Biocompatible nanoporous carbons as a carrier system for controlled release of cephalexin
An ordered nanoporous carbon (ONC) was synthesized by the hard-template method and then superficially modified with amino groups from 3-aminopropyltrietoxisilane (ONC-A). Both carbons, ONC and ONC-A, were characterized and tested as carriers of a high-frequency dosing drug such as cephalexin (CFX)....
- Autores:
-
Montiel-Centeno, Kiara
García-Villén, Fátima
Barrera, Deicy
Amaya-Roncancio, Sebastian
Sánchez-Espejo, Rita
Arroyo Gómez, José Joaquín
Sandri, Giuseppina
Viseras, César
Sapag, Karim
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10804
- Acceso en línea:
- https://hdl.handle.net/11323/10804
https://repositorio.cuc.edu.co/
- Palabra clave:
- Adsorption
Amino-functionalization
Biocompatibility
Cephalexin
Controlled drug release
Ordered nanoporous carbon
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_c78b0e7a8161fe53bbba77ce0c1318f5 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10804 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Biocompatible nanoporous carbons as a carrier system for controlled release of cephalexin |
title |
Biocompatible nanoporous carbons as a carrier system for controlled release of cephalexin |
spellingShingle |
Biocompatible nanoporous carbons as a carrier system for controlled release of cephalexin Adsorption Amino-functionalization Biocompatibility Cephalexin Controlled drug release Ordered nanoporous carbon |
title_short |
Biocompatible nanoporous carbons as a carrier system for controlled release of cephalexin |
title_full |
Biocompatible nanoporous carbons as a carrier system for controlled release of cephalexin |
title_fullStr |
Biocompatible nanoporous carbons as a carrier system for controlled release of cephalexin |
title_full_unstemmed |
Biocompatible nanoporous carbons as a carrier system for controlled release of cephalexin |
title_sort |
Biocompatible nanoporous carbons as a carrier system for controlled release of cephalexin |
dc.creator.fl_str_mv |
Montiel-Centeno, Kiara García-Villén, Fátima Barrera, Deicy Amaya-Roncancio, Sebastian Sánchez-Espejo, Rita Arroyo Gómez, José Joaquín Sandri, Giuseppina Viseras, César Sapag, Karim |
dc.contributor.author.none.fl_str_mv |
Montiel-Centeno, Kiara García-Villén, Fátima Barrera, Deicy Amaya-Roncancio, Sebastian Sánchez-Espejo, Rita Arroyo Gómez, José Joaquín Sandri, Giuseppina Viseras, César Sapag, Karim |
dc.subject.proposal.eng.fl_str_mv |
Adsorption Amino-functionalization Biocompatibility Cephalexin Controlled drug release Ordered nanoporous carbon |
topic |
Adsorption Amino-functionalization Biocompatibility Cephalexin Controlled drug release Ordered nanoporous carbon |
description |
An ordered nanoporous carbon (ONC) was synthesized by the hard-template method and then superficially modified with amino groups from 3-aminopropyltrietoxisilane (ONC-A). Both carbons, ONC and ONC-A, were characterized and tested as carriers of a high-frequency dosing drug such as cephalexin (CFX). Density functional theory calculations were used to study the interactions between ONC and the amino groups of ONC-A and CFX. Finally, the biocompatibility of human colon carcinoma (Caco-2) cells and in vitro release kinetics at gastric and intestinal pH were evaluated. The results show that drug loading capacity was higher in ONC than in ONC-A, which was associated with a localized increase in adsorption energy and a decrease in the textural properties on the surface of the ONC-A sample. Both carbon materials showed cell viability above 80 %, even at high concentrations (1000 µg mL−1). The CFX release profiles of both carbons reached their maximum at 12 h, whereas the rapid release of pure CFX at gastric and intestinal pH was 30 min. The release mechanisms obeyed the Weibull model governed by Fickian diffusion, influenced by both porosity and functional groups in ONC and ONC-A. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12 |
dc.date.accessioned.none.fl_str_mv |
2024-03-01T15:55:20Z |
dc.date.available.none.fl_str_mv |
2024-12 2024-03-01T15:55:20Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Kiara Montiel-Centeno, Fátima García-Villén, Deicy Barrera, Sebastian Amaya-Roncancio, Rita Sánchez-Espejo, José J. Arroyo-Gómez, Giuseppina Sandri, César Viseras, Karim Sapag, Biocompatible nanoporous carbons as a carrier system for controlled release of cephalexin, Colloids and Surfaces B: Biointerfaces, Volume 220, 2022, 112937, ISSN 0927-7765, https://doi.org/10.1016/j.colsurfb.2022.112937 |
dc.identifier.issn.spa.fl_str_mv |
0927-7765 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10804 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.colsurfb.2022.112937 |
dc.identifier.eissn.spa.fl_str_mv |
1873-4367 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC – Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Kiara Montiel-Centeno, Fátima García-Villén, Deicy Barrera, Sebastian Amaya-Roncancio, Rita Sánchez-Espejo, José J. Arroyo-Gómez, Giuseppina Sandri, César Viseras, Karim Sapag, Biocompatible nanoporous carbons as a carrier system for controlled release of cephalexin, Colloids and Surfaces B: Biointerfaces, Volume 220, 2022, 112937, ISSN 0927-7765, https://doi.org/10.1016/j.colsurfb.2022.112937 0927-7765 10.1016/j.colsurfb.2022.112937 1873-4367 Corporación Universidad de la Costa REDICUC – Repositorio CUC |
url |
https://hdl.handle.net/11323/10804 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Colloids and Surfaces B: Biointerfaces |
dc.relation.references.spa.fl_str_mv |
[1] J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres, L. S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.S. Shin, Nano based drug delivery systems: recent developments and future prospects, J. Nanobiotechnol. 16 (2018) 1–33, https:// doi.org/10.1186/s12951-018-0392-8. [2] E. Garbayo, S. Pascual-Gil, C. Rodríguez-Nogales, L. Saludas, A.E.-H. de Mendoza, M.J. Blanco-Prieto, Nanomedicine and drug delivery systems in cancer and regenerative medicine, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12 (2020), e1637, https://doi.org/10.1002/WNAN.1637. [3] A.C. de J. Oliveira, L.L. Chaves, F. de O.S. Ribeiro, L.R.M. de Lima, T.C. Oliveira, F. García-Vill´en, C. Viseras, R.C.M. de Paula, P.J. Rolim-Neto, F. Hallwass, E. C. Silva-Filho, D. Alves da Silva, J.L. Soares-Sobrinho, M.F. de L.R. Soares, Microwave-initiated rapid synthesis of phthalated cashew gum for drug delivery systems, Carbohydr. Polym. 254 (2020), 117226, https://doi.org/10.1016/j. carbpol.2020.117226. [4] A. Borrego-S´ anchez, R. Sanchez-Espejo, ´ F. García-Vill´en, C. Viseras, C. Ignacio Sainz-Díaz, Praziquantel–clays as accelerated release systems to enhance the low solubility of the drug, Pharmaceutics 12 (2020) 1–16, https://doi.org/10.3390/ pharmaceutics12100914. [5] D.R. Kryscio, N.A. Peppas, Mimicking biological delivery through feedbackcontrolled drug release systems based on molecular imprinting, AIChE J. 55 (2009) 1311–1324, https://doi.org/10.1002/AIC.11779. [6] R.R. Castillo, D. Lozano, B. Gonzalez, ´ M. Manzano, I. Izquierdo-Barba, M. ValletRegí, Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update, Expert Opin. Drug Deliv. 16 (2019) 415–439, https://doi. org/10.1080/17425247.2019.1598375. [7] T. Popova, B. Tzankov, C. Voycheva, I. Spassova, D. Kovacheva, S. Tzankov, D. Aluani, V. Tzankova, N. Lambov, Mesoporous silica MCM-41 and HMS as advanced drug delivery carriers for bicalutamide, J. Drug Deliv. Sci. Technol. 62 (2021), 102340, https://doi.org/10.1016/j.jddst.2021.102340. [8] Q. Zhao, Y. Lin, N. Han, X. Li, H. Geng, X. Wang, Y. Cui, S. Wang, Mesoporous carbon nanomaterials in drug delivery and biomedical application, Drug Deliv. 24 (2017) 94–107, https://doi.org/10.1080/10717544.2017.1399300. [9] M.I. Avila, ´ N. Alonso-Morales, J.A. Baeza, J.J. Rodríguez, M.A. Gilarranz, High load drug release systems based on carbon porous nanocapsule carriers. Ibuprofen case study, J. Mater. Chem. B 8 (2020) 5293–5304, https://doi.org/10.1039/ d0tb00329h. [10] K. Montiel-Centeno, D. Barrera, J. Villarroel-Rocha, M.S. Moreno, K. Sapag, Hierarchical nanostructured carbons as CO2 adsorbents, Adsorption 25 (2019) 1287–1297, https://doi.org/10.1007/s10450-019-00089-3. [11] M. Gisbert-Garzar´ an, J.C. Berkmann, D. Giasafaki, D. Lozano, K. Spyrou, M. Manzano, T. Steriotis, G.N. Duda, K. Schmidt-Bleek, G. Charalambopoulou, M. Vallet-Regí, Engineered pH-responsive mesoporous carbon nanoparticles for drug delivery, ACS Appl. Mater. Interfaces 12 (2020) 14946–14957, https://doi. org/10.1021/acsami.0c01786. [12] X. Huang, S. Wu, X. Du, Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release, Carbon 101 (2016) 135–142, https://doi.org/10.1016/j.carbon.2016.01.094. [13] W. Shang-Yu, H. Hong-Zhi, Q. Xiang-Cheng, Z. Zhi-Cai, S. Zeng-Wu, Recent advances of drug delivery nanocarriers in osteosarcoma treatment, J. Cancer 11 (2020) 69, https://doi.org/10.7150/JCA.36588. [14] M.F. Gencoglu, A. Spurri, M. Franko, J. Chen, D.K. Hensley, C.L. Heldt, D. Saha, Biocompatibility of soft-templated mesoporous carbons, ACS Appl. Mater. Interfaces 6 (2014) 15068–15077, https://doi.org/10.1021/am503076u. [15] R. Garriga, T. Herrero-Continente, M. Palos, V.L. Cebolla, J. Osada, E. Munoz, ˜ M. J. Rodríguez-Yoldi, Toxicity of carbon nanomaterials and their potential application as drug delivery systems: in vitro studies in caco-2 and mcf-7 cell lines, Nanomaterials 10 (2020) 1–21, https://doi.org/10.3390/nano10081617. [16] M.R. Benzigar, S.N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahily, A. Vinu, Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications, Chem. Soc. Rev. 47 (2018) 2680–2721, https://doi.org/10.1039/c7cs00787f. [17] Z.P. Hu, J.T. Ren, D. Yang, Z. Wang, Z.Y. Yuan, Mesoporous carbons as metal-free catalysts for propane dehydrogenation: effect of the pore structure and surface property, Chin. J. Catal. 40 (2019) 1385–1394, https://doi.org/10.1016/S1872- 2067(19)63334-6. [18] Y.Y. Hiu, C. H-C, D. H, Z. X, Carbon Nanomaterials for Bioimaging, Bioanalysis, and Therapy, first ed., John Wiley & Sons, Ltd, Chennai, India, 2019. [19] M.R. Mananghaya, G.N. Santos, D. Yu, Solubility of aminotriethylene glycol functionalized single wall carbon nanotubes: a density functional based tight binding molecular dynamics study, J. Comput. Chem. 40 (2019) 952–958, https:// doi.org/10.1002/jcc.25776. [20] V.T. Le, C.L. Ngo, Q.T. Le, T.T. Ngo, D.N. Nguyen, M.T. Vu, Surface modification and functionalization of carbon nanotube with some organic compounds, Adv. Nat. Sci. Nanosci. Nanotechnol. 4 (2013), https://doi.org/10.1088/2043-6262/4/3/ 035017. [21] T. Coccini, E. Roda, D.A. Sarigiannis, P. Mustarelli, E. Quartarone, A. Profumo, L. Manzo, Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells, Toxicology 269 (2010) 41–53, https://doi.org/10.1016/J. TOX.2010.01.005. [22] M.R. Mananghaya, G.N. Santos, D.N. Yu, Solubility of amide functionalized single wall carbon nanotubes: a quantum mechanical study, J. Mol. Liq. 242 (2017) 1208–1214, https://doi.org/10.1016/J.MOLLIQ.2017.07.107. [23] D. Saha, A. Spurri, J. Chen, D.K. Hensley, Controlled release of alendronate from nitrogen-doped mesoporous carbon, Microporous Mesoporous Mater. 229 (2016) 8–13, https://doi.org/10.1016/J.MICROMESO.2016.04.014. [24] J. Goscianska, A. Ejsmont, A. Kubiak, D. Ludowicz, A. Stasiłowicz, J. CieleckaPiontek, Amine-grafted mesoporous carbons as benzocaine-delivery platforms, Materials (2021), https://doi.org/10.3390/ma14092188. [25] F. S´ anchez-Sanchez, ´ A. Su´ arez-García, J.M.D. Martínez-Alonso, Tascon, ´ pHresponsive ordered mesoporous carbons for controlled ibuprofen release, Carbon 94 (2015) 152–159, https://doi.org/10.1016/J.CARBON.2015.06.062. [26] P. Zhao, L. Wang, C. Sun, T. Jiang, J. Zhang, Q. Zhang, J. Sun, Y. Deng, S. Wang, Uniform mesoporous carbon as a carrier for poorly water soluble drug and its cytotoxicity study, Eur. J. Pharm. Biopharm. 80 (2012) 535–543, https://doi.org/ 10.1016/j.ejpb.2011.12.002. [27] A.A. Salarian, Y. Bahari Mollamahale, Z. Hami, M. Soltani-Rezaee-Rad, Cephalexin nanoparticles: synthesis, cytotoxicity and their synergistic antibacterial study in combination with silver nanoparticles, Mater. Chem. Phys. 198 (2017) 125–130, https://doi.org/10.1016/j.matchemphys.2017.05.059. [28] D. Kundu, T. Banerjee, Development of microcrystalline cellulose based hydrogels for the in vitro delivery of Cephalexin, Heliyon 6 (2020), e03027, https://doi.org/ 10.1016/j.heliyon.2019.e03027. [29] M. Legnoverde, I. Jim´enez-Morales, A. Jimenez-Morales, E. Rodriguez- Castellon, E. Basaldella, Modified silica matrices for controlled release of cephalexin, Med. Chem 9 (2013) 672–680, https://doi.org/10.2174/1573406411309050006. [30] M.S. Legnoverde, S. Simonetti, E.I. Basaldella, Influence of pH on cephalexin adsorption onto SBA-15 mesoporous silica: theoretical and experimental study, Appl. Surf. Sci. 300 (2014) 37–42, https://doi.org/10.1016/j.apsusc.2014.01.198. [31] K. Montiel-Centeno, D. Barrera, F. García-Vill´en, R. S´ anchez-Espejo, A. BorregoSanchez, ´ E. Rodríguez-Castellon, ´ G. Sandri, C. Viseras, K. Sapag, Cephalexin loading and controlled release studies on mesoporous silica functionalized with amino groups, J. Drug Deliv. Sci. Technol. 72 (2022), 103348, https://doi.org/ 10.1016/J.JDDST.2022.103348. [32] K. Montiel-Centeno, D. Barrera, J. Villarroel-Rocha, J.J. Arroyo-Gomez, ´ M. S. Moreno, K. Sapag, CMK-3 nanostructured carbon: effect of temperature and time carbonization on textural properties and H2 storage, Chem. Eng. Commun. 206 (2019) 1581–1595, https://doi.org/10.1080/00986445.2019.1615469. [33] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865, https://doi.org/10.1103/ PhysRevLett.77.3865. [34] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method, Phys. Rev. B 59 (1999) 1758, https://doi.org/10.1103/ PhysRevB.59.1758. [35] D. Barrera, M. D´ avila, V. Cornette, J.C. Alexandre De Oliveira, R.H. Lopez, ´ K. Sapag, Pore size distribution of ordered nanostructured carbon CMK-3 by means of experimental techniques and Monte Carlo simulations, Microporous Mesoporous Mater. 180 (2013) 71–78, https://doi.org/10.1016/j.micromeso.2013.06.028. [36] S. Zhu, C. Chen, Z. Chen, X. Liu, Y. Li, Y. Shi, D. Zhang, Thermo-responsive polymer-functionalized mesoporous carbon for controlled drug release, Mater. Chem. Phys. 126 (2010) 357–363, https://doi.org/10.1016/j. matchemphys.2010.11.013. [37] Y. Wang, Q. He, H. Qu, X. Zhang, J. Guo, J. Zhu, G. Zhao, H.A. Colorado, J. Yu, L. Sun, S. Bhana, M.A. Khan, X. Huang, D.P. Young, H. Wang, X. Wang, S. Wei, Z. Guo, Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis, J. Mater. Chem. C 2 (2014) 9478–9488, https:// doi.org/10.1039/c4tc01351d. [38] J. Goscianska, A. Olejnik, Dispersion stability of the aminosilane-grafted mesoporous carbons in different solvents, Microporous Mesoporous Mater. 265 (2018) 149–161, https://doi.org/10.1016/j.micromeso.2018.02.009. [39] H. Zhou, J. Wang, J. Zhuang, Q. Liu, A Covalent Route for Efficient Surface Modification of Ordered Mesoporous Carbon as High Performance Microwave Absorbers, (n.d.). https://doi.org/10.1039/c3nr04379g. [40] X. Li, C. Liu, S. Wang, J. Jiao, D. Di, T. Jiang, Q. Zhao, S. Wang, Poly(acrylic acid) conjugated hollow mesoporous carbon as a dual-stimuli triggered drug delivery system for chemo-photothermal synergistic therapy, Mater. Sci. Eng. C 71 (2017) 594–603, https://doi.org/10.1016/j.msec.2016.10.037. [41] W. Zhang, W. Teng, Z. Wu, J. Fan, D. Zhao, W. Teng, Z. Wu, J. Fan, W.-X. Zhang, D. Zhao, Amino-functionalized ordered mesoporous carbon for the separation of toxic microcystin-LR, J. Mater. Chem. A 00 (2015) 1–3, https://doi.org/10.1039/ C5TA05320J. [42] R. Guo, W. Yue, Y. Ren, W. Zhou, Hierarchical structured graphene/metal oxide/ porous carbon composites as anode materials for lithium-ion batteries, Mater. Res. Bull. 73 (2016) 102–110, https://doi.org/10.1016/J. MATERRESBULL.2015.08.027. [43] M.O. Miranda, W.E.C. Cavalcanti, F.I. da Silva, E. Rigoti, E. Rodríguez-Castellon, ´ S. B.C. Pergher, T.P. Braga, Photocatalytic degradation of ibuprofen using modified titanium oxide supported on CMK-3: effect of Ti content on the TiO2 and carbon interaction, Catal. Sci. Technol. 10 (2020) 7681–7696, https://doi.org/10.1039/ D0CY01167C. [44] Enhancing Hydrogen Storage Performances of MgH2 by Ni Nano-particles Over Mesoporous Carbon CMK-3, (2018). https://doi.org/10.1088/1361–6528/aabcf3. [45] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report, Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014-1117. [46] Y. Yang, J. Wang, X. Qian, Y. Shan, H. Zhang, Aminopropyl-functionalized mesoporous carbon (APTMS-CMK-3) as effective phosphate adsorbent, Appl. Surf. Sci. 427 (2018) 206–214, https://doi.org/10.1016/J.APSUSC.2017.08.213. [47] N. Kiomarsipour, M. Alizadeh, M. Alizadeh, K. Ghani, Synthesis and surfacefunctionalizing of ordered mesoporous carbon CMK-3 for removal of nitrate from aqueous solution as an effective adsorbent, Diam. Relat. Mater. 116 (2021), 108419, https://doi.org/10.1016/J.DIAMOND.2021.108419. [48] S. Barkhordari, M. Yadollahi, Carboxymethyl cellulose capsulated layered double hydroxides/drug nanohybrids for Cephalexin oral delivery, Appl. Clay Sci. 121–122 (2016) 77–85, https://doi.org/10.1016/J.CLAY.2015.12.026. [49] M. Bauer, C. Lautenschlaeger, K. Kempe, L. Tauhardt, U.S. Schubert, D. Fischer, Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility, Macromol. Biosci. 12 (2012) 986–998, https://doi.org/10.1002/mabi.201200017. [50] Y. Ai, Y. Liu, Y. Huo, C. Zhao, L. Sun, B. Han, X. Cao, X. Wang, Insights into the adsorption mechanism and dynamic behavior of tetracycline antibiotics on reduced graphene oxide (RGO) and graphene oxide (GO) materials, Environ. Sci. Nano. 6 (2019) 3336–3348, https://doi.org/10.1039/c9en00866g. [51] S. Geng, J. Liu, C. Wang, L. Dong, T. Liang, Experimental analysis and theoretical studies by density functional theory of aminopropyl-modified ordered mesoporous carbon, Appl. Surf. Sci. 351 (2015) 911–919, https://doi.org/10.1016/j. apsusc.2015.06.034. [52] P.M. Quizon, B. Abrahamsson, R. Cristofoletti, D.W. Groot, A. Parr, P. Langguth, J. E. Polli, V.P. Shah, T. Tajiri, M.U. Mehta, J. Dressman, Biowaiver monographs for immediate release solid oral dosage forms : cephalexin monohydrate, J. Pharm. Sci. 109 (2020) 1846–1862, https://doi.org/10.1016/j.xphs.2020.03.025. [53] J. Tang, I.I. Slowing, Y. Huang, B.G. Trewyn, J. Hu, H. Liu, V.S.Y. Lin, Poly(lactic acid)-coated mesoporous silica nanosphere for controlled release of venlafaxine, J. Colloid Interface Sci. 360 (2011) 488–496, https://doi.org/10.1016/J. JCIS.2011.05.027. [54] D. Marinheiro, B.J.M.L. Ferreira, P. Oskoei, H. Oliveira, A.L. Daniel-da-Silva, Encapsulation and enhanced release of resveratrol from mesoporous silica nanoparticles for melanoma therapy, Materials 14 (2021) 1382, https://doi.org/ 10.3390/MA14061382. [55] Z. Zhang, Y. Lei, X. Yang, N. Shi, L. Geng, S. Wang, J. Zhang, S. Shi, High drugloading system of hollow carbon dots–doxorubicin: preparation, in vitro release and pH-targeted research, J. Mater. Chem. B 7 (2019) 2130–2137, https://doi.org/ 10.1039/C9TB00032A. [56] L. Pourtalebi Jahromi, M. Ghazali, H. Ashrafi, A. Azadi, A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles, Heliyon 6 (2020), e03451, https://doi.org/10.1016/J.HELIYON.2020.E03451. [57] M. Moritz, M. Geszke-Moritz, Mesoporous silica materials with different structures as the carriers for antimicrobial agent. Modeling of chlorhexidine adsorption and release, Appl. Surf. Sci. 356 (2015) 1327–1340, https://doi.org/10.1016/J. APSUSC.2015.08.138. [58] A.M. Moydeen, M.S.A. Padusha, B.M. Thamer, A. Ahamed N, A.M. Al-Enizi, H. ElHamshary, M.H. El-Newehy, Single-nozzle core-shell electrospun nanofibers of PVP/dextran as drug delivery system, Fibers Polym. 20 (2019) 2078–2089, https://doi.org/10.1007/S12221-019-9187-2. |
dc.relation.citationvolume.spa.fl_str_mv |
220 |
dc.rights.eng.fl_str_mv |
© 2022 Elsevier B.V. All rights reserved. |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2022 Elsevier B.V. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S092777652200621X |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d39ba7b8-9c30-49a8-b3f1-ead02159b745/download https://repositorio.cuc.edu.co/bitstreams/5372516b-139a-40be-8f6f-1116a3e0e7a3/download https://repositorio.cuc.edu.co/bitstreams/c80245db-818c-4d05-9c1a-0e6393efec70/download https://repositorio.cuc.edu.co/bitstreams/e37b833e-f947-4558-9974-b4c41759decd/download |
bitstream.checksum.fl_str_mv |
a0cdf9103e265b84f41d35faf31ae95f 2f9959eaf5b71fae44bbf9ec84150c7a 3aa4dbeee810648382d12a894e05cfc4 2b6db9ef216735041a9759f04711ceb3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760844879429632 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Elsevier B.V. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfMontiel-Centeno, KiaraGarcía-Villén, FátimaBarrera, DeicyAmaya-Roncancio, SebastianSánchez-Espejo, RitaArroyo Gómez, José JoaquínSandri, GiuseppinaViseras, CésarSapag, Karim2024-03-01T15:55:20Z2024-122024-03-01T15:55:20Z2022-12Kiara Montiel-Centeno, Fátima García-Villén, Deicy Barrera, Sebastian Amaya-Roncancio, Rita Sánchez-Espejo, José J. Arroyo-Gómez, Giuseppina Sandri, César Viseras, Karim Sapag, Biocompatible nanoporous carbons as a carrier system for controlled release of cephalexin, Colloids and Surfaces B: Biointerfaces, Volume 220, 2022, 112937, ISSN 0927-7765, https://doi.org/10.1016/j.colsurfb.2022.1129370927-7765https://hdl.handle.net/11323/1080410.1016/j.colsurfb.2022.1129371873-4367Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/An ordered nanoporous carbon (ONC) was synthesized by the hard-template method and then superficially modified with amino groups from 3-aminopropyltrietoxisilane (ONC-A). Both carbons, ONC and ONC-A, were characterized and tested as carriers of a high-frequency dosing drug such as cephalexin (CFX). Density functional theory calculations were used to study the interactions between ONC and the amino groups of ONC-A and CFX. Finally, the biocompatibility of human colon carcinoma (Caco-2) cells and in vitro release kinetics at gastric and intestinal pH were evaluated. The results show that drug loading capacity was higher in ONC than in ONC-A, which was associated with a localized increase in adsorption energy and a decrease in the textural properties on the surface of the ONC-A sample. Both carbon materials showed cell viability above 80 %, even at high concentrations (1000 µg mL−1). The CFX release profiles of both carbons reached their maximum at 12 h, whereas the rapid release of pure CFX at gastric and intestinal pH was 30 min. The release mechanisms obeyed the Weibull model governed by Fickian diffusion, influenced by both porosity and functional groups in ONC and ONC-A.10 páginasapplication/pdfengElsevierNetherlandshttps://www.sciencedirect.com/science/article/pii/S092777652200621XBiocompatible nanoporous carbons as a carrier system for controlled release of cephalexinArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Colloids and Surfaces B: Biointerfaces[1] J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres, L. S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.S. Shin, Nano based drug delivery systems: recent developments and future prospects, J. Nanobiotechnol. 16 (2018) 1–33, https:// doi.org/10.1186/s12951-018-0392-8.[2] E. Garbayo, S. Pascual-Gil, C. Rodríguez-Nogales, L. Saludas, A.E.-H. de Mendoza, M.J. Blanco-Prieto, Nanomedicine and drug delivery systems in cancer and regenerative medicine, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12 (2020), e1637, https://doi.org/10.1002/WNAN.1637.[3] A.C. de J. Oliveira, L.L. Chaves, F. de O.S. Ribeiro, L.R.M. de Lima, T.C. Oliveira, F. García-Vill´en, C. Viseras, R.C.M. de Paula, P.J. Rolim-Neto, F. Hallwass, E. C. Silva-Filho, D. Alves da Silva, J.L. Soares-Sobrinho, M.F. de L.R. Soares, Microwave-initiated rapid synthesis of phthalated cashew gum for drug delivery systems, Carbohydr. Polym. 254 (2020), 117226, https://doi.org/10.1016/j. carbpol.2020.117226.[4] A. Borrego-S´ anchez, R. Sanchez-Espejo, ´ F. García-Vill´en, C. Viseras, C. Ignacio Sainz-Díaz, Praziquantel–clays as accelerated release systems to enhance the low solubility of the drug, Pharmaceutics 12 (2020) 1–16, https://doi.org/10.3390/ pharmaceutics12100914.[5] D.R. Kryscio, N.A. Peppas, Mimicking biological delivery through feedbackcontrolled drug release systems based on molecular imprinting, AIChE J. 55 (2009) 1311–1324, https://doi.org/10.1002/AIC.11779.[6] R.R. Castillo, D. Lozano, B. Gonzalez, ´ M. Manzano, I. Izquierdo-Barba, M. ValletRegí, Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update, Expert Opin. Drug Deliv. 16 (2019) 415–439, https://doi. org/10.1080/17425247.2019.1598375.[7] T. Popova, B. Tzankov, C. Voycheva, I. Spassova, D. Kovacheva, S. Tzankov, D. Aluani, V. Tzankova, N. Lambov, Mesoporous silica MCM-41 and HMS as advanced drug delivery carriers for bicalutamide, J. Drug Deliv. Sci. Technol. 62 (2021), 102340, https://doi.org/10.1016/j.jddst.2021.102340.[8] Q. Zhao, Y. Lin, N. Han, X. Li, H. Geng, X. Wang, Y. Cui, S. Wang, Mesoporous carbon nanomaterials in drug delivery and biomedical application, Drug Deliv. 24 (2017) 94–107, https://doi.org/10.1080/10717544.2017.1399300.[9] M.I. Avila, ´ N. Alonso-Morales, J.A. Baeza, J.J. Rodríguez, M.A. Gilarranz, High load drug release systems based on carbon porous nanocapsule carriers. Ibuprofen case study, J. Mater. Chem. B 8 (2020) 5293–5304, https://doi.org/10.1039/ d0tb00329h.[10] K. Montiel-Centeno, D. Barrera, J. Villarroel-Rocha, M.S. Moreno, K. Sapag, Hierarchical nanostructured carbons as CO2 adsorbents, Adsorption 25 (2019) 1287–1297, https://doi.org/10.1007/s10450-019-00089-3.[11] M. Gisbert-Garzar´ an, J.C. Berkmann, D. Giasafaki, D. Lozano, K. Spyrou, M. Manzano, T. Steriotis, G.N. Duda, K. Schmidt-Bleek, G. Charalambopoulou, M. Vallet-Regí, Engineered pH-responsive mesoporous carbon nanoparticles for drug delivery, ACS Appl. Mater. Interfaces 12 (2020) 14946–14957, https://doi. org/10.1021/acsami.0c01786.[12] X. Huang, S. Wu, X. Du, Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release, Carbon 101 (2016) 135–142, https://doi.org/10.1016/j.carbon.2016.01.094.[13] W. Shang-Yu, H. Hong-Zhi, Q. Xiang-Cheng, Z. Zhi-Cai, S. Zeng-Wu, Recent advances of drug delivery nanocarriers in osteosarcoma treatment, J. Cancer 11 (2020) 69, https://doi.org/10.7150/JCA.36588.[14] M.F. Gencoglu, A. Spurri, M. Franko, J. Chen, D.K. Hensley, C.L. Heldt, D. Saha, Biocompatibility of soft-templated mesoporous carbons, ACS Appl. Mater. Interfaces 6 (2014) 15068–15077, https://doi.org/10.1021/am503076u.[15] R. Garriga, T. Herrero-Continente, M. Palos, V.L. Cebolla, J. Osada, E. Munoz, ˜ M. J. Rodríguez-Yoldi, Toxicity of carbon nanomaterials and their potential application as drug delivery systems: in vitro studies in caco-2 and mcf-7 cell lines, Nanomaterials 10 (2020) 1–21, https://doi.org/10.3390/nano10081617.[16] M.R. Benzigar, S.N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahily, A. Vinu, Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications, Chem. Soc. Rev. 47 (2018) 2680–2721, https://doi.org/10.1039/c7cs00787f.[17] Z.P. Hu, J.T. Ren, D. Yang, Z. Wang, Z.Y. Yuan, Mesoporous carbons as metal-free catalysts for propane dehydrogenation: effect of the pore structure and surface property, Chin. J. Catal. 40 (2019) 1385–1394, https://doi.org/10.1016/S1872- 2067(19)63334-6.[18] Y.Y. Hiu, C. H-C, D. H, Z. X, Carbon Nanomaterials for Bioimaging, Bioanalysis, and Therapy, first ed., John Wiley & Sons, Ltd, Chennai, India, 2019.[19] M.R. Mananghaya, G.N. Santos, D. Yu, Solubility of aminotriethylene glycol functionalized single wall carbon nanotubes: a density functional based tight binding molecular dynamics study, J. Comput. Chem. 40 (2019) 952–958, https:// doi.org/10.1002/jcc.25776.[20] V.T. Le, C.L. Ngo, Q.T. Le, T.T. Ngo, D.N. Nguyen, M.T. Vu, Surface modification and functionalization of carbon nanotube with some organic compounds, Adv. Nat. Sci. Nanosci. Nanotechnol. 4 (2013), https://doi.org/10.1088/2043-6262/4/3/ 035017.[21] T. Coccini, E. Roda, D.A. Sarigiannis, P. Mustarelli, E. Quartarone, A. Profumo, L. Manzo, Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells, Toxicology 269 (2010) 41–53, https://doi.org/10.1016/J. TOX.2010.01.005.[22] M.R. Mananghaya, G.N. Santos, D.N. Yu, Solubility of amide functionalized single wall carbon nanotubes: a quantum mechanical study, J. Mol. Liq. 242 (2017) 1208–1214, https://doi.org/10.1016/J.MOLLIQ.2017.07.107.[23] D. Saha, A. Spurri, J. Chen, D.K. Hensley, Controlled release of alendronate from nitrogen-doped mesoporous carbon, Microporous Mesoporous Mater. 229 (2016) 8–13, https://doi.org/10.1016/J.MICROMESO.2016.04.014.[24] J. Goscianska, A. Ejsmont, A. Kubiak, D. Ludowicz, A. Stasiłowicz, J. CieleckaPiontek, Amine-grafted mesoporous carbons as benzocaine-delivery platforms, Materials (2021), https://doi.org/10.3390/ma14092188.[25] F. S´ anchez-Sanchez, ´ A. Su´ arez-García, J.M.D. Martínez-Alonso, Tascon, ´ pHresponsive ordered mesoporous carbons for controlled ibuprofen release, Carbon 94 (2015) 152–159, https://doi.org/10.1016/J.CARBON.2015.06.062.[26] P. Zhao, L. Wang, C. Sun, T. Jiang, J. Zhang, Q. Zhang, J. Sun, Y. Deng, S. Wang, Uniform mesoporous carbon as a carrier for poorly water soluble drug and its cytotoxicity study, Eur. J. Pharm. Biopharm. 80 (2012) 535–543, https://doi.org/ 10.1016/j.ejpb.2011.12.002.[27] A.A. Salarian, Y. Bahari Mollamahale, Z. Hami, M. Soltani-Rezaee-Rad, Cephalexin nanoparticles: synthesis, cytotoxicity and their synergistic antibacterial study in combination with silver nanoparticles, Mater. Chem. Phys. 198 (2017) 125–130, https://doi.org/10.1016/j.matchemphys.2017.05.059.[28] D. Kundu, T. Banerjee, Development of microcrystalline cellulose based hydrogels for the in vitro delivery of Cephalexin, Heliyon 6 (2020), e03027, https://doi.org/ 10.1016/j.heliyon.2019.e03027.[29] M. Legnoverde, I. Jim´enez-Morales, A. Jimenez-Morales, E. Rodriguez- Castellon, E. Basaldella, Modified silica matrices for controlled release of cephalexin, Med. Chem 9 (2013) 672–680, https://doi.org/10.2174/1573406411309050006.[30] M.S. Legnoverde, S. Simonetti, E.I. Basaldella, Influence of pH on cephalexin adsorption onto SBA-15 mesoporous silica: theoretical and experimental study, Appl. Surf. Sci. 300 (2014) 37–42, https://doi.org/10.1016/j.apsusc.2014.01.198.[31] K. Montiel-Centeno, D. Barrera, F. García-Vill´en, R. S´ anchez-Espejo, A. BorregoSanchez, ´ E. Rodríguez-Castellon, ´ G. Sandri, C. Viseras, K. Sapag, Cephalexin loading and controlled release studies on mesoporous silica functionalized with amino groups, J. Drug Deliv. Sci. Technol. 72 (2022), 103348, https://doi.org/ 10.1016/J.JDDST.2022.103348.[32] K. Montiel-Centeno, D. Barrera, J. Villarroel-Rocha, J.J. Arroyo-Gomez, ´ M. S. Moreno, K. Sapag, CMK-3 nanostructured carbon: effect of temperature and time carbonization on textural properties and H2 storage, Chem. Eng. Commun. 206 (2019) 1581–1595, https://doi.org/10.1080/00986445.2019.1615469.[33] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865, https://doi.org/10.1103/ PhysRevLett.77.3865.[34] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method, Phys. Rev. B 59 (1999) 1758, https://doi.org/10.1103/ PhysRevB.59.1758.[35] D. Barrera, M. D´ avila, V. Cornette, J.C. Alexandre De Oliveira, R.H. Lopez, ´ K. Sapag, Pore size distribution of ordered nanostructured carbon CMK-3 by means of experimental techniques and Monte Carlo simulations, Microporous Mesoporous Mater. 180 (2013) 71–78, https://doi.org/10.1016/j.micromeso.2013.06.028.[36] S. Zhu, C. Chen, Z. Chen, X. Liu, Y. Li, Y. Shi, D. Zhang, Thermo-responsive polymer-functionalized mesoporous carbon for controlled drug release, Mater. Chem. Phys. 126 (2010) 357–363, https://doi.org/10.1016/j. matchemphys.2010.11.013.[37] Y. Wang, Q. He, H. Qu, X. Zhang, J. Guo, J. Zhu, G. Zhao, H.A. Colorado, J. Yu, L. Sun, S. Bhana, M.A. Khan, X. Huang, D.P. Young, H. Wang, X. Wang, S. Wei, Z. Guo, Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis, J. Mater. Chem. C 2 (2014) 9478–9488, https:// doi.org/10.1039/c4tc01351d.[38] J. Goscianska, A. Olejnik, Dispersion stability of the aminosilane-grafted mesoporous carbons in different solvents, Microporous Mesoporous Mater. 265 (2018) 149–161, https://doi.org/10.1016/j.micromeso.2018.02.009.[39] H. Zhou, J. Wang, J. Zhuang, Q. Liu, A Covalent Route for Efficient Surface Modification of Ordered Mesoporous Carbon as High Performance Microwave Absorbers, (n.d.). https://doi.org/10.1039/c3nr04379g.[40] X. Li, C. Liu, S. Wang, J. Jiao, D. Di, T. Jiang, Q. Zhao, S. Wang, Poly(acrylic acid) conjugated hollow mesoporous carbon as a dual-stimuli triggered drug delivery system for chemo-photothermal synergistic therapy, Mater. Sci. Eng. C 71 (2017) 594–603, https://doi.org/10.1016/j.msec.2016.10.037.[41] W. Zhang, W. Teng, Z. Wu, J. Fan, D. Zhao, W. Teng, Z. Wu, J. Fan, W.-X. Zhang, D. Zhao, Amino-functionalized ordered mesoporous carbon for the separation of toxic microcystin-LR, J. Mater. Chem. A 00 (2015) 1–3, https://doi.org/10.1039/ C5TA05320J.[42] R. Guo, W. Yue, Y. Ren, W. Zhou, Hierarchical structured graphene/metal oxide/ porous carbon composites as anode materials for lithium-ion batteries, Mater. Res. Bull. 73 (2016) 102–110, https://doi.org/10.1016/J. MATERRESBULL.2015.08.027.[43] M.O. Miranda, W.E.C. Cavalcanti, F.I. da Silva, E. Rigoti, E. Rodríguez-Castellon, ´ S. B.C. Pergher, T.P. Braga, Photocatalytic degradation of ibuprofen using modified titanium oxide supported on CMK-3: effect of Ti content on the TiO2 and carbon interaction, Catal. Sci. Technol. 10 (2020) 7681–7696, https://doi.org/10.1039/ D0CY01167C.[44] Enhancing Hydrogen Storage Performances of MgH2 by Ni Nano-particles Over Mesoporous Carbon CMK-3, (2018). https://doi.org/10.1088/1361–6528/aabcf3.[45] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report, Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014-1117.[46] Y. Yang, J. Wang, X. Qian, Y. Shan, H. Zhang, Aminopropyl-functionalized mesoporous carbon (APTMS-CMK-3) as effective phosphate adsorbent, Appl. Surf. Sci. 427 (2018) 206–214, https://doi.org/10.1016/J.APSUSC.2017.08.213.[47] N. Kiomarsipour, M. Alizadeh, M. Alizadeh, K. Ghani, Synthesis and surfacefunctionalizing of ordered mesoporous carbon CMK-3 for removal of nitrate from aqueous solution as an effective adsorbent, Diam. Relat. Mater. 116 (2021), 108419, https://doi.org/10.1016/J.DIAMOND.2021.108419.[48] S. Barkhordari, M. Yadollahi, Carboxymethyl cellulose capsulated layered double hydroxides/drug nanohybrids for Cephalexin oral delivery, Appl. Clay Sci. 121–122 (2016) 77–85, https://doi.org/10.1016/J.CLAY.2015.12.026.[49] M. Bauer, C. Lautenschlaeger, K. Kempe, L. Tauhardt, U.S. Schubert, D. Fischer, Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility, Macromol. Biosci. 12 (2012) 986–998, https://doi.org/10.1002/mabi.201200017.[50] Y. Ai, Y. Liu, Y. Huo, C. Zhao, L. Sun, B. Han, X. Cao, X. Wang, Insights into the adsorption mechanism and dynamic behavior of tetracycline antibiotics on reduced graphene oxide (RGO) and graphene oxide (GO) materials, Environ. Sci. Nano. 6 (2019) 3336–3348, https://doi.org/10.1039/c9en00866g.[51] S. Geng, J. Liu, C. Wang, L. Dong, T. Liang, Experimental analysis and theoretical studies by density functional theory of aminopropyl-modified ordered mesoporous carbon, Appl. Surf. Sci. 351 (2015) 911–919, https://doi.org/10.1016/j. apsusc.2015.06.034.[52] P.M. Quizon, B. Abrahamsson, R. Cristofoletti, D.W. Groot, A. Parr, P. Langguth, J. E. Polli, V.P. Shah, T. Tajiri, M.U. Mehta, J. Dressman, Biowaiver monographs for immediate release solid oral dosage forms : cephalexin monohydrate, J. Pharm. Sci. 109 (2020) 1846–1862, https://doi.org/10.1016/j.xphs.2020.03.025.[53] J. Tang, I.I. Slowing, Y. Huang, B.G. Trewyn, J. Hu, H. Liu, V.S.Y. Lin, Poly(lactic acid)-coated mesoporous silica nanosphere for controlled release of venlafaxine, J. Colloid Interface Sci. 360 (2011) 488–496, https://doi.org/10.1016/J. JCIS.2011.05.027.[54] D. Marinheiro, B.J.M.L. Ferreira, P. Oskoei, H. Oliveira, A.L. Daniel-da-Silva, Encapsulation and enhanced release of resveratrol from mesoporous silica nanoparticles for melanoma therapy, Materials 14 (2021) 1382, https://doi.org/ 10.3390/MA14061382.[55] Z. Zhang, Y. Lei, X. Yang, N. Shi, L. Geng, S. Wang, J. Zhang, S. Shi, High drugloading system of hollow carbon dots–doxorubicin: preparation, in vitro release and pH-targeted research, J. Mater. Chem. B 7 (2019) 2130–2137, https://doi.org/ 10.1039/C9TB00032A.[56] L. Pourtalebi Jahromi, M. Ghazali, H. Ashrafi, A. Azadi, A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles, Heliyon 6 (2020), e03451, https://doi.org/10.1016/J.HELIYON.2020.E03451.[57] M. Moritz, M. Geszke-Moritz, Mesoporous silica materials with different structures as the carriers for antimicrobial agent. Modeling of chlorhexidine adsorption and release, Appl. Surf. Sci. 356 (2015) 1327–1340, https://doi.org/10.1016/J. APSUSC.2015.08.138.[58] A.M. Moydeen, M.S.A. Padusha, B.M. Thamer, A. Ahamed N, A.M. Al-Enizi, H. ElHamshary, M.H. El-Newehy, Single-nozzle core-shell electrospun nanofibers of PVP/dextran as drug delivery system, Fibers Polym. 20 (2019) 2078–2089, https://doi.org/10.1007/S12221-019-9187-2.220AdsorptionAmino-functionalizationBiocompatibilityCephalexinControlled drug releaseOrdered nanoporous carbonPublicationORIGINALBiocompatible nanoporous carbons as a carrier system for controlled release of cephalexin.pdfBiocompatible nanoporous carbons as a carrier system for controlled release of cephalexin.pdfArtículoapplication/pdf6158810https://repositorio.cuc.edu.co/bitstreams/d39ba7b8-9c30-49a8-b3f1-ead02159b745/downloada0cdf9103e265b84f41d35faf31ae95fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/5372516b-139a-40be-8f6f-1116a3e0e7a3/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTBiocompatible nanoporous carbons as a carrier system for controlled release of cephalexin.pdf.txtBiocompatible nanoporous carbons as a carrier system for controlled release of cephalexin.pdf.txtExtracted texttext/plain60336https://repositorio.cuc.edu.co/bitstreams/c80245db-818c-4d05-9c1a-0e6393efec70/download3aa4dbeee810648382d12a894e05cfc4MD53THUMBNAILBiocompatible nanoporous carbons as a carrier system for controlled release of cephalexin.pdf.jpgBiocompatible nanoporous carbons as a carrier system for controlled release of cephalexin.pdf.jpgGenerated Thumbnailimage/jpeg14917https://repositorio.cuc.edu.co/bitstreams/e37b833e-f947-4558-9974-b4c41759decd/download2b6db9ef216735041a9759f04711ceb3MD5411323/10804oai:repositorio.cuc.edu.co:11323/108042024-09-17 14:09:46.344https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Elsevier B.V. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |