An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection

The domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision...

Full description

Autores:
Chen, Zhiqing
Xuan, Ping
Asghar Heidari, Ali
Liu, Lei
Wu, Chengwen
Chen, Huiling
Escorcia-Gutierrez, José
Mansour, Romany F.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10499
Acceso en línea:
https://hdl.handle.net/11323/10499
https://repositorio.cuc.edu.co/
Palabra clave:
Genetics
Computational bioinformatics
Algorithms
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_c76bbc7b9fa593d0e9d26aa95235d40c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10499
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection
title An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection
spellingShingle An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection
Genetics
Computational bioinformatics
Algorithms
title_short An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection
title_full An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection
title_fullStr An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection
title_full_unstemmed An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection
title_sort An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection
dc.creator.fl_str_mv Chen, Zhiqing
Xuan, Ping
Asghar Heidari, Ali
Liu, Lei
Wu, Chengwen
Chen, Huiling
Escorcia-Gutierrez, José
Mansour, Romany F.
dc.contributor.author.none.fl_str_mv Chen, Zhiqing
Xuan, Ping
Asghar Heidari, Ali
Liu, Lei
Wu, Chengwen
Chen, Huiling
Escorcia-Gutierrez, José
Mansour, Romany F.
dc.subject.proposal.eng.fl_str_mv Genetics
Computational bioinformatics
Algorithms
topic Genetics
Computational bioinformatics
Algorithms
description The domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision. Therefore, this article designs a new wrapper gene selection algorithm named artificial bee bare-bone hunger games search (ABHGS), which is the hunger games search (HGS) integrated with an artificial bee strategy and a Gaussian bare-bone structure to address this issue. To evaluate and validate the performance of our proposed method, ABHGS is compared to HGS and a single strategy embedded in HGS, six classic algorithms, and ten advanced algorithms on the CEC 2017 functions. The experimental results demonstrate that the bABHGS outperforms the original HGS. Compared to peers, it increases classification accuracy and decreases the number of selected features, indicating its actual engineering utility in spatial search and feature selection.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-18T16:18:48Z
dc.date.available.none.fl_str_mv 2023-09-18T16:18:48Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Zhiqing Chen, Ping Xuan, Ali Asghar Heidari, Lei Liu, Chengwen Wu, Huiling Chen, José Escorcia-Gutierrez, Romany F. Mansour, An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection, iScience, Volume 26, Issue 5, 2023, 106679, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2023.106679.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10499
dc.identifier.doi.none.fl_str_mv 10.1016/j.isci.2023.106679
dc.identifier.eissn.spa.fl_str_mv 2589-0042
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Zhiqing Chen, Ping Xuan, Ali Asghar Heidari, Lei Liu, Chengwen Wu, Huiling Chen, José Escorcia-Gutierrez, Romany F. Mansour, An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection, iScience, Volume 26, Issue 5, 2023, 106679, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2023.106679.
10.1016/j.isci.2023.106679
2589-0042
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10499
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv iScience
dc.relation.references.spa.fl_str_mv 1 M. Ye, W. Wang, C. Yao, R. Fan, P. Wang Gene selection method for microarray data classification using particle swarm optimization and neighborhood rough set Curr. Bioinf., 14 (2019), pp. 422-431, 10.2174/1574893614666190204150918
2 S. Wang, W. Aorigele Kong, W. Kong, W. Zeng, X. Hong Hybrid binary imperialist competition algorithm and tabu search approach for feature selection using gene expression data BioMed Res. Int., 2016 (2016), p. 9721713, 10.1155/2016/9721713
3 S. Jana, N. Balakrishnan, D. von Rosen, J.S. Hamid High dimensional extension of the growth curve model and its application in genetics Stat. Methods Appt., 26 (2016), pp. 273-292, 10.1007/s10260-016-0369-4
4 K. Uthayan A novel microarray gene selection and classification using intelligent dynamic grey wolf optimization Genetika, 51 (2019), pp. 805-828, 10.2298/GENSR1903805U
5 A.K. Shukla, P. Singh, M. Vardhan Gene selection for cancer types classification using novel hybrid metaheuristics approach Swarm Evol. Comput., 54 (2020), p. 100661, 10.1016/j.swevo.2020.100661
6 A. Sharma, R. Rani C-HMOSHSSA: gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods Comput. Methods Progr. Biomed., 178 (2019), pp. 219-235, 10.1016/j.cmpb.2019.06.029
7 M.S. Mohamad, S. Omatu, S. Deris, M. Yoshioka, A. Abdullah, Z. Ibrahim An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes Algorithm Mol. Biol., 8 (2013), p. 15, 10.1186/1748-7188-8-15
8 A.M. Mabu, R. Prasad, R. Yadav Gene expression dataset classification using artificial neural network and clustering-based feature selection Int. J. Swarm Intell. Res. (IJSIR), 11 (2020), pp. 65-86, 10.4018/IJSIR.2020010104
9 C. Jin, S.W. Jin Gene selection approach based on improved swarm intelligent optimisation algorithm for tumour classification IET Syst. Biol., 10 (2016), pp. 107-115, 10.1049/iet-syb.2015.0064
10 A. Dabba, A. Tari, S. Meftali, R. Mokhtari Gene selection and classification of microarray data method based on mutual information and moth flame algorithm Expert Syst. Appl., 166 (2021), p. 114012, 10.1016/j.eswa.2020.114012
11 A. Dabba, A. Tari, S. Meftali Hybridization of Moth flame optimization algorithm and quantum computing for gene selection in microarray data J. Ambient Intell. Hum. Comput., 12 (2021), pp. 2731-2750, 10.1007/s12652-020-02434-9
12 X. Xu, J. Li, H.-l. Chen Enhanced Support Vector Machine Using Parallel Particle Swarm Optimization IEEE (2014), pp. 41-46
13 H. Alshamlan, G. Badr, Y. Alohali mRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling BioMed Res. Int., 2015 (2015), p. 604910, 10.1155/2015/604910
14 H.M. Alshamlan, G.H. Badr, Y.A. Alohali Genetic Bee Colony (GBC) algorithm: a new gene selection method for microarray cancer classification Comput. Biol. Chem., 56 (2015), pp. 49-60, 10.1016/j.compbiolchem.2015.03.001
15 H. Nematzadeh, J. García-Nieto, I. Navas-Delgado, J.F. Aldana-Montes Automatic frequency-based feature selection using discrete weighted evolution strategy Appl. Soft Comput., 130 (2022), p. 109699, 10.1016/j.asoc.2022.109699
16 C.-Q. Huang, F. Jiang, Q.-H. Huang, X.-Z. Wang, Z.-M. Han, W.-Y. Huang Dual-graph attention convolution network for 3-D point cloud classification IEEE Transact. Neural Networks Learn. Syst. (2022), pp. 1-13
17 Y. Ban, Y. Wang, S. Liu, B. Yang, M. Liu, L. Yin, W. Zheng 2D/3D multimode medical image alignment based on spatial histograms Appl. Sci., 12 (2022), p. 8261
18 M. Rostami, S. Forouzandeh, K. Berahmand, M. Soltani Integration of multi-objective PSO based feature selection and node centrality for medical datasets Genomics, 112 (2020), pp. 4370-4384, 10.1016/j.ygeno.2020.07.027
19 O. Tarkhaneh, T.T. Nguyen, S. Mazaheri A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm Inf. Sci., 565 (2021), pp. 278-305, 10.1016/j.ins.2021.02.061
20 A. Jiménez-Cordero, J.M. Morales, S. Pineda A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification Eur. J. Oper. Res., 293 (2021), pp. 24-35, 10.1016/j.ejor.2020.12.009
21 S. Abasabadi, H. Nematzadeh, H. Motameni, E. Akbari Automatic ensemble feature selection using fast non-dominated sorting Inf. Syst., 100 (2021), p. 101760, 10.1016/j.is.2021.101760
22 Z. Sadeghian, E. Akbari, H. Nematzadeh A hybrid feature selection method based on information theory and binary butterfly optimization algorithm Eng. Appl. Artif. Intell., 97 (2021), 10.1016/j.engappai.2020.104079
23 N. Singh, P. Singh A hybrid ensemble-filter wrapper feature selection approach for medical data classification Chemometr. Intell. Lab. Syst., 217 (2021), p. 104396, 10.1016/j.chemolab.2021.104396
24 J. Cai, J. Luo, S. Wang, S. Yang Feature selection in machine learning: a new perspective Neurocomputing, 300 (2018), pp. 70-79, 10.1016/j.neucom.2017.11.077
25 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier New theoretical ISM-K2 Bayesian network model for evaluating vaccination effectiveness J. Ambient Intell. Hum. Comput. (2022), pp. 1-17
26 M.M. Mafarja, S. Mirjalili Hybrid Whale Optimization Algorithm with simulated annealing for feature selection Neurocomputing, 260 (2017), pp. 302-312, 10.1016/j.neucom.2017.04.053
27 J. Too, S. Mirjalili A hyper learning binary dragonfly algorithm for feature selection: a COVID-19 case study Knowl. Base Syst., 212 (2021), 10.1016/j.knosys.2020.106553
28 N.S. Altman An introduction to kernel and nearest-neighbor nonparametric regression Am. Statistician, 46 (1992), pp. 175-185, 10.1080/00031305.1992.10475879
29 J. Hu, H. Chen, A.A. Heidari, M. Wang, X. Zhang, Y. Chen, Z. Pan Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection Knowl. Base Syst., 213 (2021), p. 106684, 10.1016/j.knosys.2020.106684
30 M. Shafipour, A. Rashno, S. Fadaei Particle distance rank feature selection by particle swarm optimization Expert Syst. Appl., 185 (2021), p. 115620, 10.1016/j.eswa.2021.115620
31 K. Zhang, Z. Wang, G. Chen, L. Zhang, Y. Yang, C. Yao, J. Wang, J. Yao Training effective deep reinforcement learning agents for real-time life-cycle production optimization J. Petrol. Sci. Eng., 208 (2022), p. 109766
32 X. Xu, Z. Lin, X. Li, C. Shang, Q. Shen Multi-objective robust optimisation model for MDVRPLS in refined oil distribution Int. J. Prod. Res., 60 (2022), pp. 6772-6792
33 J. Tian, M. Hou, H. Bian, J. Li Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems Complex & Intelligent Systems (2022), pp. 1-49
34 F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili Henry gas solubility optimization: a novel physics-based algorithm Future Generat. Comput. Syst., 101 (2019), pp. 646-667, 10.1016/j.future.2019.07.015
35 F.A. Hashim, K. Hussain, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems Appl. Intell., 51 (2021), pp. 1531-1551, 10.1007/s10489-020-01893-z
36 F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, W. Al-Atabany Honey Badger Algorithm: new metaheuristic algorithm for solving optimization problems Math. Comput. Simulat., 192 (2022), pp. 84-110, 10.1016/j.matcom.2021.08.013
37 H. Chen, C. Li, M. Mafarja, A.A. Heidari, Y. Chen, Z. Cai Slime mould algorithm: a comprehensive review of recent variants and applications Int. J. Syst. Sci., 54 (2022), pp. 204-235
38 M. Li, A. Cao, R. Wang, Z. Li, S. Li, J. Wang Slime mould algorithm: a new method for stochastic optimization BMC Plant Biol., 20 (2020), pp. 300-323
39 I. Ahmadianfar, A.A. Heidari, A.H. Gandomi, X. Chu, H. Chen RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method Expert Syst. Appl., 181 (2021), p. 115079, 10.1016/j.eswa.2021.115079
40 J. Tu, H. Chen, M. Wang, A.H. Gandomi The colony predation algorithm J. Bionic Eng., 18 (2021), pp. 674-710, 10.1007/s42235-021-0050-y
41 I. Ahmadianfar, A.A. Heidari, S. Noshadian, H. Chen, A.H. Gandomi INFO: an efficient optimization algorithm based on weighted mean of vectors Expert Syst. Appl., 195 (2022), p. 116516, 10.1016/j.eswa.2022.116516
42 H. Su, D. Zhao, A. Asghar Heidari, L. Liu, X. Zhang, M. Mafarja, H. Chen RIME: a physics-based optimization Neurocomputing, 532 (2023), pp. 183-214, 10.1016/j.neucom.2023.02.010
43 A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen Harris hawks optimization: algorithm and applications Future Generat. Comput. Syst., 97 (2019), pp. 849-872, 10.1016/j.future.2019.02.028
44 E. Çelik A powerful variant of symbiotic organisms search algorithm for global optimization Eng. Appl. Artif. Intell., 87 (2020), p. 103294, 10.1016/j.engappai.2019.103294
45 E. Çelik, N. Öztürk, Y. Arya Advancement of the search process of salp swarm algorithm for global optimization problems Expert Syst. Appl., 182 (2021), p. 115292, 10.1016/j.eswa.2021.115292
46 E.H. Houssein, D. Oliva, E. Çelik, M.M. Emam, R.M. Ghoniem Boosted sooty tern optimization algorithm for global optimization and feature selection Expert Syst. Appl., 213 (2023), p. 119015, 10.1016/j.eswa.2022.119015
47 E. Çelik IEGQO-AOA: information-exchanged Gaussian arithmetic optimization algorithm with quasi-opposition learning Knowl. Base Syst., 260 (2023), p. 110169, 10.1016/j.knosys.2022.110169
48 Y. Zhang, R. Liu, A.A. Heidari, X. Wang, Y. Chen, M. Wang, H. Chen Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis Neurocomputing, 430 (2021), pp. 185-212
49 X. Wen, K. Wang, H. Li, H. Sun, H. Wang, L. Jin A two-dlstage solution method based on NSGA-II for Green Multi-Objective integrated process planning and scheduling in a battery packaging machinery workshop Swarm Evol. Comput., 61 (2021), p. 100820, 10.1016/j.swevo.2020.100820
50 G. Wang, E. Fan, G. Zheng, K. Li, H. Huang Research on vessel speed heading and collision detection method based on AIS data Mobile Information Systems (2022)
51 R. Dong, H. Chen, A.A. Heidari, H. Turabieh, M. Mafarja, S. Wang Boosted kernel search: framework, analysis and case studies on the economic emission dispatch problem Knowl. Base Syst., 233 (2021), p. 107529, 10.1016/j.knosys.2021.107529
52 C. Zhao, Y. Zhou, X. Lai An integrated framework with evolutionary algorithm for multi-scenario multi-objective optimization problems Inf. Sci., 600 (2022), pp. 342-361, 10.1016/j.ins.2022.03.093
53 Y. Xue, Y. Tong, F. Neri An ensemble of differential evolution and Adam for training feed-forward neural networks Inf. Sci., 608 (2022), pp. 453-471, 10.1016/j.ins.2022.06.036
54 K. Yu, D. Zhang, J. Liang, K. Chen, C. Yue, K. Qiao, L. Wang A correlation-guided layered prediction approach for evolutionary dynamic multiobjective optimization IEEE Trans. Evol. Comput., 1 (2022), p. 1, 10.1109/TEVC.2022.3193287
55 C. Huang, X. Zhou, X. Ran, Y. Liu, W. Deng, W. Deng Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem Inf. Sci., 619 (2023), pp. 2-18, 10.1016/j.ins.2022.11.019
56 J. Liang, K. Qiao, K. Yu, B. Qu, C. Yue, W. Guo, L. Wang Utilizing the relationship between unconstrained and constrained pareto fronts for constrained multiobjective optimization IEEE Trans. Cybern. (2022), pp. 1-14, 10.1109/TCYB.2022.3163759
57 W. Deng, J. Xu, X.Z. Gao, H. Zhao An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), pp. 1578-1587, 10.1109/TSMC.2020.3030792
58 Y. Liu, H. Cui, X. Xu, W. Liang, H. Chen, Z. Pan, A. Alsufyani, S. Bourouis Simulated annealing-based dynamic step shuffled frog leaping algorithm: optimal performance design and feature selection Neurocomputing, 20 (2022), pp. 325-362, 10.1016/j.neucom.2022.06.075
59 Y. Xue, B. Xue, M. Zhang Self-adaptive particle swarm optimization for large-scale feature selection in classification ACM Trans. Knowl. Discov. Data, 13 (2019), pp. 1-27
60 Y. Xue, X. Cai, F. Neri A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification Appl. Soft Comput., 127 (2022), p. 109420
61 A.I. Hammouri, M. Mafarja, M.A. Al-Betar, M.A. Awadallah, I. Abu-Doush An Improved Dragonfly Algorithm for Feature Selection Knowl. Base Syst., 203 (2020), p. 106131, 10.1016/j.knosys.2020.106131
62 M. Tahir, A. Tubaishat, F. Al-Obeidat, B. Shah, Z. Halim, M. Waqas A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare Neural Comput. Appl., 34 (2020), pp. 11453-11474, 10.1007/s00521-020-05347-y
63 R.A. Ibrahim, M.A. Elaziz, D. Oliva, E. Cuevas, S. Lu An opposition-based social spider optimization for feature selection Soft Comput., 23 (2019), pp. 13547-13567, 10.1007/s00500-019-03891-x
64 M. Tubishat, N. Idris, L. Shuib, M.A. Abushariah, S. Mirjalili Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection Expert Syst. Appl., 145 (2020), p. 113122, 10.1016/j.eswa.2019.113122
65 B. Xue, M. Zhang, W.N. Browne, X. Yao A survey on evolutionary computation approaches to feature selection IEEE Trans. Evol. Comput., 20 (2016), pp. 606-626, 10.1109/tevc.2015.2504420
66 S. Mirjalili, A. Lewis The whale optimization algorithm Adv. Eng. Software, 95 (2016), pp. 51-67, 10.1016/j.advengsoft.2016.01.008
67 W. Zhao, Z. Zhang, L. Wang Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications Eng. Appl. Artif. Intell., 87 (2020), p. 103300, 10.1016/j.engappai.2019.103300
68 S. Ahmed, K.K. Ghosh, S. Mirjalili, R. Sarkar AIEOU: automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection Knowl. Base Syst., 228 (2021), p. 107283, 10.1016/j.knosys.2021.107283
69 Y. Yang, H. Chen, A.A. Heidari, A.H. Gandomi Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts Expert Syst. Appl., 177 (2021), p. 114864, 10.1016/j.eswa.2021.114864
70 Y.O. Shaker, D. Yousri, A. Osama, A. Al-Gindy, E. Tag-Eldin, D. Allam Optimal charging/discharging decision of energy storage community in grid-connected microgrid using multi-objective hunger game search optimizer IEEE Access, 9 (2021), pp. 120774-120794, 10.1109/ACCESS.2021.3101839
71 H. Nguyen, X.-N. Bui A novel hunger games search optimization-based artificial neural network for predicting ground vibration intensity induced by mine blasting Nat. Resour. Res., 30 (2021), pp. 3865-3880, 10.1007/s11053-021-09903-8
72 X. Zhou, W. Gui, A.A. Heidari, Z. Cai, H. Elmannai, M. Hamdi, G. Liang, H. Chen Advanced orthogonal learning and Gaussian barebone hunger games for engineering design J. Comput. Des. Eng., 9 (2022), pp. 1699-1736, 10.1093/jcde/qwac075
73 R. Li, X. Wu, H. Tian, N. Yu, C. Wang Hybrid memetic pretrained factor analysis-based deep belief networks for transient electromagnetic inversion IEEE Trans. Geosci. Rem. Sens., 60 (2022), pp. 1-20
74 S. Chakraborty, A.K. Saha, R. Chakraborty, M. Saha, S. Nama HSWOA: an ensemble of hunger games search and whale optimization algorithm for global optimization Int. J. Intell. Syst., 37 (2022), pp. 52-104, 10.1002/int.22617
75 S. Li, X. Li, H. Chen, Y. Zhao, J. Dong A novel hybrid hunger games search algorithm with differential evolution for improving the behaviors of non-cooperative animals IEEE Access, 9 (2021), pp. 164188-164205, 10.1109/ACCESS.2021.3132617
76 R. Liang, T. Le-Hung, T. Nguyen-Thoi Energy consumption prediction of air-conditioning systems in eco-buildings using hunger games search optimization-based artificial neural network model J. Build. Eng., 59 (2022), p. 105087, 10.1016/j.jobe.2022.105087
77 S. Yu, A.A. Heidari, C. He, Z. Cai, M.M. Althobaiti, R.F. Mansour, G. Liang, H. Chen Parameter estimation of static solar photovoltaic models using Laplacian Nelder-Mead hunger games search Sol. Energy, 242 (2022), pp. 79-104, 10.1016/j.solener.2022.06.046
78 R. Manjula Devi, M. Premkumar, P. Jangir, B. Santhosh Kumar, D. Alrowaili, K. Sooppy Nisar BHGSO: binary hunger games search optimization algorithm for feature selection problem Comput. Mater. Continua (CMC), 70 (2022), pp. 557-579, 10.32604/cmc.2022.019611
79 Houssein, E.H., Hosney, M.E., Mohamed, W.M., Ali, A.A., and Younis, E.M.G. Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data. Neural Comput. Appl.. 10.1007/s00521-022-07916-9
80 B.J. Ma, S. Liu, A.A. Heidari Multi-strategy ensemble binary hunger games search for feature selection Knowl. Base Syst., 248 (2022), p. 108787, 10.1016/j.knosys.2022.108787
81 T. Blackwell A study of collapse in bare bones particle swarm optimization IEEE Trans. Evol. Comput., 16 (2012), pp. 354-372, 10.1109/TEVC.2011.2136347
82 X. Chen, H. Huang, A.A. Heidari, C. Sun, Y. Lv, W. Gui, G. Liang, Z. Gu, H. Chen, C. Li, P. Chen An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images Comput. Biol. Med., 142 (2022), p. 105179, 10.1016/j.compbiomed.2021.105179
83 W. Cao, X. Wang, Z. Ming, J. Gao A review on neural networks with random weights Neurocomputing, 275 (2018), pp. 278-287, 10.1016/j.neucom.2017.08.040
84 W. Cao, Z. Xie, J. Li, Z. Xu, Z. Ming, X. Wang Bidirectional stochastic configuration network for regression problems Neural Network., 140 (2021), pp. 237-246, 10.1016/j.neunet.2021.03.016
85 S. Jadhav, H. He, K. Jenkins Information gain directed genetic algorithm wrapper feature selection for credit rating Appl. Soft Comput., 69 (2018), pp. 541-553, 10.1016/j.asoc.2018.04.033
86 F. Tempola, R. Rosihan, R. Adawiyah Holdout validation for comparison classfication naïve bayes and KNN of recipient kartu Indonesia pintar IOP Conf. Ser. Mater. Sci. Eng., 1125 (2021)
87 H.K. Jeon, C.S. Yang Enhancement of ship type classification from a combination of CNN and KNN Electronics, 10 (2021), p. 1169
88 F. Zhu, X. Jia-kun, W. Zhong-yu, L. Pei-Chen, Q. Shu-jun, H. Lei Image classification method based on improved KNN algorithm J. Phys. Conf. (2021)
89 M.H. Nadimi-Shahraki, H. Zamani, S. Mirjalili Enhanced whale optimization algorithm for medical feature selection: a COVID-19 case study Comput. Biol. Med., 148 (2022), p. 105858, 10.1016/j.compbiomed.2022.105858
90 J. Yedukondalu, L.D. Sharma Cognitive load detection using circulant singular spectrum analysis and Binary Harris Hawks Optimization based feature selection Biomed. Signal Process Control, 79 (2022), p. 104006, 10.1016/j.bspc.2022.104006
91 E. Emary, H.M. Zawbaa, A.E. Hassanien Binary grey wolf optimization approaches for feature selection Neurocomputing, 172 (2016), pp. 371-381, 10.1016/j.neucom.2015.06.083
92 J. Hu, W. Gui, A.A. Heidari, Z. Cai, G. Liang, H. Chen, Z. Pan Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection Knowl. Base Syst., 237 (2022), p. 107761, 10.1016/j.knosys.2021.107761
93 W. Zhou, P. Wang, A.A. Heidari, X. Zhao, H. Chen Spiral Gaussian mutation sine cosine algorithm: framework and comprehensive performance optimization Expert Syst. Appl., 209 (2022), p. 118372, 10.1016/j.eswa.2022.118372
94 H. Ren, J. Li, H. Chen, C. Li Adaptive levy-assisted salp swarm algorithm: analysis and optimization case studies Math. Comput. Simulat., 181 (2021), pp. 380-409
95 D. Xu, N. Ning, Y. Xu, B. Wang, Q. Cui, Z. Liu, X. Wang, D. Liu, H. Chen, M.G. Kong An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks Cancer Cell Int., 19 (2019), pp. 135-155, 10.1016/j.eswa.2019.03.043
96 A.A. Heidari, R. Ali Abbaspour, H. Chen Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training Appl. Soft Comput., 81 (2019), p. 105521, 10.1016/j.asoc.2019.105521
97 P. Civicioglu, E. Besdok, M.A. Gunen, U.H. Atasever Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms Neural Comput. Appl., 32 (2020), pp. 3923-3937, 10.1007/s00521-018-3822-5
98 M.M. Dehshibi, M. Sourizaei, M. Fazlali, O. Talaee, H. Samadyar, J. Shanbehzadeh A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding Multimed. Tool. Appl., 76 (2017), pp. 15951-15986, 10.1007/s11042-016-3891-3
99 H. Nenavath, R.K. Jatoth Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking Appl. Soft Comput., 62 (2018), pp. 1019-1043, 10.1016/j.asoc.2017.09.039
100 Y. Zhou, J. Xie, L. Li, M. Ma Cloud model bat algorithm Sci. World J., 2014 (2014), p. 237102, 10.1155/2014/237102
101 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier Deduction of sudden rainstorm scenarios: integrating decision makers' emotions, dynamic Bayesian network and DS evidence theory Nat. Hazards (2022), pp. 1-17
102 S. Xiong, B. Li, S. Zhu DCGNN: a single-stage 3D object detection network based on density clustering and graph neural network Complex Intell. Systems (2022), pp. 1-10
103 X. Chen, Y. Xu, L. Meng, X. Chen, L. Yuan, Q. Cai, W. Shi, G. Huang Non-parametric partial least squares–discriminant analysis model based on sum of ranking difference algorithm for tea grade identification using electronic tongue data Sensor. Actuator. B Chem., 311 (2020), p. 127924
104 X. Zenggang, Z. Mingyang, Z. Xuemin, Z. Sanyuan, X. Fang, Z. Xiaochao, W. Yunyun, L. Xiang Social similarity routing algorithm based on socially aware networks in the big data environment J. Signal Process. Syst., 94 (2022), pp. 1253-1267
105 J. Xu, S. Pan, P.Z.H. Sun, S. Hyeong Park, K. Guo Human-Factors-in-Driving-Loop: driver identification and verification via a deep learning approach using psychological behavioral data IEEE Trans. Intell. Transport. Syst., 24 (2023), pp. 3383-3394
106 X. Qin, Z. Liu, Y. Liu, S. Liu, B. Yang, L. Yin, M. Liu, W. Zheng User OCEAN personality model construction method using a BP neural network Electronics, 11 (2022), p. 3022 View article CrossRefView in ScopusGoogle Scholar
107 B. Li, Y. Lu, W. Pang, H. Xu Image Colorization using CycleGAN with semantic and spatial rationality Multimed. Tool. Appl. (2023), pp. 1-15
108 Q. Xu, Y. Zeng, W. Tang, W. Peng, T. Xia, Z. Li, F. Teng, W. Li, J. Guo Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network IEEE J. Biomed. Health Inform., 24 (2020), pp. 2481-2489
109 X.-F. Wang, P. Gao, Y.-F. Liu, H.-F. Li, F. Lu Predicting thermophilic proteins by machine learning Curr. Bioinf., 15 (2020), pp. 493-502
110 A. Seifi, M. Ehteram, V.P. Singh, A. Mosavi Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN Sustainability, 12 (2020), p. 4023
111 F. Yang, H. Moayedi, A. Mosavi Predicting the degree of dissolved oxygen using three types of multi-layer perceptron-based artificial neural networks Sustainability, 13 (2021), p. 9898
112 C. Zhao, H. Wang, H. Chen, W. Shi, Y. Feng, Y. Wang, H. Xiao, J. Zheng JAMSNet: a remote pulse extraction network based on joint attention and multi-scale fusion Crit. Rev. Food Sci. Nutr. (2022), pp. 1-19, 10.1109/TCSVT.2022.3227348 View article Google Scholar
113 J. Lv, G. Li, X. Tong, W. Chen, J. Huang, C. Wang, G. Yang Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction Comput. Biol. Med., 134 (2021), p. 104504, 10.1016/j.compbiomed.2021.104504
114 S. Wang, B. Wang, Z. Zhang, A.A. Heidari, H. Chen, X. Wang, L.P. Wang, Y.B. Fu Class-aware sample reweighting optimal transport for multi-source domain adaptation Neurocomputing, 523 (2023), pp. 213-223, 10.1016/j.neucom.2022.12.048
115 Z. Wu, S. Xuan, J. Xie, C. Lin, C. Lu How to ensure the confidentiality of electronic medical records on the cloud: a technical perspective Comput. Biol. Med., 147 (2022), p. 105726, 10.1016/j.compbiomed.2022.105726
116 Z. Wu, G. Li, S. Shen, X. Lian, E. Chen, G. Xu Constructing dummy query sequences to protect location privacy and query privacy in location-based services World Wide Web, 24 (2021), pp. 25-49, 10.1007/s11280-020-00830-x
117 B. Yan, Y. Li, L. Li, X. Yang, T.-q. Li, G. Yang, M. Jiang Quantifying the impact of Pyramid Squeeze Attention mechanism and filtering approaches on Alzheimer's disease classification Comput. Biol. Med., 148 (2022), p. 105944, 10.1016/j.compbiomed.2022.105944
118 X. Sun, X. Cao, B. Zeng, Q. Zhai, X. Guan Multistage dynamic planning of integrated hydrogen-electrical microgrids under multiscale uncertainties IEEE Trans. Smart Grid (2022), p. 1, 10.1109/TSG.2022.3232545
119 Z. Wu, S. Shen, X. Lian, X. Su, E. Chen A dummy-based user privacy protection approach for text information retrieval Knowl. Base Syst., 195 (2020), p. 105679, 10.1016/j.knosys.2020.105679
120 Z. Wu, S. Shen, H. Li, H. Zhou, C. Lu A basic framework for privacy protection in personalized information retrieval: an effective framework for user privacy protection J. Organ. End User Comput., 33 (2022), pp. 1-26
121 Z. Wu, S. Shen, H. Zhou, H. Li, C. Lu, D. Zou An effective approach for the protection of user commodity viewing privacy in e-commerce website Knowl. Base Syst., 220 (2021), p. 106952, 10.1016/j.knosys.2021.106952
122 Z. Wu, J. Xie, S. Shen, C. Lin, G. Xu, E. Chen A confusion method for the protection of user topic privacy in Chinese keyword based book retrieval ACM Transactions on Asian and Low-Resource Language Information Processing (2023)
123 X. Cao, T. Cao, Z. Xu, B. Zeng, F. Gao, X. Guan Resilience constrained scheduling of mobile emergency resources in electricity-hydrogen distribution network IEEE Trans. Sustain. Energy, 14 (2023), pp. 1269-1284, 10.1109/TSTE.2022.3217514
124 Y. Dai, J. Wu, Y. Fan, J. Wang, J. Niu, F. Gu, S. Shen MSEva: a musculoskeletal rehabilitation evaluation system based on EMG signals ACM Trans. Sens. Netw., 19 (2022), pp. 1-23
125 J. Zhou, X. Zhang, Z. Jiang Recognition of imbalanced epileptic EEG signals by a graph-based extreme learning machine Wireless Commun. Mobile Comput., 2021 (2021), pp. 1-12, 10.1155/2021/5871684
126 J. Chen, X. Zhu, H. Liu A mutual neighbor-based clustering method and its medical applications Comput. Biol. Med., 150 (2022), p. 106184, 10.1016/j.compbiomed.2022.106184
127 Y. Chen, Y. Zhang, Y. Wang, S. Ta, M. Shi, Y. Zhou, M. Li, J. Fu, L. Wang, X. Liu, et al. Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet J. Diabetes, 15 (2023), pp. 264-274
128 Y. Li, Y. Zhang, W. Cui, B. Lei, X. Kuang, T. Zhang Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation IEEE Trans. Med. Imag., 41 (2022), pp. 1975-1989, 10.1109/TMI.2022.3151666
129 L. Abualigah, M.A. Elaziz, P. Sumari, Z.W. Geem, A.H. Gandomi Reptile Search Algorithm (RSA): a nature-inspired meta-heuristic optimizer Expert Syst. Appl., 191 (2022), p. 116158, 10.1016/j.eswa.2021.116158
130 C. Kumar, T.D. Raj, M. Premkumar, T.D. Raj A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters Optik, 223 (2020), p. 165277, 10.1016/j.ijleo.2020.165277
131 E. Zorarpacı, S.A. Özel A hybrid approach of differential evolution and artificial bee colony for feature selection Expert Syst. Appl., 62 (2016), pp. 91-103, 10.1016/j.eswa.2016.06.004
dc.relation.citationendpage.spa.fl_str_mv 39
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 5
dc.relation.citationvolume.spa.fl_str_mv 26
dc.rights.eng.fl_str_mv © 2023 The Author(s).
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2023 The Author(s).
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 39 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier Inc.
dc.publisher.place.spa.fl_str_mv United States
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2589004223007563?via%3Dihub
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/dbf99241-62b0-4a24-9c39-1be9de80feeb/download
https://repositorio.cuc.edu.co/bitstreams/550c1ba2-8bb3-4949-a722-88119ca8b41d/download
https://repositorio.cuc.edu.co/bitstreams/b6fe4328-3dbf-44aa-bb26-05197b9bcf52/download
https://repositorio.cuc.edu.co/bitstreams/f142a7a0-403d-4ff3-a058-e724736f57ae/download
bitstream.checksum.fl_str_mv 02f7999ee62e6217d0a99d7233b1d588
2f9959eaf5b71fae44bbf9ec84150c7a
1efd2acc0f00fd95f21a188255ec5dc6
f6cc898a1537232d442ff7fec2e33479
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760742783778816
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2023 The Author(s).https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chen, ZhiqingXuan, PingAsghar Heidari, AliLiu, LeiWu, ChengwenChen, HuilingEscorcia-Gutierrez, JoséMansour, Romany F.2023-09-18T16:18:48Z2023-09-18T16:18:48Z2023Zhiqing Chen, Ping Xuan, Ali Asghar Heidari, Lei Liu, Chengwen Wu, Huiling Chen, José Escorcia-Gutierrez, Romany F. Mansour, An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection, iScience, Volume 26, Issue 5, 2023, 106679, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2023.106679.https://hdl.handle.net/11323/1049910.1016/j.isci.2023.1066792589-0042Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision. Therefore, this article designs a new wrapper gene selection algorithm named artificial bee bare-bone hunger games search (ABHGS), which is the hunger games search (HGS) integrated with an artificial bee strategy and a Gaussian bare-bone structure to address this issue. To evaluate and validate the performance of our proposed method, ABHGS is compared to HGS and a single strategy embedded in HGS, six classic algorithms, and ten advanced algorithms on the CEC 2017 functions. The experimental results demonstrate that the bABHGS outperforms the original HGS. Compared to peers, it increases classification accuracy and decreases the number of selected features, indicating its actual engineering utility in spatial search and feature selection.39 páginasapplication/pdfengElsevier Inc.United Stateshttps://www.sciencedirect.com/science/article/pii/S2589004223007563?via%3DihubAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selectionArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85iScience1 M. Ye, W. Wang, C. Yao, R. Fan, P. Wang Gene selection method for microarray data classification using particle swarm optimization and neighborhood rough set Curr. Bioinf., 14 (2019), pp. 422-431, 10.2174/15748936146661902041509182 S. Wang, W. Aorigele Kong, W. Kong, W. Zeng, X. Hong Hybrid binary imperialist competition algorithm and tabu search approach for feature selection using gene expression data BioMed Res. Int., 2016 (2016), p. 9721713, 10.1155/2016/97217133 S. Jana, N. Balakrishnan, D. von Rosen, J.S. Hamid High dimensional extension of the growth curve model and its application in genetics Stat. Methods Appt., 26 (2016), pp. 273-292, 10.1007/s10260-016-0369-44 K. Uthayan A novel microarray gene selection and classification using intelligent dynamic grey wolf optimization Genetika, 51 (2019), pp. 805-828, 10.2298/GENSR1903805U5 A.K. Shukla, P. Singh, M. Vardhan Gene selection for cancer types classification using novel hybrid metaheuristics approach Swarm Evol. Comput., 54 (2020), p. 100661, 10.1016/j.swevo.2020.1006616 A. Sharma, R. Rani C-HMOSHSSA: gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods Comput. Methods Progr. Biomed., 178 (2019), pp. 219-235, 10.1016/j.cmpb.2019.06.0297 M.S. Mohamad, S. Omatu, S. Deris, M. Yoshioka, A. Abdullah, Z. Ibrahim An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes Algorithm Mol. Biol., 8 (2013), p. 15, 10.1186/1748-7188-8-158 A.M. Mabu, R. Prasad, R. Yadav Gene expression dataset classification using artificial neural network and clustering-based feature selection Int. J. Swarm Intell. Res. (IJSIR), 11 (2020), pp. 65-86, 10.4018/IJSIR.20200101049 C. Jin, S.W. Jin Gene selection approach based on improved swarm intelligent optimisation algorithm for tumour classification IET Syst. Biol., 10 (2016), pp. 107-115, 10.1049/iet-syb.2015.006410 A. Dabba, A. Tari, S. Meftali, R. Mokhtari Gene selection and classification of microarray data method based on mutual information and moth flame algorithm Expert Syst. Appl., 166 (2021), p. 114012, 10.1016/j.eswa.2020.11401211 A. Dabba, A. Tari, S. Meftali Hybridization of Moth flame optimization algorithm and quantum computing for gene selection in microarray data J. Ambient Intell. Hum. Comput., 12 (2021), pp. 2731-2750, 10.1007/s12652-020-02434-912 X. Xu, J. Li, H.-l. Chen Enhanced Support Vector Machine Using Parallel Particle Swarm Optimization IEEE (2014), pp. 41-4613 H. Alshamlan, G. Badr, Y. Alohali mRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling BioMed Res. Int., 2015 (2015), p. 604910, 10.1155/2015/60491014 H.M. Alshamlan, G.H. Badr, Y.A. Alohali Genetic Bee Colony (GBC) algorithm: a new gene selection method for microarray cancer classification Comput. Biol. Chem., 56 (2015), pp. 49-60, 10.1016/j.compbiolchem.2015.03.00115 H. Nematzadeh, J. García-Nieto, I. Navas-Delgado, J.F. Aldana-Montes Automatic frequency-based feature selection using discrete weighted evolution strategy Appl. Soft Comput., 130 (2022), p. 109699, 10.1016/j.asoc.2022.10969916 C.-Q. Huang, F. Jiang, Q.-H. Huang, X.-Z. Wang, Z.-M. Han, W.-Y. Huang Dual-graph attention convolution network for 3-D point cloud classification IEEE Transact. Neural Networks Learn. Syst. (2022), pp. 1-1317 Y. Ban, Y. Wang, S. Liu, B. Yang, M. Liu, L. Yin, W. Zheng 2D/3D multimode medical image alignment based on spatial histograms Appl. Sci., 12 (2022), p. 826118 M. Rostami, S. Forouzandeh, K. Berahmand, M. Soltani Integration of multi-objective PSO based feature selection and node centrality for medical datasets Genomics, 112 (2020), pp. 4370-4384, 10.1016/j.ygeno.2020.07.02719 O. Tarkhaneh, T.T. Nguyen, S. Mazaheri A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm Inf. Sci., 565 (2021), pp. 278-305, 10.1016/j.ins.2021.02.06120 A. Jiménez-Cordero, J.M. Morales, S. Pineda A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification Eur. J. Oper. Res., 293 (2021), pp. 24-35, 10.1016/j.ejor.2020.12.00921 S. Abasabadi, H. Nematzadeh, H. Motameni, E. Akbari Automatic ensemble feature selection using fast non-dominated sorting Inf. Syst., 100 (2021), p. 101760, 10.1016/j.is.2021.10176022 Z. Sadeghian, E. Akbari, H. Nematzadeh A hybrid feature selection method based on information theory and binary butterfly optimization algorithm Eng. Appl. Artif. Intell., 97 (2021), 10.1016/j.engappai.2020.10407923 N. Singh, P. Singh A hybrid ensemble-filter wrapper feature selection approach for medical data classification Chemometr. Intell. Lab. Syst., 217 (2021), p. 104396, 10.1016/j.chemolab.2021.10439624 J. Cai, J. Luo, S. Wang, S. Yang Feature selection in machine learning: a new perspective Neurocomputing, 300 (2018), pp. 70-79, 10.1016/j.neucom.2017.11.07725 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier New theoretical ISM-K2 Bayesian network model for evaluating vaccination effectiveness J. Ambient Intell. Hum. Comput. (2022), pp. 1-1726 M.M. Mafarja, S. Mirjalili Hybrid Whale Optimization Algorithm with simulated annealing for feature selection Neurocomputing, 260 (2017), pp. 302-312, 10.1016/j.neucom.2017.04.05327 J. Too, S. Mirjalili A hyper learning binary dragonfly algorithm for feature selection: a COVID-19 case study Knowl. Base Syst., 212 (2021), 10.1016/j.knosys.2020.10655328 N.S. Altman An introduction to kernel and nearest-neighbor nonparametric regression Am. Statistician, 46 (1992), pp. 175-185, 10.1080/00031305.1992.1047587929 J. Hu, H. Chen, A.A. Heidari, M. Wang, X. Zhang, Y. Chen, Z. Pan Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection Knowl. Base Syst., 213 (2021), p. 106684, 10.1016/j.knosys.2020.10668430 M. Shafipour, A. Rashno, S. Fadaei Particle distance rank feature selection by particle swarm optimization Expert Syst. Appl., 185 (2021), p. 115620, 10.1016/j.eswa.2021.11562031 K. Zhang, Z. Wang, G. Chen, L. Zhang, Y. Yang, C. Yao, J. Wang, J. Yao Training effective deep reinforcement learning agents for real-time life-cycle production optimization J. Petrol. Sci. Eng., 208 (2022), p. 10976632 X. Xu, Z. Lin, X. Li, C. Shang, Q. Shen Multi-objective robust optimisation model for MDVRPLS in refined oil distribution Int. J. Prod. Res., 60 (2022), pp. 6772-679233 J. Tian, M. Hou, H. Bian, J. Li Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems Complex & Intelligent Systems (2022), pp. 1-4934 F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili Henry gas solubility optimization: a novel physics-based algorithm Future Generat. Comput. Syst., 101 (2019), pp. 646-667, 10.1016/j.future.2019.07.01535 F.A. Hashim, K. Hussain, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems Appl. Intell., 51 (2021), pp. 1531-1551, 10.1007/s10489-020-01893-z36 F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, W. Al-Atabany Honey Badger Algorithm: new metaheuristic algorithm for solving optimization problems Math. Comput. Simulat., 192 (2022), pp. 84-110, 10.1016/j.matcom.2021.08.01337 H. Chen, C. Li, M. Mafarja, A.A. Heidari, Y. Chen, Z. Cai Slime mould algorithm: a comprehensive review of recent variants and applications Int. J. Syst. Sci., 54 (2022), pp. 204-23538 M. Li, A. Cao, R. Wang, Z. Li, S. Li, J. Wang Slime mould algorithm: a new method for stochastic optimization BMC Plant Biol., 20 (2020), pp. 300-32339 I. Ahmadianfar, A.A. Heidari, A.H. Gandomi, X. Chu, H. Chen RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method Expert Syst. Appl., 181 (2021), p. 115079, 10.1016/j.eswa.2021.11507940 J. Tu, H. Chen, M. Wang, A.H. Gandomi The colony predation algorithm J. Bionic Eng., 18 (2021), pp. 674-710, 10.1007/s42235-021-0050-y41 I. Ahmadianfar, A.A. Heidari, S. Noshadian, H. Chen, A.H. Gandomi INFO: an efficient optimization algorithm based on weighted mean of vectors Expert Syst. Appl., 195 (2022), p. 116516, 10.1016/j.eswa.2022.11651642 H. Su, D. Zhao, A. Asghar Heidari, L. Liu, X. Zhang, M. Mafarja, H. Chen RIME: a physics-based optimization Neurocomputing, 532 (2023), pp. 183-214, 10.1016/j.neucom.2023.02.01043 A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen Harris hawks optimization: algorithm and applications Future Generat. Comput. Syst., 97 (2019), pp. 849-872, 10.1016/j.future.2019.02.02844 E. Çelik A powerful variant of symbiotic organisms search algorithm for global optimization Eng. Appl. Artif. Intell., 87 (2020), p. 103294, 10.1016/j.engappai.2019.10329445 E. Çelik, N. Öztürk, Y. Arya Advancement of the search process of salp swarm algorithm for global optimization problems Expert Syst. Appl., 182 (2021), p. 115292, 10.1016/j.eswa.2021.11529246 E.H. Houssein, D. Oliva, E. Çelik, M.M. Emam, R.M. Ghoniem Boosted sooty tern optimization algorithm for global optimization and feature selection Expert Syst. Appl., 213 (2023), p. 119015, 10.1016/j.eswa.2022.11901547 E. Çelik IEGQO-AOA: information-exchanged Gaussian arithmetic optimization algorithm with quasi-opposition learning Knowl. Base Syst., 260 (2023), p. 110169, 10.1016/j.knosys.2022.11016948 Y. Zhang, R. Liu, A.A. Heidari, X. Wang, Y. Chen, M. Wang, H. Chen Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis Neurocomputing, 430 (2021), pp. 185-21249 X. Wen, K. Wang, H. Li, H. Sun, H. Wang, L. Jin A two-dlstage solution method based on NSGA-II for Green Multi-Objective integrated process planning and scheduling in a battery packaging machinery workshop Swarm Evol. Comput., 61 (2021), p. 100820, 10.1016/j.swevo.2020.10082050 G. Wang, E. Fan, G. Zheng, K. Li, H. Huang Research on vessel speed heading and collision detection method based on AIS data Mobile Information Systems (2022)51 R. Dong, H. Chen, A.A. Heidari, H. Turabieh, M. Mafarja, S. Wang Boosted kernel search: framework, analysis and case studies on the economic emission dispatch problem Knowl. Base Syst., 233 (2021), p. 107529, 10.1016/j.knosys.2021.10752952 C. Zhao, Y. Zhou, X. Lai An integrated framework with evolutionary algorithm for multi-scenario multi-objective optimization problems Inf. Sci., 600 (2022), pp. 342-361, 10.1016/j.ins.2022.03.09353 Y. Xue, Y. Tong, F. Neri An ensemble of differential evolution and Adam for training feed-forward neural networks Inf. Sci., 608 (2022), pp. 453-471, 10.1016/j.ins.2022.06.03654 K. Yu, D. Zhang, J. Liang, K. Chen, C. Yue, K. Qiao, L. Wang A correlation-guided layered prediction approach for evolutionary dynamic multiobjective optimization IEEE Trans. Evol. Comput., 1 (2022), p. 1, 10.1109/TEVC.2022.319328755 C. Huang, X. Zhou, X. Ran, Y. Liu, W. Deng, W. Deng Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem Inf. Sci., 619 (2023), pp. 2-18, 10.1016/j.ins.2022.11.01956 J. Liang, K. Qiao, K. Yu, B. Qu, C. Yue, W. Guo, L. Wang Utilizing the relationship between unconstrained and constrained pareto fronts for constrained multiobjective optimization IEEE Trans. Cybern. (2022), pp. 1-14, 10.1109/TCYB.2022.316375957 W. Deng, J. Xu, X.Z. Gao, H. Zhao An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), pp. 1578-1587, 10.1109/TSMC.2020.303079258 Y. Liu, H. Cui, X. Xu, W. Liang, H. Chen, Z. Pan, A. Alsufyani, S. Bourouis Simulated annealing-based dynamic step shuffled frog leaping algorithm: optimal performance design and feature selection Neurocomputing, 20 (2022), pp. 325-362, 10.1016/j.neucom.2022.06.07559 Y. Xue, B. Xue, M. Zhang Self-adaptive particle swarm optimization for large-scale feature selection in classification ACM Trans. Knowl. Discov. Data, 13 (2019), pp. 1-2760 Y. Xue, X. Cai, F. Neri A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification Appl. Soft Comput., 127 (2022), p. 10942061 A.I. Hammouri, M. Mafarja, M.A. Al-Betar, M.A. Awadallah, I. Abu-Doush An Improved Dragonfly Algorithm for Feature Selection Knowl. Base Syst., 203 (2020), p. 106131, 10.1016/j.knosys.2020.10613162 M. Tahir, A. Tubaishat, F. Al-Obeidat, B. Shah, Z. Halim, M. Waqas A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare Neural Comput. Appl., 34 (2020), pp. 11453-11474, 10.1007/s00521-020-05347-y63 R.A. Ibrahim, M.A. Elaziz, D. Oliva, E. Cuevas, S. Lu An opposition-based social spider optimization for feature selection Soft Comput., 23 (2019), pp. 13547-13567, 10.1007/s00500-019-03891-x64 M. Tubishat, N. Idris, L. Shuib, M.A. Abushariah, S. Mirjalili Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection Expert Syst. Appl., 145 (2020), p. 113122, 10.1016/j.eswa.2019.11312265 B. Xue, M. Zhang, W.N. Browne, X. Yao A survey on evolutionary computation approaches to feature selection IEEE Trans. Evol. Comput., 20 (2016), pp. 606-626, 10.1109/tevc.2015.250442066 S. Mirjalili, A. Lewis The whale optimization algorithm Adv. Eng. Software, 95 (2016), pp. 51-67, 10.1016/j.advengsoft.2016.01.00867 W. Zhao, Z. Zhang, L. Wang Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications Eng. Appl. Artif. Intell., 87 (2020), p. 103300, 10.1016/j.engappai.2019.10330068 S. Ahmed, K.K. Ghosh, S. Mirjalili, R. Sarkar AIEOU: automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection Knowl. Base Syst., 228 (2021), p. 107283, 10.1016/j.knosys.2021.10728369 Y. Yang, H. Chen, A.A. Heidari, A.H. Gandomi Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts Expert Syst. Appl., 177 (2021), p. 114864, 10.1016/j.eswa.2021.11486470 Y.O. Shaker, D. Yousri, A. Osama, A. Al-Gindy, E. Tag-Eldin, D. Allam Optimal charging/discharging decision of energy storage community in grid-connected microgrid using multi-objective hunger game search optimizer IEEE Access, 9 (2021), pp. 120774-120794, 10.1109/ACCESS.2021.310183971 H. Nguyen, X.-N. Bui A novel hunger games search optimization-based artificial neural network for predicting ground vibration intensity induced by mine blasting Nat. Resour. Res., 30 (2021), pp. 3865-3880, 10.1007/s11053-021-09903-872 X. Zhou, W. Gui, A.A. Heidari, Z. Cai, H. Elmannai, M. Hamdi, G. Liang, H. Chen Advanced orthogonal learning and Gaussian barebone hunger games for engineering design J. Comput. Des. Eng., 9 (2022), pp. 1699-1736, 10.1093/jcde/qwac07573 R. Li, X. Wu, H. Tian, N. Yu, C. Wang Hybrid memetic pretrained factor analysis-based deep belief networks for transient electromagnetic inversion IEEE Trans. Geosci. Rem. Sens., 60 (2022), pp. 1-2074 S. Chakraborty, A.K. Saha, R. Chakraborty, M. Saha, S. Nama HSWOA: an ensemble of hunger games search and whale optimization algorithm for global optimization Int. J. Intell. Syst., 37 (2022), pp. 52-104, 10.1002/int.2261775 S. Li, X. Li, H. Chen, Y. Zhao, J. Dong A novel hybrid hunger games search algorithm with differential evolution for improving the behaviors of non-cooperative animals IEEE Access, 9 (2021), pp. 164188-164205, 10.1109/ACCESS.2021.313261776 R. Liang, T. Le-Hung, T. Nguyen-Thoi Energy consumption prediction of air-conditioning systems in eco-buildings using hunger games search optimization-based artificial neural network model J. Build. Eng., 59 (2022), p. 105087, 10.1016/j.jobe.2022.10508777 S. Yu, A.A. Heidari, C. He, Z. Cai, M.M. Althobaiti, R.F. Mansour, G. Liang, H. Chen Parameter estimation of static solar photovoltaic models using Laplacian Nelder-Mead hunger games search Sol. Energy, 242 (2022), pp. 79-104, 10.1016/j.solener.2022.06.04678 R. Manjula Devi, M. Premkumar, P. Jangir, B. Santhosh Kumar, D. Alrowaili, K. Sooppy Nisar BHGSO: binary hunger games search optimization algorithm for feature selection problem Comput. Mater. Continua (CMC), 70 (2022), pp. 557-579, 10.32604/cmc.2022.01961179 Houssein, E.H., Hosney, M.E., Mohamed, W.M., Ali, A.A., and Younis, E.M.G. Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data. Neural Comput. Appl.. 10.1007/s00521-022-07916-980 B.J. Ma, S. Liu, A.A. Heidari Multi-strategy ensemble binary hunger games search for feature selection Knowl. Base Syst., 248 (2022), p. 108787, 10.1016/j.knosys.2022.10878781 T. Blackwell A study of collapse in bare bones particle swarm optimization IEEE Trans. Evol. Comput., 16 (2012), pp. 354-372, 10.1109/TEVC.2011.213634782 X. Chen, H. Huang, A.A. Heidari, C. Sun, Y. Lv, W. Gui, G. Liang, Z. Gu, H. Chen, C. Li, P. Chen An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images Comput. Biol. Med., 142 (2022), p. 105179, 10.1016/j.compbiomed.2021.10517983 W. Cao, X. Wang, Z. Ming, J. Gao A review on neural networks with random weights Neurocomputing, 275 (2018), pp. 278-287, 10.1016/j.neucom.2017.08.04084 W. Cao, Z. Xie, J. Li, Z. Xu, Z. Ming, X. Wang Bidirectional stochastic configuration network for regression problems Neural Network., 140 (2021), pp. 237-246, 10.1016/j.neunet.2021.03.01685 S. Jadhav, H. He, K. Jenkins Information gain directed genetic algorithm wrapper feature selection for credit rating Appl. Soft Comput., 69 (2018), pp. 541-553, 10.1016/j.asoc.2018.04.03386 F. Tempola, R. Rosihan, R. Adawiyah Holdout validation for comparison classfication naïve bayes and KNN of recipient kartu Indonesia pintar IOP Conf. Ser. Mater. Sci. Eng., 1125 (2021)87 H.K. Jeon, C.S. Yang Enhancement of ship type classification from a combination of CNN and KNN Electronics, 10 (2021), p. 116988 F. Zhu, X. Jia-kun, W. Zhong-yu, L. Pei-Chen, Q. Shu-jun, H. Lei Image classification method based on improved KNN algorithm J. Phys. Conf. (2021)89 M.H. Nadimi-Shahraki, H. Zamani, S. Mirjalili Enhanced whale optimization algorithm for medical feature selection: a COVID-19 case study Comput. Biol. Med., 148 (2022), p. 105858, 10.1016/j.compbiomed.2022.10585890 J. Yedukondalu, L.D. Sharma Cognitive load detection using circulant singular spectrum analysis and Binary Harris Hawks Optimization based feature selection Biomed. Signal Process Control, 79 (2022), p. 104006, 10.1016/j.bspc.2022.10400691 E. Emary, H.M. Zawbaa, A.E. Hassanien Binary grey wolf optimization approaches for feature selection Neurocomputing, 172 (2016), pp. 371-381, 10.1016/j.neucom.2015.06.08392 J. Hu, W. Gui, A.A. Heidari, Z. Cai, G. Liang, H. Chen, Z. Pan Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection Knowl. Base Syst., 237 (2022), p. 107761, 10.1016/j.knosys.2021.10776193 W. Zhou, P. Wang, A.A. Heidari, X. Zhao, H. Chen Spiral Gaussian mutation sine cosine algorithm: framework and comprehensive performance optimization Expert Syst. Appl., 209 (2022), p. 118372, 10.1016/j.eswa.2022.11837294 H. Ren, J. Li, H. Chen, C. Li Adaptive levy-assisted salp swarm algorithm: analysis and optimization case studies Math. Comput. Simulat., 181 (2021), pp. 380-40995 D. Xu, N. Ning, Y. Xu, B. Wang, Q. Cui, Z. Liu, X. Wang, D. Liu, H. Chen, M.G. Kong An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks Cancer Cell Int., 19 (2019), pp. 135-155, 10.1016/j.eswa.2019.03.04396 A.A. Heidari, R. Ali Abbaspour, H. Chen Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training Appl. Soft Comput., 81 (2019), p. 105521, 10.1016/j.asoc.2019.10552197 P. Civicioglu, E. Besdok, M.A. Gunen, U.H. Atasever Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms Neural Comput. Appl., 32 (2020), pp. 3923-3937, 10.1007/s00521-018-3822-598 M.M. Dehshibi, M. Sourizaei, M. Fazlali, O. Talaee, H. Samadyar, J. Shanbehzadeh A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding Multimed. Tool. Appl., 76 (2017), pp. 15951-15986, 10.1007/s11042-016-3891-399 H. Nenavath, R.K. Jatoth Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking Appl. Soft Comput., 62 (2018), pp. 1019-1043, 10.1016/j.asoc.2017.09.039100 Y. Zhou, J. Xie, L. Li, M. Ma Cloud model bat algorithm Sci. World J., 2014 (2014), p. 237102, 10.1155/2014/237102101 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier Deduction of sudden rainstorm scenarios: integrating decision makers' emotions, dynamic Bayesian network and DS evidence theory Nat. Hazards (2022), pp. 1-17102 S. Xiong, B. Li, S. Zhu DCGNN: a single-stage 3D object detection network based on density clustering and graph neural network Complex Intell. Systems (2022), pp. 1-10103 X. Chen, Y. Xu, L. Meng, X. Chen, L. Yuan, Q. Cai, W. Shi, G. Huang Non-parametric partial least squares–discriminant analysis model based on sum of ranking difference algorithm for tea grade identification using electronic tongue data Sensor. Actuator. B Chem., 311 (2020), p. 127924104 X. Zenggang, Z. Mingyang, Z. Xuemin, Z. Sanyuan, X. Fang, Z. Xiaochao, W. Yunyun, L. Xiang Social similarity routing algorithm based on socially aware networks in the big data environment J. Signal Process. Syst., 94 (2022), pp. 1253-1267105 J. Xu, S. Pan, P.Z.H. Sun, S. Hyeong Park, K. Guo Human-Factors-in-Driving-Loop: driver identification and verification via a deep learning approach using psychological behavioral data IEEE Trans. Intell. Transport. Syst., 24 (2023), pp. 3383-3394106 X. Qin, Z. Liu, Y. Liu, S. Liu, B. Yang, L. Yin, M. Liu, W. Zheng User OCEAN personality model construction method using a BP neural network Electronics, 11 (2022), p. 3022 View article CrossRefView in ScopusGoogle Scholar107 B. Li, Y. Lu, W. Pang, H. Xu Image Colorization using CycleGAN with semantic and spatial rationality Multimed. Tool. Appl. (2023), pp. 1-15108 Q. Xu, Y. Zeng, W. Tang, W. Peng, T. Xia, Z. Li, F. Teng, W. Li, J. Guo Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network IEEE J. Biomed. Health Inform., 24 (2020), pp. 2481-2489109 X.-F. Wang, P. Gao, Y.-F. Liu, H.-F. Li, F. Lu Predicting thermophilic proteins by machine learning Curr. Bioinf., 15 (2020), pp. 493-502110 A. Seifi, M. Ehteram, V.P. Singh, A. Mosavi Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN Sustainability, 12 (2020), p. 4023111 F. Yang, H. Moayedi, A. Mosavi Predicting the degree of dissolved oxygen using three types of multi-layer perceptron-based artificial neural networks Sustainability, 13 (2021), p. 9898112 C. Zhao, H. Wang, H. Chen, W. Shi, Y. Feng, Y. Wang, H. Xiao, J. Zheng JAMSNet: a remote pulse extraction network based on joint attention and multi-scale fusion Crit. Rev. Food Sci. Nutr. (2022), pp. 1-19, 10.1109/TCSVT.2022.3227348 View article Google Scholar113 J. Lv, G. Li, X. Tong, W. Chen, J. Huang, C. Wang, G. Yang Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction Comput. Biol. Med., 134 (2021), p. 104504, 10.1016/j.compbiomed.2021.104504114 S. Wang, B. Wang, Z. Zhang, A.A. Heidari, H. Chen, X. Wang, L.P. Wang, Y.B. Fu Class-aware sample reweighting optimal transport for multi-source domain adaptation Neurocomputing, 523 (2023), pp. 213-223, 10.1016/j.neucom.2022.12.048115 Z. Wu, S. Xuan, J. Xie, C. Lin, C. Lu How to ensure the confidentiality of electronic medical records on the cloud: a technical perspective Comput. Biol. Med., 147 (2022), p. 105726, 10.1016/j.compbiomed.2022.105726116 Z. Wu, G. Li, S. Shen, X. Lian, E. Chen, G. Xu Constructing dummy query sequences to protect location privacy and query privacy in location-based services World Wide Web, 24 (2021), pp. 25-49, 10.1007/s11280-020-00830-x117 B. Yan, Y. Li, L. Li, X. Yang, T.-q. Li, G. Yang, M. Jiang Quantifying the impact of Pyramid Squeeze Attention mechanism and filtering approaches on Alzheimer's disease classification Comput. Biol. Med., 148 (2022), p. 105944, 10.1016/j.compbiomed.2022.105944118 X. Sun, X. Cao, B. Zeng, Q. Zhai, X. Guan Multistage dynamic planning of integrated hydrogen-electrical microgrids under multiscale uncertainties IEEE Trans. Smart Grid (2022), p. 1, 10.1109/TSG.2022.3232545119 Z. Wu, S. Shen, X. Lian, X. Su, E. Chen A dummy-based user privacy protection approach for text information retrieval Knowl. Base Syst., 195 (2020), p. 105679, 10.1016/j.knosys.2020.105679120 Z. Wu, S. Shen, H. Li, H. Zhou, C. Lu A basic framework for privacy protection in personalized information retrieval: an effective framework for user privacy protection J. Organ. End User Comput., 33 (2022), pp. 1-26121 Z. Wu, S. Shen, H. Zhou, H. Li, C. Lu, D. Zou An effective approach for the protection of user commodity viewing privacy in e-commerce website Knowl. Base Syst., 220 (2021), p. 106952, 10.1016/j.knosys.2021.106952122 Z. Wu, J. Xie, S. Shen, C. Lin, G. Xu, E. Chen A confusion method for the protection of user topic privacy in Chinese keyword based book retrieval ACM Transactions on Asian and Low-Resource Language Information Processing (2023)123 X. Cao, T. Cao, Z. Xu, B. Zeng, F. Gao, X. Guan Resilience constrained scheduling of mobile emergency resources in electricity-hydrogen distribution network IEEE Trans. Sustain. Energy, 14 (2023), pp. 1269-1284, 10.1109/TSTE.2022.3217514124 Y. Dai, J. Wu, Y. Fan, J. Wang, J. Niu, F. Gu, S. Shen MSEva: a musculoskeletal rehabilitation evaluation system based on EMG signals ACM Trans. Sens. Netw., 19 (2022), pp. 1-23125 J. Zhou, X. Zhang, Z. Jiang Recognition of imbalanced epileptic EEG signals by a graph-based extreme learning machine Wireless Commun. Mobile Comput., 2021 (2021), pp. 1-12, 10.1155/2021/5871684126 J. Chen, X. Zhu, H. Liu A mutual neighbor-based clustering method and its medical applications Comput. Biol. Med., 150 (2022), p. 106184, 10.1016/j.compbiomed.2022.106184127 Y. Chen, Y. Zhang, Y. Wang, S. Ta, M. Shi, Y. Zhou, M. Li, J. Fu, L. Wang, X. Liu, et al. Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet J. Diabetes, 15 (2023), pp. 264-274128 Y. Li, Y. Zhang, W. Cui, B. Lei, X. Kuang, T. Zhang Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation IEEE Trans. Med. Imag., 41 (2022), pp. 1975-1989, 10.1109/TMI.2022.3151666129 L. Abualigah, M.A. Elaziz, P. Sumari, Z.W. Geem, A.H. Gandomi Reptile Search Algorithm (RSA): a nature-inspired meta-heuristic optimizer Expert Syst. Appl., 191 (2022), p. 116158, 10.1016/j.eswa.2021.116158130 C. Kumar, T.D. Raj, M. Premkumar, T.D. Raj A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters Optik, 223 (2020), p. 165277, 10.1016/j.ijleo.2020.165277131 E. Zorarpacı, S.A. Özel A hybrid approach of differential evolution and artificial bee colony for feature selection Expert Syst. Appl., 62 (2016), pp. 91-103, 10.1016/j.eswa.2016.06.004391526GeneticsComputational bioinformaticsAlgorithmsPublicationORIGINALAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection.pdfAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection.pdfArtículosapplication/pdf11659818https://repositorio.cuc.edu.co/bitstreams/dbf99241-62b0-4a24-9c39-1be9de80feeb/download02f7999ee62e6217d0a99d7233b1d588MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/550c1ba2-8bb3-4949-a722-88119ca8b41d/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection.pdf.txtAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection.pdf.txtExtracted texttext/plain129763https://repositorio.cuc.edu.co/bitstreams/b6fe4328-3dbf-44aa-bb26-05197b9bcf52/download1efd2acc0f00fd95f21a188255ec5dc6MD53THUMBNAILAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection.pdf.jpgAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection.pdf.jpgGenerated Thumbnailimage/jpeg14007https://repositorio.cuc.edu.co/bitstreams/f142a7a0-403d-4ff3-a058-e724736f57ae/downloadf6cc898a1537232d442ff7fec2e33479MD5411323/10499oai:repositorio.cuc.edu.co:11323/104992024-09-17 10:55:36.466https://creativecommons.org/licenses/by/4.0/© 2023 The Author(s).open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=