar, A., Chakraborty, A. (eds.): Advanced Computing, Networking and Informatics- Volume 1. SIST, vol. 27. Springer, Cham (2014).
Ibrahim, H.E., Badr, S.M., Shaheen, M.A.: Adaptive layered approach using machine learning techniques with gain ratio for intrusion detection systems. arXiv preprint arXiv:1210.7650 (2012)
Barletta, V.S., Caivano, D., Nannavecchia, A., Scalera, M.: Intrusion detection for in-vehicle communication networks: an unsupervised Kohonen SOM approach. Future Internet 12(7), 119 (2020)
Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11(1), 63–90 (1993)
Kohonen, T.: Analysis of a simple self-organizing process. Biol. Cybern. 44(2), 135–140 (1982)
Dittenbach, M., Merkl, D., Rauber, A.: Organizing and exploring high-dimensional data with the growing hierarchical self-organizing map. In: FSKD, pp. 626–630 (2002)
Sánchez-maroño, V.B.N.: A review of feature selection methods on synthetic data. Knowl. Inf. Syst. 34, 483–519 (2013).
Spolâ, N., Monard, M.C.: Label construction for multi-label feature selection (2014).
Kaur, R., Kumar, G., Kumar, K.: A comparative study of feature selection techniques for intrusion detection. In: 2nd International Conference on Computing for Sustainable Global Development (2015)
Singh, R., Kumar, H., Singla, R.K.: Analysis of feature selection techniques for network traffic dataset. In: 2013 International Conference on Machine Intelligence and Research Advancement (ICMIRA), pp. 42–46. IEEE (2013)
Ghosh, M., Guha, R., Sarkar, R., Abraham, A.: A wrapper-filter feature selection technique based on ant colony optimization. Neural Comput. Appl. 32, 7839–7857 (2019)
Ali, M.: An ensemble-based feature selection methodology for case-based learning. Doctoral dissertation, University of Tasmania (2018)
Osanaiye, O., Cai, H., Choo, K.-K., Dehghantanha, A., Xu, Z., Dlodlo, M.: Ensemble-based multi-filter feature selection method for DDoS detection in cloud computing. EURASIP J. Wirel. Commun. Netw. 2016(1), 1 (2016).
Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A review of feature selection methods on synthetic data. Knowl. Inf. Syst. 34(3), 483–519 (2013).
Enache, A.-C., Sgarciu, V.: Anomaly intrusions detection based on support vector machines with bat algorithm. In: 2014 18th International Conference on System Theory, Control and Computing (ICSTCC), pp. 856–861 (2014).
Ferles, C., Papanikolaou, Y., Naidoo, K.J.: Denoising autoencoder self-organizing map (DASOM). Neural Netw. 105, 112–131 (2018)
Dai, J., Xu, Q.: Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification. Appl. Soft Comput. 13(1), 211–221 (2013)
Aranda, Y.R., Sotolongo, A.R.: Integración de los algoritmos de minería de datos 1R, PRISM e ID3 a PostgreSQL. JISTEM-J. Inf. Syst. Technol. Manage. 10(2), 389–406 (2013)
Chen, A.M., Lu, H.M., Hecht-Nielsen, R.: Sobre la geometría de las superficies de error de red neuronal de avance. Cálculo Neuronal 5(6), 910–927 (1993)
Chiu, C. H., Chen, J.J., Yu, F.: An effective distributed ghsom algorithm for unsupervised clustering on big data. In: 2017 IEEE International Congress on Big Data (BigData Congress), pp. 297–304 (2017)
Kohonen, T.: Associative Memory: A System-Theoretical Approach, vol. 17. Springer, Heidelberg (2012)
Kohonen, T.: Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013)
De La Hoz Franco, E., Ortiz Garcia, A., Ortega Lopera, J., De La Hoz Correa, E., Mendoza Palechor, F.: Implementation of an intrusion detection system based on self organizing map. J. Theor. Appl. Inf. Technol. 71(3), 324–334 (2015)
Rauber, A., Merkl, D., Dittenbach, M.: The GHSOM Architecture and Training Process. Department of Software Technology, Vienna University of Technology (2016)
Dittenbach, M., Merkl, D., Rauber, A.: The growing hierarchical self-organizing map. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, vol. 6, pp. 15–19. IEEE (2000)
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv International Conference on Computer Information Systems and Industrial Management CISIM 2021: Computer Information Systems and Industrial Management
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-030-84340-3_10
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/20e5a049-d8ba-4927-8f45-b685eea2ebd3/download
https://repositorio.cuc.edu.co/bitstreams/a8ef98ea-99ac-4a45-b451-be301833ebf4/download
https://repositorio.cuc.edu.co/bitstreams/e627d6f0-975b-4a97-8ff3-7dcf09d29f74/download
https://repositorio.cuc.edu.co/bitstreams/a3591ad1-789d-4d8c-85c3-a733bc9ea31a/download
https://repositorio.cuc.edu.co/bitstreams/e883b2b7-8772-4f64-8421-980f200966ac/download
bitstream.checksum.fl_str_mv 6a5dbbd5550546f5543921a4f4b3079e
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
a84a1875dae9b9feffd9ee9a46f2c5df
4a5ce71eb967f762a48740494789ddac
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760722047139840
spelling Esmeral, ErnestoMardini, JohanSalcedo, DixonDe-La-Hoz-Franco, EmiroAvendaño, IniridaHenriquez, Carlos2021-11-02T20:11:09Z2021-11-02T20:11:09Z2021-09-1703029743https://hdl.handle.net/11323/882810.1007/978-3-030-84340-3_10Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Nowadays, computer programs affecting computers both locally and network-wide have led to the design and development of different preventive and corrective strategies to remedy computer security problems. This dynamic has been important for the understanding of the structure of attacks and how best to counteract them, making sure that their impact is less than expected by the attacker. For this research, a simulation was carried out using the DATASET-KDD NSL at 100%, generating an experimental environment, where processes of pre-processing, training, classification, and evaluation of model quality metrics were carried out. Likewise, a comparative analysis of the results obtained after implementing different feature selection techniques (INFO.GAIN, GAIN RATIO, and ONE R), and classification techniques based on neural networks that use an unsupervised learning algorithm based on self-organizing maps (SOM and GHSOM), with the purpose of classifying bi-class network traffic automatically. From the above, a 97.09% hit rate was obtained with 21 features by implementing the GHSOM classifier with 10-fold cross-validation with the ONE R feature selection technique, which would improve the efficiency and performance of Intrusion Detection Systems (IDS).Esmeral, Ernesto-will be generated-orcid-0000-0002-7526-8349-600Mardini, JohanSalcedo, Dixon-will be generated-orcid-0000-0002-3762-8462-600De-La-Hoz-Franco, Emiro-will be generated-orcid-0000-0002-4926-7414-600Avendaño, IniridaHenriquez, Carlosapplication/pdfengInternational Conference on Computer Information Systems and Industrial Management CISIM 2021: Computer Information Systems and Industrial ManagementCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2GHSOM neural networksIDSNSL_KDDSOM neural networksNeural networks as tool to improve the intrusion detection systemCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttp://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/acceptedVersionhttps://link.springer.com/chapter/10.1007/978-3-030-84340-3_10Kimani, K., Oduol, V., Langat, K.: Cyber security challenges for IoT-based smart grid networks. Int. J. Crit. Infrastruct. Protect. 25, 36–49 (2019)Guerrero, C.D., Salcedo, D., Lamos, H.: A clustering approach to reduce the available bandwidth estimation error. IEEE Lat. Am. Trans. 11(3), 927–932 (2013)Kumar Kundu, M., Mohapatra, D.P., Konar, A., Chakraborty, A. (eds.): Advanced Computing, Networking and Informatics- Volume 1. SIST, vol. 27. Springer, Cham (2014).Ibrahim, H.E., Badr, S.M., Shaheen, M.A.: Adaptive layered approach using machine learning techniques with gain ratio for intrusion detection systems. arXiv preprint arXiv:1210.7650 (2012)Barletta, V.S., Caivano, D., Nannavecchia, A., Scalera, M.: Intrusion detection for in-vehicle communication networks: an unsupervised Kohonen SOM approach. Future Internet 12(7), 119 (2020)Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11(1), 63–90 (1993)Kohonen, T.: Analysis of a simple self-organizing process. Biol. Cybern. 44(2), 135–140 (1982)Dittenbach, M., Merkl, D., Rauber, A.: Organizing and exploring high-dimensional data with the growing hierarchical self-organizing map. In: FSKD, pp. 626–630 (2002)Sánchez-maroño, V.B.N.: A review of feature selection methods on synthetic data. Knowl. Inf. Syst. 34, 483–519 (2013).Spolâ, N., Monard, M.C.: Label construction for multi-label feature selection (2014).Kaur, R., Kumar, G., Kumar, K.: A comparative study of feature selection techniques for intrusion detection. In: 2nd International Conference on Computing for Sustainable Global Development (2015)Singh, R., Kumar, H., Singla, R.K.: Analysis of feature selection techniques for network traffic dataset. In: 2013 International Conference on Machine Intelligence and Research Advancement (ICMIRA), pp. 42–46. IEEE (2013)Ghosh, M., Guha, R., Sarkar, R., Abraham, A.: A wrapper-filter feature selection technique based on ant colony optimization. Neural Comput. Appl. 32, 7839–7857 (2019)Ali, M.: An ensemble-based feature selection methodology for case-based learning. Doctoral dissertation, University of Tasmania (2018)Osanaiye, O., Cai, H., Choo, K.-K., Dehghantanha, A., Xu, Z., Dlodlo, M.: Ensemble-based multi-filter feature selection method for DDoS detection in cloud computing. EURASIP J. Wirel. Commun. Netw. 2016(1), 1 (2016).Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A review of feature selection methods on synthetic data. Knowl. Inf. Syst. 34(3), 483–519 (2013).Enache, A.-C., Sgarciu, V.: Anomaly intrusions detection based on support vector machines with bat algorithm. In: 2014 18th International Conference on System Theory, Control and Computing (ICSTCC), pp. 856–861 (2014).Ferles, C., Papanikolaou, Y., Naidoo, K.J.: Denoising autoencoder self-organizing map (DASOM). Neural Netw. 105, 112–131 (2018)Dai, J., Xu, Q.: Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification. Appl. Soft Comput. 13(1), 211–221 (2013)Aranda, Y.R., Sotolongo, A.R.: Integración de los algoritmos de minería de datos 1R, PRISM e ID3 a PostgreSQL. JISTEM-J. Inf. Syst. Technol. Manage. 10(2), 389–406 (2013)Chen, A.M., Lu, H.M., Hecht-Nielsen, R.: Sobre la geometría de las superficies de error de red neuronal de avance. Cálculo Neuronal 5(6), 910–927 (1993)Chiu, C. H., Chen, J.J., Yu, F.: An effective distributed ghsom algorithm for unsupervised clustering on big data. In: 2017 IEEE International Congress on Big Data (BigData Congress), pp. 297–304 (2017)Kohonen, T.: Associative Memory: A System-Theoretical Approach, vol. 17. Springer, Heidelberg (2012)Kohonen, T.: Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013)De La Hoz Franco, E., Ortiz Garcia, A., Ortega Lopera, J., De La Hoz Correa, E., Mendoza Palechor, F.: Implementation of an intrusion detection system based on self organizing map. J. Theor. Appl. Inf. Technol. 71(3), 324–334 (2015)Rauber, A., Merkl, D., Dittenbach, M.: The GHSOM Architecture and Training Process. Department of Software Technology, Vienna University of Technology (2016)Dittenbach, M., Merkl, D., Rauber, A.: The growing hierarchical self-organizing map. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, vol. 6, pp. 15–19. IEEE (2000)PublicationORIGINALNeural Networks as Tool to Improve the Intrusion Detection System.pdfNeural Networks as Tool to Improve the Intrusion Detection System.pdfapplication/pdf408408https://repositorio.cuc.edu.co/bitstreams/20e5a049-d8ba-4927-8f45-b685eea2ebd3/download6a5dbbd5550546f5543921a4f4b3079eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a8ef98ea-99ac-4a45-b451-be301833ebf4/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e627d6f0-975b-4a97-8ff3-7dcf09d29f74/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILNeural Networks as Tool to Improve the Intrusion Detection System.pdf.jpgNeural Networks as Tool to Improve the Intrusion Detection System.pdf.jpgimage/jpeg44537https://repositorio.cuc.edu.co/bitstreams/a3591ad1-789d-4d8c-85c3-a733bc9ea31a/downloada84a1875dae9b9feffd9ee9a46f2c5dfMD54TEXTNeural Networks as Tool to Improve the Intrusion Detection System.pdf.txtNeural Networks as Tool to Improve the Intrusion Detection System.pdf.txttext/plain1539https://repositorio.cuc.edu.co/bitstreams/e883b2b7-8772-4f64-8421-980f200966ac/download4a5ce71eb967f762a48740494789ddacMD5511323/8828oai:repositorio.cuc.edu.co:11323/88282024-09-17 10:48:15.29http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==