An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection
The domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision...
- Autores:
-
Chen, Zhiqing
Xuan, Ping
Asghar Heidari, Ali
Liu, Lei
Wu, Chengwen
Chen, Huiling
Escorcia-Gutierrez, José
Mansour, Romany F.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10499
- Acceso en línea:
- https://hdl.handle.net/11323/10499
https://repositorio.cuc.edu.co/
- Palabra clave:
- Genetics
Computational bioinformatics
Algorithms
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_c76bbc7b9fa593d0e9d26aa95235d40c |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10499 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection |
title |
An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection |
spellingShingle |
An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection Genetics Computational bioinformatics Algorithms |
title_short |
An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection |
title_full |
An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection |
title_fullStr |
An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection |
title_full_unstemmed |
An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection |
title_sort |
An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection |
dc.creator.fl_str_mv |
Chen, Zhiqing Xuan, Ping Asghar Heidari, Ali Liu, Lei Wu, Chengwen Chen, Huiling Escorcia-Gutierrez, José Mansour, Romany F. |
dc.contributor.author.none.fl_str_mv |
Chen, Zhiqing Xuan, Ping Asghar Heidari, Ali Liu, Lei Wu, Chengwen Chen, Huiling Escorcia-Gutierrez, José Mansour, Romany F. |
dc.subject.proposal.eng.fl_str_mv |
Genetics Computational bioinformatics Algorithms |
topic |
Genetics Computational bioinformatics Algorithms |
description |
The domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision. Therefore, this article designs a new wrapper gene selection algorithm named artificial bee bare-bone hunger games search (ABHGS), which is the hunger games search (HGS) integrated with an artificial bee strategy and a Gaussian bare-bone structure to address this issue. To evaluate and validate the performance of our proposed method, ABHGS is compared to HGS and a single strategy embedded in HGS, six classic algorithms, and ten advanced algorithms on the CEC 2017 functions. The experimental results demonstrate that the bABHGS outperforms the original HGS. Compared to peers, it increases classification accuracy and decreases the number of selected features, indicating its actual engineering utility in spatial search and feature selection. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-18T16:18:48Z |
dc.date.available.none.fl_str_mv |
2023-09-18T16:18:48Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Zhiqing Chen, Ping Xuan, Ali Asghar Heidari, Lei Liu, Chengwen Wu, Huiling Chen, José Escorcia-Gutierrez, Romany F. Mansour, An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection, iScience, Volume 26, Issue 5, 2023, 106679, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2023.106679. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10499 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.isci.2023.106679 |
dc.identifier.eissn.spa.fl_str_mv |
2589-0042 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Zhiqing Chen, Ping Xuan, Ali Asghar Heidari, Lei Liu, Chengwen Wu, Huiling Chen, José Escorcia-Gutierrez, Romany F. Mansour, An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection, iScience, Volume 26, Issue 5, 2023, 106679, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2023.106679. 10.1016/j.isci.2023.106679 2589-0042 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/10499 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
iScience |
dc.relation.references.spa.fl_str_mv |
1 M. Ye, W. Wang, C. Yao, R. Fan, P. Wang Gene selection method for microarray data classification using particle swarm optimization and neighborhood rough set Curr. Bioinf., 14 (2019), pp. 422-431, 10.2174/1574893614666190204150918 2 S. Wang, W. Aorigele Kong, W. Kong, W. Zeng, X. Hong Hybrid binary imperialist competition algorithm and tabu search approach for feature selection using gene expression data BioMed Res. Int., 2016 (2016), p. 9721713, 10.1155/2016/9721713 3 S. Jana, N. Balakrishnan, D. von Rosen, J.S. Hamid High dimensional extension of the growth curve model and its application in genetics Stat. Methods Appt., 26 (2016), pp. 273-292, 10.1007/s10260-016-0369-4 4 K. Uthayan A novel microarray gene selection and classification using intelligent dynamic grey wolf optimization Genetika, 51 (2019), pp. 805-828, 10.2298/GENSR1903805U 5 A.K. Shukla, P. Singh, M. Vardhan Gene selection for cancer types classification using novel hybrid metaheuristics approach Swarm Evol. Comput., 54 (2020), p. 100661, 10.1016/j.swevo.2020.100661 6 A. Sharma, R. Rani C-HMOSHSSA: gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods Comput. Methods Progr. Biomed., 178 (2019), pp. 219-235, 10.1016/j.cmpb.2019.06.029 7 M.S. Mohamad, S. Omatu, S. Deris, M. Yoshioka, A. Abdullah, Z. Ibrahim An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes Algorithm Mol. Biol., 8 (2013), p. 15, 10.1186/1748-7188-8-15 8 A.M. Mabu, R. Prasad, R. Yadav Gene expression dataset classification using artificial neural network and clustering-based feature selection Int. J. Swarm Intell. Res. (IJSIR), 11 (2020), pp. 65-86, 10.4018/IJSIR.2020010104 9 C. Jin, S.W. Jin Gene selection approach based on improved swarm intelligent optimisation algorithm for tumour classification IET Syst. Biol., 10 (2016), pp. 107-115, 10.1049/iet-syb.2015.0064 10 A. Dabba, A. Tari, S. Meftali, R. Mokhtari Gene selection and classification of microarray data method based on mutual information and moth flame algorithm Expert Syst. Appl., 166 (2021), p. 114012, 10.1016/j.eswa.2020.114012 11 A. Dabba, A. Tari, S. Meftali Hybridization of Moth flame optimization algorithm and quantum computing for gene selection in microarray data J. Ambient Intell. Hum. Comput., 12 (2021), pp. 2731-2750, 10.1007/s12652-020-02434-9 12 X. Xu, J. Li, H.-l. Chen Enhanced Support Vector Machine Using Parallel Particle Swarm Optimization IEEE (2014), pp. 41-46 13 H. Alshamlan, G. Badr, Y. Alohali mRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling BioMed Res. Int., 2015 (2015), p. 604910, 10.1155/2015/604910 14 H.M. Alshamlan, G.H. Badr, Y.A. Alohali Genetic Bee Colony (GBC) algorithm: a new gene selection method for microarray cancer classification Comput. Biol. Chem., 56 (2015), pp. 49-60, 10.1016/j.compbiolchem.2015.03.001 15 H. Nematzadeh, J. García-Nieto, I. Navas-Delgado, J.F. Aldana-Montes Automatic frequency-based feature selection using discrete weighted evolution strategy Appl. Soft Comput., 130 (2022), p. 109699, 10.1016/j.asoc.2022.109699 16 C.-Q. Huang, F. Jiang, Q.-H. Huang, X.-Z. Wang, Z.-M. Han, W.-Y. Huang Dual-graph attention convolution network for 3-D point cloud classification IEEE Transact. Neural Networks Learn. Syst. (2022), pp. 1-13 17 Y. Ban, Y. Wang, S. Liu, B. Yang, M. Liu, L. Yin, W. Zheng 2D/3D multimode medical image alignment based on spatial histograms Appl. Sci., 12 (2022), p. 8261 18 M. Rostami, S. Forouzandeh, K. Berahmand, M. Soltani Integration of multi-objective PSO based feature selection and node centrality for medical datasets Genomics, 112 (2020), pp. 4370-4384, 10.1016/j.ygeno.2020.07.027 19 O. Tarkhaneh, T.T. Nguyen, S. Mazaheri A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm Inf. Sci., 565 (2021), pp. 278-305, 10.1016/j.ins.2021.02.061 20 A. Jiménez-Cordero, J.M. Morales, S. Pineda A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification Eur. J. Oper. Res., 293 (2021), pp. 24-35, 10.1016/j.ejor.2020.12.009 21 S. Abasabadi, H. Nematzadeh, H. Motameni, E. Akbari Automatic ensemble feature selection using fast non-dominated sorting Inf. Syst., 100 (2021), p. 101760, 10.1016/j.is.2021.101760 22 Z. Sadeghian, E. Akbari, H. Nematzadeh A hybrid feature selection method based on information theory and binary butterfly optimization algorithm Eng. Appl. Artif. Intell., 97 (2021), 10.1016/j.engappai.2020.104079 23 N. Singh, P. Singh A hybrid ensemble-filter wrapper feature selection approach for medical data classification Chemometr. Intell. Lab. Syst., 217 (2021), p. 104396, 10.1016/j.chemolab.2021.104396 24 J. Cai, J. Luo, S. Wang, S. Yang Feature selection in machine learning: a new perspective Neurocomputing, 300 (2018), pp. 70-79, 10.1016/j.neucom.2017.11.077 25 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier New theoretical ISM-K2 Bayesian network model for evaluating vaccination effectiveness J. Ambient Intell. Hum. Comput. (2022), pp. 1-17 26 M.M. Mafarja, S. Mirjalili Hybrid Whale Optimization Algorithm with simulated annealing for feature selection Neurocomputing, 260 (2017), pp. 302-312, 10.1016/j.neucom.2017.04.053 27 J. Too, S. Mirjalili A hyper learning binary dragonfly algorithm for feature selection: a COVID-19 case study Knowl. Base Syst., 212 (2021), 10.1016/j.knosys.2020.106553 28 N.S. Altman An introduction to kernel and nearest-neighbor nonparametric regression Am. Statistician, 46 (1992), pp. 175-185, 10.1080/00031305.1992.10475879 29 J. Hu, H. Chen, A.A. Heidari, M. Wang, X. Zhang, Y. Chen, Z. Pan Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection Knowl. Base Syst., 213 (2021), p. 106684, 10.1016/j.knosys.2020.106684 30 M. Shafipour, A. Rashno, S. Fadaei Particle distance rank feature selection by particle swarm optimization Expert Syst. Appl., 185 (2021), p. 115620, 10.1016/j.eswa.2021.115620 31 K. Zhang, Z. Wang, G. Chen, L. Zhang, Y. Yang, C. Yao, J. Wang, J. Yao Training effective deep reinforcement learning agents for real-time life-cycle production optimization J. Petrol. Sci. Eng., 208 (2022), p. 109766 32 X. Xu, Z. Lin, X. Li, C. Shang, Q. Shen Multi-objective robust optimisation model for MDVRPLS in refined oil distribution Int. J. Prod. Res., 60 (2022), pp. 6772-6792 33 J. Tian, M. Hou, H. Bian, J. Li Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems Complex & Intelligent Systems (2022), pp. 1-49 34 F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili Henry gas solubility optimization: a novel physics-based algorithm Future Generat. Comput. Syst., 101 (2019), pp. 646-667, 10.1016/j.future.2019.07.015 35 F.A. Hashim, K. Hussain, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems Appl. Intell., 51 (2021), pp. 1531-1551, 10.1007/s10489-020-01893-z 36 F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, W. Al-Atabany Honey Badger Algorithm: new metaheuristic algorithm for solving optimization problems Math. Comput. Simulat., 192 (2022), pp. 84-110, 10.1016/j.matcom.2021.08.013 37 H. Chen, C. Li, M. Mafarja, A.A. Heidari, Y. Chen, Z. Cai Slime mould algorithm: a comprehensive review of recent variants and applications Int. J. Syst. Sci., 54 (2022), pp. 204-235 38 M. Li, A. Cao, R. Wang, Z. Li, S. Li, J. Wang Slime mould algorithm: a new method for stochastic optimization BMC Plant Biol., 20 (2020), pp. 300-323 39 I. Ahmadianfar, A.A. Heidari, A.H. Gandomi, X. Chu, H. Chen RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method Expert Syst. Appl., 181 (2021), p. 115079, 10.1016/j.eswa.2021.115079 40 J. Tu, H. Chen, M. Wang, A.H. Gandomi The colony predation algorithm J. Bionic Eng., 18 (2021), pp. 674-710, 10.1007/s42235-021-0050-y 41 I. Ahmadianfar, A.A. Heidari, S. Noshadian, H. Chen, A.H. Gandomi INFO: an efficient optimization algorithm based on weighted mean of vectors Expert Syst. Appl., 195 (2022), p. 116516, 10.1016/j.eswa.2022.116516 42 H. Su, D. Zhao, A. Asghar Heidari, L. Liu, X. Zhang, M. Mafarja, H. Chen RIME: a physics-based optimization Neurocomputing, 532 (2023), pp. 183-214, 10.1016/j.neucom.2023.02.010 43 A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen Harris hawks optimization: algorithm and applications Future Generat. Comput. Syst., 97 (2019), pp. 849-872, 10.1016/j.future.2019.02.028 44 E. Çelik A powerful variant of symbiotic organisms search algorithm for global optimization Eng. Appl. Artif. Intell., 87 (2020), p. 103294, 10.1016/j.engappai.2019.103294 45 E. Çelik, N. Öztürk, Y. Arya Advancement of the search process of salp swarm algorithm for global optimization problems Expert Syst. Appl., 182 (2021), p. 115292, 10.1016/j.eswa.2021.115292 46 E.H. Houssein, D. Oliva, E. Çelik, M.M. Emam, R.M. Ghoniem Boosted sooty tern optimization algorithm for global optimization and feature selection Expert Syst. Appl., 213 (2023), p. 119015, 10.1016/j.eswa.2022.119015 47 E. Çelik IEGQO-AOA: information-exchanged Gaussian arithmetic optimization algorithm with quasi-opposition learning Knowl. Base Syst., 260 (2023), p. 110169, 10.1016/j.knosys.2022.110169 48 Y. Zhang, R. Liu, A.A. Heidari, X. Wang, Y. Chen, M. Wang, H. Chen Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis Neurocomputing, 430 (2021), pp. 185-212 49 X. Wen, K. Wang, H. Li, H. Sun, H. Wang, L. Jin A two-dlstage solution method based on NSGA-II for Green Multi-Objective integrated process planning and scheduling in a battery packaging machinery workshop Swarm Evol. Comput., 61 (2021), p. 100820, 10.1016/j.swevo.2020.100820 50 G. Wang, E. Fan, G. Zheng, K. Li, H. Huang Research on vessel speed heading and collision detection method based on AIS data Mobile Information Systems (2022) 51 R. Dong, H. Chen, A.A. Heidari, H. Turabieh, M. Mafarja, S. Wang Boosted kernel search: framework, analysis and case studies on the economic emission dispatch problem Knowl. Base Syst., 233 (2021), p. 107529, 10.1016/j.knosys.2021.107529 52 C. Zhao, Y. Zhou, X. Lai An integrated framework with evolutionary algorithm for multi-scenario multi-objective optimization problems Inf. Sci., 600 (2022), pp. 342-361, 10.1016/j.ins.2022.03.093 53 Y. Xue, Y. Tong, F. Neri An ensemble of differential evolution and Adam for training feed-forward neural networks Inf. Sci., 608 (2022), pp. 453-471, 10.1016/j.ins.2022.06.036 54 K. Yu, D. Zhang, J. Liang, K. Chen, C. Yue, K. Qiao, L. Wang A correlation-guided layered prediction approach for evolutionary dynamic multiobjective optimization IEEE Trans. Evol. Comput., 1 (2022), p. 1, 10.1109/TEVC.2022.3193287 55 C. Huang, X. Zhou, X. Ran, Y. Liu, W. Deng, W. Deng Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem Inf. Sci., 619 (2023), pp. 2-18, 10.1016/j.ins.2022.11.019 56 J. Liang, K. Qiao, K. Yu, B. Qu, C. Yue, W. Guo, L. Wang Utilizing the relationship between unconstrained and constrained pareto fronts for constrained multiobjective optimization IEEE Trans. Cybern. (2022), pp. 1-14, 10.1109/TCYB.2022.3163759 57 W. Deng, J. Xu, X.Z. Gao, H. Zhao An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), pp. 1578-1587, 10.1109/TSMC.2020.3030792 58 Y. Liu, H. Cui, X. Xu, W. Liang, H. Chen, Z. Pan, A. Alsufyani, S. Bourouis Simulated annealing-based dynamic step shuffled frog leaping algorithm: optimal performance design and feature selection Neurocomputing, 20 (2022), pp. 325-362, 10.1016/j.neucom.2022.06.075 59 Y. Xue, B. Xue, M. Zhang Self-adaptive particle swarm optimization for large-scale feature selection in classification ACM Trans. Knowl. Discov. Data, 13 (2019), pp. 1-27 60 Y. Xue, X. Cai, F. Neri A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification Appl. Soft Comput., 127 (2022), p. 109420 61 A.I. Hammouri, M. Mafarja, M.A. Al-Betar, M.A. Awadallah, I. Abu-Doush An Improved Dragonfly Algorithm for Feature Selection Knowl. Base Syst., 203 (2020), p. 106131, 10.1016/j.knosys.2020.106131 62 M. Tahir, A. Tubaishat, F. Al-Obeidat, B. Shah, Z. Halim, M. Waqas A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare Neural Comput. Appl., 34 (2020), pp. 11453-11474, 10.1007/s00521-020-05347-y 63 R.A. Ibrahim, M.A. Elaziz, D. Oliva, E. Cuevas, S. Lu An opposition-based social spider optimization for feature selection Soft Comput., 23 (2019), pp. 13547-13567, 10.1007/s00500-019-03891-x 64 M. Tubishat, N. Idris, L. Shuib, M.A. Abushariah, S. Mirjalili Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection Expert Syst. Appl., 145 (2020), p. 113122, 10.1016/j.eswa.2019.113122 65 B. Xue, M. Zhang, W.N. Browne, X. Yao A survey on evolutionary computation approaches to feature selection IEEE Trans. Evol. Comput., 20 (2016), pp. 606-626, 10.1109/tevc.2015.2504420 66 S. Mirjalili, A. Lewis The whale optimization algorithm Adv. Eng. Software, 95 (2016), pp. 51-67, 10.1016/j.advengsoft.2016.01.008 67 W. Zhao, Z. Zhang, L. Wang Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications Eng. Appl. Artif. Intell., 87 (2020), p. 103300, 10.1016/j.engappai.2019.103300 68 S. Ahmed, K.K. Ghosh, S. Mirjalili, R. Sarkar AIEOU: automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection Knowl. Base Syst., 228 (2021), p. 107283, 10.1016/j.knosys.2021.107283 69 Y. Yang, H. Chen, A.A. Heidari, A.H. Gandomi Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts Expert Syst. Appl., 177 (2021), p. 114864, 10.1016/j.eswa.2021.114864 70 Y.O. Shaker, D. Yousri, A. Osama, A. Al-Gindy, E. Tag-Eldin, D. Allam Optimal charging/discharging decision of energy storage community in grid-connected microgrid using multi-objective hunger game search optimizer IEEE Access, 9 (2021), pp. 120774-120794, 10.1109/ACCESS.2021.3101839 71 H. Nguyen, X.-N. Bui A novel hunger games search optimization-based artificial neural network for predicting ground vibration intensity induced by mine blasting Nat. Resour. Res., 30 (2021), pp. 3865-3880, 10.1007/s11053-021-09903-8 72 X. Zhou, W. Gui, A.A. Heidari, Z. Cai, H. Elmannai, M. Hamdi, G. Liang, H. Chen Advanced orthogonal learning and Gaussian barebone hunger games for engineering design J. Comput. Des. Eng., 9 (2022), pp. 1699-1736, 10.1093/jcde/qwac075 73 R. Li, X. Wu, H. Tian, N. Yu, C. Wang Hybrid memetic pretrained factor analysis-based deep belief networks for transient electromagnetic inversion IEEE Trans. Geosci. Rem. Sens., 60 (2022), pp. 1-20 74 S. Chakraborty, A.K. Saha, R. Chakraborty, M. Saha, S. Nama HSWOA: an ensemble of hunger games search and whale optimization algorithm for global optimization Int. J. Intell. Syst., 37 (2022), pp. 52-104, 10.1002/int.22617 75 S. Li, X. Li, H. Chen, Y. Zhao, J. Dong A novel hybrid hunger games search algorithm with differential evolution for improving the behaviors of non-cooperative animals IEEE Access, 9 (2021), pp. 164188-164205, 10.1109/ACCESS.2021.3132617 76 R. Liang, T. Le-Hung, T. Nguyen-Thoi Energy consumption prediction of air-conditioning systems in eco-buildings using hunger games search optimization-based artificial neural network model J. Build. Eng., 59 (2022), p. 105087, 10.1016/j.jobe.2022.105087 77 S. Yu, A.A. Heidari, C. He, Z. Cai, M.M. Althobaiti, R.F. Mansour, G. Liang, H. Chen Parameter estimation of static solar photovoltaic models using Laplacian Nelder-Mead hunger games search Sol. Energy, 242 (2022), pp. 79-104, 10.1016/j.solener.2022.06.046 78 R. Manjula Devi, M. Premkumar, P. Jangir, B. Santhosh Kumar, D. Alrowaili, K. Sooppy Nisar BHGSO: binary hunger games search optimization algorithm for feature selection problem Comput. Mater. Continua (CMC), 70 (2022), pp. 557-579, 10.32604/cmc.2022.019611 79 Houssein, E.H., Hosney, M.E., Mohamed, W.M., Ali, A.A., and Younis, E.M.G. Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data. Neural Comput. Appl.. 10.1007/s00521-022-07916-9 80 B.J. Ma, S. Liu, A.A. Heidari Multi-strategy ensemble binary hunger games search for feature selection Knowl. Base Syst., 248 (2022), p. 108787, 10.1016/j.knosys.2022.108787 81 T. Blackwell A study of collapse in bare bones particle swarm optimization IEEE Trans. Evol. Comput., 16 (2012), pp. 354-372, 10.1109/TEVC.2011.2136347 82 X. Chen, H. Huang, A.A. Heidari, C. Sun, Y. Lv, W. Gui, G. Liang, Z. Gu, H. Chen, C. Li, P. Chen An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images Comput. Biol. Med., 142 (2022), p. 105179, 10.1016/j.compbiomed.2021.105179 83 W. Cao, X. Wang, Z. Ming, J. Gao A review on neural networks with random weights Neurocomputing, 275 (2018), pp. 278-287, 10.1016/j.neucom.2017.08.040 84 W. Cao, Z. Xie, J. Li, Z. Xu, Z. Ming, X. Wang Bidirectional stochastic configuration network for regression problems Neural Network., 140 (2021), pp. 237-246, 10.1016/j.neunet.2021.03.016 85 S. Jadhav, H. He, K. Jenkins Information gain directed genetic algorithm wrapper feature selection for credit rating Appl. Soft Comput., 69 (2018), pp. 541-553, 10.1016/j.asoc.2018.04.033 86 F. Tempola, R. Rosihan, R. Adawiyah Holdout validation for comparison classfication naïve bayes and KNN of recipient kartu Indonesia pintar IOP Conf. Ser. Mater. Sci. Eng., 1125 (2021) 87 H.K. Jeon, C.S. Yang Enhancement of ship type classification from a combination of CNN and KNN Electronics, 10 (2021), p. 1169 88 F. Zhu, X. Jia-kun, W. Zhong-yu, L. Pei-Chen, Q. Shu-jun, H. Lei Image classification method based on improved KNN algorithm J. Phys. Conf. (2021) 89 M.H. Nadimi-Shahraki, H. Zamani, S. Mirjalili Enhanced whale optimization algorithm for medical feature selection: a COVID-19 case study Comput. Biol. Med., 148 (2022), p. 105858, 10.1016/j.compbiomed.2022.105858 90 J. Yedukondalu, L.D. Sharma Cognitive load detection using circulant singular spectrum analysis and Binary Harris Hawks Optimization based feature selection Biomed. Signal Process Control, 79 (2022), p. 104006, 10.1016/j.bspc.2022.104006 91 E. Emary, H.M. Zawbaa, A.E. Hassanien Binary grey wolf optimization approaches for feature selection Neurocomputing, 172 (2016), pp. 371-381, 10.1016/j.neucom.2015.06.083 92 J. Hu, W. Gui, A.A. Heidari, Z. Cai, G. Liang, H. Chen, Z. Pan Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection Knowl. Base Syst., 237 (2022), p. 107761, 10.1016/j.knosys.2021.107761 93 W. Zhou, P. Wang, A.A. Heidari, X. Zhao, H. Chen Spiral Gaussian mutation sine cosine algorithm: framework and comprehensive performance optimization Expert Syst. Appl., 209 (2022), p. 118372, 10.1016/j.eswa.2022.118372 94 H. Ren, J. Li, H. Chen, C. Li Adaptive levy-assisted salp swarm algorithm: analysis and optimization case studies Math. Comput. Simulat., 181 (2021), pp. 380-409 95 D. Xu, N. Ning, Y. Xu, B. Wang, Q. Cui, Z. Liu, X. Wang, D. Liu, H. Chen, M.G. Kong An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks Cancer Cell Int., 19 (2019), pp. 135-155, 10.1016/j.eswa.2019.03.043 96 A.A. Heidari, R. Ali Abbaspour, H. Chen Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training Appl. Soft Comput., 81 (2019), p. 105521, 10.1016/j.asoc.2019.105521 97 P. Civicioglu, E. Besdok, M.A. Gunen, U.H. Atasever Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms Neural Comput. Appl., 32 (2020), pp. 3923-3937, 10.1007/s00521-018-3822-5 98 M.M. Dehshibi, M. Sourizaei, M. Fazlali, O. Talaee, H. Samadyar, J. Shanbehzadeh A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding Multimed. Tool. Appl., 76 (2017), pp. 15951-15986, 10.1007/s11042-016-3891-3 99 H. Nenavath, R.K. Jatoth Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking Appl. Soft Comput., 62 (2018), pp. 1019-1043, 10.1016/j.asoc.2017.09.039 100 Y. Zhou, J. Xie, L. Li, M. Ma Cloud model bat algorithm Sci. World J., 2014 (2014), p. 237102, 10.1155/2014/237102 101 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier Deduction of sudden rainstorm scenarios: integrating decision makers' emotions, dynamic Bayesian network and DS evidence theory Nat. Hazards (2022), pp. 1-17 102 S. Xiong, B. Li, S. Zhu DCGNN: a single-stage 3D object detection network based on density clustering and graph neural network Complex Intell. Systems (2022), pp. 1-10 103 X. Chen, Y. Xu, L. Meng, X. Chen, L. Yuan, Q. Cai, W. Shi, G. Huang Non-parametric partial least squares–discriminant analysis model based on sum of ranking difference algorithm for tea grade identification using electronic tongue data Sensor. Actuator. B Chem., 311 (2020), p. 127924 104 X. Zenggang, Z. Mingyang, Z. Xuemin, Z. Sanyuan, X. Fang, Z. Xiaochao, W. Yunyun, L. Xiang Social similarity routing algorithm based on socially aware networks in the big data environment J. Signal Process. Syst., 94 (2022), pp. 1253-1267 105 J. Xu, S. Pan, P.Z.H. Sun, S. Hyeong Park, K. Guo Human-Factors-in-Driving-Loop: driver identification and verification via a deep learning approach using psychological behavioral data IEEE Trans. Intell. Transport. Syst., 24 (2023), pp. 3383-3394 106 X. Qin, Z. Liu, Y. Liu, S. Liu, B. Yang, L. Yin, M. Liu, W. Zheng User OCEAN personality model construction method using a BP neural network Electronics, 11 (2022), p. 3022 View article CrossRefView in ScopusGoogle Scholar 107 B. Li, Y. Lu, W. Pang, H. Xu Image Colorization using CycleGAN with semantic and spatial rationality Multimed. Tool. Appl. (2023), pp. 1-15 108 Q. Xu, Y. Zeng, W. Tang, W. Peng, T. Xia, Z. Li, F. Teng, W. Li, J. Guo Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network IEEE J. Biomed. Health Inform., 24 (2020), pp. 2481-2489 109 X.-F. Wang, P. Gao, Y.-F. Liu, H.-F. Li, F. Lu Predicting thermophilic proteins by machine learning Curr. Bioinf., 15 (2020), pp. 493-502 110 A. Seifi, M. Ehteram, V.P. Singh, A. Mosavi Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN Sustainability, 12 (2020), p. 4023 111 F. Yang, H. Moayedi, A. Mosavi Predicting the degree of dissolved oxygen using three types of multi-layer perceptron-based artificial neural networks Sustainability, 13 (2021), p. 9898 112 C. Zhao, H. Wang, H. Chen, W. Shi, Y. Feng, Y. Wang, H. Xiao, J. Zheng JAMSNet: a remote pulse extraction network based on joint attention and multi-scale fusion Crit. Rev. Food Sci. Nutr. (2022), pp. 1-19, 10.1109/TCSVT.2022.3227348 View article Google Scholar 113 J. Lv, G. Li, X. Tong, W. Chen, J. Huang, C. Wang, G. Yang Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction Comput. Biol. Med., 134 (2021), p. 104504, 10.1016/j.compbiomed.2021.104504 114 S. Wang, B. Wang, Z. Zhang, A.A. Heidari, H. Chen, X. Wang, L.P. Wang, Y.B. Fu Class-aware sample reweighting optimal transport for multi-source domain adaptation Neurocomputing, 523 (2023), pp. 213-223, 10.1016/j.neucom.2022.12.048 115 Z. Wu, S. Xuan, J. Xie, C. Lin, C. Lu How to ensure the confidentiality of electronic medical records on the cloud: a technical perspective Comput. Biol. Med., 147 (2022), p. 105726, 10.1016/j.compbiomed.2022.105726 116 Z. Wu, G. Li, S. Shen, X. Lian, E. Chen, G. Xu Constructing dummy query sequences to protect location privacy and query privacy in location-based services World Wide Web, 24 (2021), pp. 25-49, 10.1007/s11280-020-00830-x 117 B. Yan, Y. Li, L. Li, X. Yang, T.-q. Li, G. Yang, M. Jiang Quantifying the impact of Pyramid Squeeze Attention mechanism and filtering approaches on Alzheimer's disease classification Comput. Biol. Med., 148 (2022), p. 105944, 10.1016/j.compbiomed.2022.105944 118 X. Sun, X. Cao, B. Zeng, Q. Zhai, X. Guan Multistage dynamic planning of integrated hydrogen-electrical microgrids under multiscale uncertainties IEEE Trans. Smart Grid (2022), p. 1, 10.1109/TSG.2022.3232545 119 Z. Wu, S. Shen, X. Lian, X. Su, E. Chen A dummy-based user privacy protection approach for text information retrieval Knowl. Base Syst., 195 (2020), p. 105679, 10.1016/j.knosys.2020.105679 120 Z. Wu, S. Shen, H. Li, H. Zhou, C. Lu A basic framework for privacy protection in personalized information retrieval: an effective framework for user privacy protection J. Organ. End User Comput., 33 (2022), pp. 1-26 121 Z. Wu, S. Shen, H. Zhou, H. Li, C. Lu, D. Zou An effective approach for the protection of user commodity viewing privacy in e-commerce website Knowl. Base Syst., 220 (2021), p. 106952, 10.1016/j.knosys.2021.106952 122 Z. Wu, J. Xie, S. Shen, C. Lin, G. Xu, E. Chen A confusion method for the protection of user topic privacy in Chinese keyword based book retrieval ACM Transactions on Asian and Low-Resource Language Information Processing (2023) 123 X. Cao, T. Cao, Z. Xu, B. Zeng, F. Gao, X. Guan Resilience constrained scheduling of mobile emergency resources in electricity-hydrogen distribution network IEEE Trans. Sustain. Energy, 14 (2023), pp. 1269-1284, 10.1109/TSTE.2022.3217514 124 Y. Dai, J. Wu, Y. Fan, J. Wang, J. Niu, F. Gu, S. Shen MSEva: a musculoskeletal rehabilitation evaluation system based on EMG signals ACM Trans. Sens. Netw., 19 (2022), pp. 1-23 125 J. Zhou, X. Zhang, Z. Jiang Recognition of imbalanced epileptic EEG signals by a graph-based extreme learning machine Wireless Commun. Mobile Comput., 2021 (2021), pp. 1-12, 10.1155/2021/5871684 126 J. Chen, X. Zhu, H. Liu A mutual neighbor-based clustering method and its medical applications Comput. Biol. Med., 150 (2022), p. 106184, 10.1016/j.compbiomed.2022.106184 127 Y. Chen, Y. Zhang, Y. Wang, S. Ta, M. Shi, Y. Zhou, M. Li, J. Fu, L. Wang, X. Liu, et al. Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet J. Diabetes, 15 (2023), pp. 264-274 128 Y. Li, Y. Zhang, W. Cui, B. Lei, X. Kuang, T. Zhang Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation IEEE Trans. Med. Imag., 41 (2022), pp. 1975-1989, 10.1109/TMI.2022.3151666 129 L. Abualigah, M.A. Elaziz, P. Sumari, Z.W. Geem, A.H. Gandomi Reptile Search Algorithm (RSA): a nature-inspired meta-heuristic optimizer Expert Syst. Appl., 191 (2022), p. 116158, 10.1016/j.eswa.2021.116158 130 C. Kumar, T.D. Raj, M. Premkumar, T.D. Raj A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters Optik, 223 (2020), p. 165277, 10.1016/j.ijleo.2020.165277 131 E. Zorarpacı, S.A. Özel A hybrid approach of differential evolution and artificial bee colony for feature selection Expert Syst. Appl., 62 (2016), pp. 91-103, 10.1016/j.eswa.2016.06.004 |
dc.relation.citationendpage.spa.fl_str_mv |
39 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
5 |
dc.relation.citationvolume.spa.fl_str_mv |
26 |
dc.rights.eng.fl_str_mv |
© 2023 The Author(s). |
dc.rights.license.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2023 The Author(s). https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
39 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier Inc. |
dc.publisher.place.spa.fl_str_mv |
United States |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2589004223007563?via%3Dihub |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/dbf99241-62b0-4a24-9c39-1be9de80feeb/download https://repositorio.cuc.edu.co/bitstreams/550c1ba2-8bb3-4949-a722-88119ca8b41d/download https://repositorio.cuc.edu.co/bitstreams/b6fe4328-3dbf-44aa-bb26-05197b9bcf52/download https://repositorio.cuc.edu.co/bitstreams/f142a7a0-403d-4ff3-a058-e724736f57ae/download |
bitstream.checksum.fl_str_mv |
02f7999ee62e6217d0a99d7233b1d588 2f9959eaf5b71fae44bbf9ec84150c7a 1efd2acc0f00fd95f21a188255ec5dc6 f6cc898a1537232d442ff7fec2e33479 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760742783778816 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 2023 The Author(s).https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chen, ZhiqingXuan, PingAsghar Heidari, AliLiu, LeiWu, ChengwenChen, HuilingEscorcia-Gutierrez, JoséMansour, Romany F.2023-09-18T16:18:48Z2023-09-18T16:18:48Z2023Zhiqing Chen, Ping Xuan, Ali Asghar Heidari, Lei Liu, Chengwen Wu, Huiling Chen, José Escorcia-Gutierrez, Romany F. Mansour, An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection, iScience, Volume 26, Issue 5, 2023, 106679, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2023.106679.https://hdl.handle.net/11323/1049910.1016/j.isci.2023.1066792589-0042Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision. Therefore, this article designs a new wrapper gene selection algorithm named artificial bee bare-bone hunger games search (ABHGS), which is the hunger games search (HGS) integrated with an artificial bee strategy and a Gaussian bare-bone structure to address this issue. To evaluate and validate the performance of our proposed method, ABHGS is compared to HGS and a single strategy embedded in HGS, six classic algorithms, and ten advanced algorithms on the CEC 2017 functions. The experimental results demonstrate that the bABHGS outperforms the original HGS. Compared to peers, it increases classification accuracy and decreases the number of selected features, indicating its actual engineering utility in spatial search and feature selection.39 páginasapplication/pdfengElsevier Inc.United Stateshttps://www.sciencedirect.com/science/article/pii/S2589004223007563?via%3DihubAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selectionArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85iScience1 M. Ye, W. Wang, C. Yao, R. Fan, P. Wang Gene selection method for microarray data classification using particle swarm optimization and neighborhood rough set Curr. Bioinf., 14 (2019), pp. 422-431, 10.2174/15748936146661902041509182 S. Wang, W. Aorigele Kong, W. Kong, W. Zeng, X. Hong Hybrid binary imperialist competition algorithm and tabu search approach for feature selection using gene expression data BioMed Res. Int., 2016 (2016), p. 9721713, 10.1155/2016/97217133 S. Jana, N. Balakrishnan, D. von Rosen, J.S. Hamid High dimensional extension of the growth curve model and its application in genetics Stat. Methods Appt., 26 (2016), pp. 273-292, 10.1007/s10260-016-0369-44 K. Uthayan A novel microarray gene selection and classification using intelligent dynamic grey wolf optimization Genetika, 51 (2019), pp. 805-828, 10.2298/GENSR1903805U5 A.K. Shukla, P. Singh, M. Vardhan Gene selection for cancer types classification using novel hybrid metaheuristics approach Swarm Evol. Comput., 54 (2020), p. 100661, 10.1016/j.swevo.2020.1006616 A. Sharma, R. Rani C-HMOSHSSA: gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods Comput. Methods Progr. Biomed., 178 (2019), pp. 219-235, 10.1016/j.cmpb.2019.06.0297 M.S. Mohamad, S. Omatu, S. Deris, M. Yoshioka, A. Abdullah, Z. Ibrahim An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes Algorithm Mol. Biol., 8 (2013), p. 15, 10.1186/1748-7188-8-158 A.M. Mabu, R. Prasad, R. Yadav Gene expression dataset classification using artificial neural network and clustering-based feature selection Int. J. Swarm Intell. Res. (IJSIR), 11 (2020), pp. 65-86, 10.4018/IJSIR.20200101049 C. Jin, S.W. Jin Gene selection approach based on improved swarm intelligent optimisation algorithm for tumour classification IET Syst. Biol., 10 (2016), pp. 107-115, 10.1049/iet-syb.2015.006410 A. Dabba, A. Tari, S. Meftali, R. Mokhtari Gene selection and classification of microarray data method based on mutual information and moth flame algorithm Expert Syst. Appl., 166 (2021), p. 114012, 10.1016/j.eswa.2020.11401211 A. Dabba, A. Tari, S. Meftali Hybridization of Moth flame optimization algorithm and quantum computing for gene selection in microarray data J. Ambient Intell. Hum. Comput., 12 (2021), pp. 2731-2750, 10.1007/s12652-020-02434-912 X. Xu, J. Li, H.-l. Chen Enhanced Support Vector Machine Using Parallel Particle Swarm Optimization IEEE (2014), pp. 41-4613 H. Alshamlan, G. Badr, Y. Alohali mRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling BioMed Res. Int., 2015 (2015), p. 604910, 10.1155/2015/60491014 H.M. Alshamlan, G.H. Badr, Y.A. Alohali Genetic Bee Colony (GBC) algorithm: a new gene selection method for microarray cancer classification Comput. Biol. Chem., 56 (2015), pp. 49-60, 10.1016/j.compbiolchem.2015.03.00115 H. Nematzadeh, J. García-Nieto, I. Navas-Delgado, J.F. Aldana-Montes Automatic frequency-based feature selection using discrete weighted evolution strategy Appl. Soft Comput., 130 (2022), p. 109699, 10.1016/j.asoc.2022.10969916 C.-Q. Huang, F. Jiang, Q.-H. Huang, X.-Z. Wang, Z.-M. Han, W.-Y. Huang Dual-graph attention convolution network for 3-D point cloud classification IEEE Transact. Neural Networks Learn. Syst. (2022), pp. 1-1317 Y. Ban, Y. Wang, S. Liu, B. Yang, M. Liu, L. Yin, W. Zheng 2D/3D multimode medical image alignment based on spatial histograms Appl. Sci., 12 (2022), p. 826118 M. Rostami, S. Forouzandeh, K. Berahmand, M. Soltani Integration of multi-objective PSO based feature selection and node centrality for medical datasets Genomics, 112 (2020), pp. 4370-4384, 10.1016/j.ygeno.2020.07.02719 O. Tarkhaneh, T.T. Nguyen, S. Mazaheri A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm Inf. Sci., 565 (2021), pp. 278-305, 10.1016/j.ins.2021.02.06120 A. Jiménez-Cordero, J.M. Morales, S. Pineda A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification Eur. J. Oper. Res., 293 (2021), pp. 24-35, 10.1016/j.ejor.2020.12.00921 S. Abasabadi, H. Nematzadeh, H. Motameni, E. Akbari Automatic ensemble feature selection using fast non-dominated sorting Inf. Syst., 100 (2021), p. 101760, 10.1016/j.is.2021.10176022 Z. Sadeghian, E. Akbari, H. Nematzadeh A hybrid feature selection method based on information theory and binary butterfly optimization algorithm Eng. Appl. Artif. Intell., 97 (2021), 10.1016/j.engappai.2020.10407923 N. Singh, P. Singh A hybrid ensemble-filter wrapper feature selection approach for medical data classification Chemometr. Intell. Lab. Syst., 217 (2021), p. 104396, 10.1016/j.chemolab.2021.10439624 J. Cai, J. Luo, S. Wang, S. Yang Feature selection in machine learning: a new perspective Neurocomputing, 300 (2018), pp. 70-79, 10.1016/j.neucom.2017.11.07725 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier New theoretical ISM-K2 Bayesian network model for evaluating vaccination effectiveness J. Ambient Intell. Hum. Comput. (2022), pp. 1-1726 M.M. Mafarja, S. Mirjalili Hybrid Whale Optimization Algorithm with simulated annealing for feature selection Neurocomputing, 260 (2017), pp. 302-312, 10.1016/j.neucom.2017.04.05327 J. Too, S. Mirjalili A hyper learning binary dragonfly algorithm for feature selection: a COVID-19 case study Knowl. Base Syst., 212 (2021), 10.1016/j.knosys.2020.10655328 N.S. Altman An introduction to kernel and nearest-neighbor nonparametric regression Am. Statistician, 46 (1992), pp. 175-185, 10.1080/00031305.1992.1047587929 J. Hu, H. Chen, A.A. Heidari, M. Wang, X. Zhang, Y. Chen, Z. Pan Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection Knowl. Base Syst., 213 (2021), p. 106684, 10.1016/j.knosys.2020.10668430 M. Shafipour, A. Rashno, S. Fadaei Particle distance rank feature selection by particle swarm optimization Expert Syst. Appl., 185 (2021), p. 115620, 10.1016/j.eswa.2021.11562031 K. Zhang, Z. Wang, G. Chen, L. Zhang, Y. Yang, C. Yao, J. Wang, J. Yao Training effective deep reinforcement learning agents for real-time life-cycle production optimization J. Petrol. Sci. Eng., 208 (2022), p. 10976632 X. Xu, Z. Lin, X. Li, C. Shang, Q. Shen Multi-objective robust optimisation model for MDVRPLS in refined oil distribution Int. J. Prod. Res., 60 (2022), pp. 6772-679233 J. Tian, M. Hou, H. Bian, J. Li Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems Complex & Intelligent Systems (2022), pp. 1-4934 F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili Henry gas solubility optimization: a novel physics-based algorithm Future Generat. Comput. Syst., 101 (2019), pp. 646-667, 10.1016/j.future.2019.07.01535 F.A. Hashim, K. Hussain, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems Appl. Intell., 51 (2021), pp. 1531-1551, 10.1007/s10489-020-01893-z36 F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, W. Al-Atabany Honey Badger Algorithm: new metaheuristic algorithm for solving optimization problems Math. Comput. Simulat., 192 (2022), pp. 84-110, 10.1016/j.matcom.2021.08.01337 H. Chen, C. Li, M. Mafarja, A.A. Heidari, Y. Chen, Z. Cai Slime mould algorithm: a comprehensive review of recent variants and applications Int. J. Syst. Sci., 54 (2022), pp. 204-23538 M. Li, A. Cao, R. Wang, Z. Li, S. Li, J. Wang Slime mould algorithm: a new method for stochastic optimization BMC Plant Biol., 20 (2020), pp. 300-32339 I. Ahmadianfar, A.A. Heidari, A.H. Gandomi, X. Chu, H. Chen RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method Expert Syst. Appl., 181 (2021), p. 115079, 10.1016/j.eswa.2021.11507940 J. Tu, H. Chen, M. Wang, A.H. Gandomi The colony predation algorithm J. Bionic Eng., 18 (2021), pp. 674-710, 10.1007/s42235-021-0050-y41 I. Ahmadianfar, A.A. Heidari, S. Noshadian, H. Chen, A.H. Gandomi INFO: an efficient optimization algorithm based on weighted mean of vectors Expert Syst. Appl., 195 (2022), p. 116516, 10.1016/j.eswa.2022.11651642 H. Su, D. Zhao, A. Asghar Heidari, L. Liu, X. Zhang, M. Mafarja, H. Chen RIME: a physics-based optimization Neurocomputing, 532 (2023), pp. 183-214, 10.1016/j.neucom.2023.02.01043 A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen Harris hawks optimization: algorithm and applications Future Generat. Comput. Syst., 97 (2019), pp. 849-872, 10.1016/j.future.2019.02.02844 E. Çelik A powerful variant of symbiotic organisms search algorithm for global optimization Eng. Appl. Artif. Intell., 87 (2020), p. 103294, 10.1016/j.engappai.2019.10329445 E. Çelik, N. Öztürk, Y. Arya Advancement of the search process of salp swarm algorithm for global optimization problems Expert Syst. Appl., 182 (2021), p. 115292, 10.1016/j.eswa.2021.11529246 E.H. Houssein, D. Oliva, E. Çelik, M.M. Emam, R.M. Ghoniem Boosted sooty tern optimization algorithm for global optimization and feature selection Expert Syst. Appl., 213 (2023), p. 119015, 10.1016/j.eswa.2022.11901547 E. Çelik IEGQO-AOA: information-exchanged Gaussian arithmetic optimization algorithm with quasi-opposition learning Knowl. Base Syst., 260 (2023), p. 110169, 10.1016/j.knosys.2022.11016948 Y. Zhang, R. Liu, A.A. Heidari, X. Wang, Y. Chen, M. Wang, H. Chen Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis Neurocomputing, 430 (2021), pp. 185-21249 X. Wen, K. Wang, H. Li, H. Sun, H. Wang, L. Jin A two-dlstage solution method based on NSGA-II for Green Multi-Objective integrated process planning and scheduling in a battery packaging machinery workshop Swarm Evol. Comput., 61 (2021), p. 100820, 10.1016/j.swevo.2020.10082050 G. Wang, E. Fan, G. Zheng, K. Li, H. Huang Research on vessel speed heading and collision detection method based on AIS data Mobile Information Systems (2022)51 R. Dong, H. Chen, A.A. Heidari, H. Turabieh, M. Mafarja, S. Wang Boosted kernel search: framework, analysis and case studies on the economic emission dispatch problem Knowl. Base Syst., 233 (2021), p. 107529, 10.1016/j.knosys.2021.10752952 C. Zhao, Y. Zhou, X. Lai An integrated framework with evolutionary algorithm for multi-scenario multi-objective optimization problems Inf. Sci., 600 (2022), pp. 342-361, 10.1016/j.ins.2022.03.09353 Y. Xue, Y. Tong, F. Neri An ensemble of differential evolution and Adam for training feed-forward neural networks Inf. Sci., 608 (2022), pp. 453-471, 10.1016/j.ins.2022.06.03654 K. Yu, D. Zhang, J. Liang, K. Chen, C. Yue, K. Qiao, L. Wang A correlation-guided layered prediction approach for evolutionary dynamic multiobjective optimization IEEE Trans. Evol. Comput., 1 (2022), p. 1, 10.1109/TEVC.2022.319328755 C. Huang, X. Zhou, X. Ran, Y. Liu, W. Deng, W. Deng Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem Inf. Sci., 619 (2023), pp. 2-18, 10.1016/j.ins.2022.11.01956 J. Liang, K. Qiao, K. Yu, B. Qu, C. Yue, W. Guo, L. Wang Utilizing the relationship between unconstrained and constrained pareto fronts for constrained multiobjective optimization IEEE Trans. Cybern. (2022), pp. 1-14, 10.1109/TCYB.2022.316375957 W. Deng, J. Xu, X.Z. Gao, H. Zhao An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), pp. 1578-1587, 10.1109/TSMC.2020.303079258 Y. Liu, H. Cui, X. Xu, W. Liang, H. Chen, Z. Pan, A. Alsufyani, S. Bourouis Simulated annealing-based dynamic step shuffled frog leaping algorithm: optimal performance design and feature selection Neurocomputing, 20 (2022), pp. 325-362, 10.1016/j.neucom.2022.06.07559 Y. Xue, B. Xue, M. Zhang Self-adaptive particle swarm optimization for large-scale feature selection in classification ACM Trans. Knowl. Discov. Data, 13 (2019), pp. 1-2760 Y. Xue, X. Cai, F. Neri A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification Appl. Soft Comput., 127 (2022), p. 10942061 A.I. Hammouri, M. Mafarja, M.A. Al-Betar, M.A. Awadallah, I. Abu-Doush An Improved Dragonfly Algorithm for Feature Selection Knowl. Base Syst., 203 (2020), p. 106131, 10.1016/j.knosys.2020.10613162 M. Tahir, A. Tubaishat, F. Al-Obeidat, B. Shah, Z. Halim, M. Waqas A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare Neural Comput. Appl., 34 (2020), pp. 11453-11474, 10.1007/s00521-020-05347-y63 R.A. Ibrahim, M.A. Elaziz, D. Oliva, E. Cuevas, S. Lu An opposition-based social spider optimization for feature selection Soft Comput., 23 (2019), pp. 13547-13567, 10.1007/s00500-019-03891-x64 M. Tubishat, N. Idris, L. Shuib, M.A. Abushariah, S. Mirjalili Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection Expert Syst. Appl., 145 (2020), p. 113122, 10.1016/j.eswa.2019.11312265 B. Xue, M. Zhang, W.N. Browne, X. Yao A survey on evolutionary computation approaches to feature selection IEEE Trans. Evol. Comput., 20 (2016), pp. 606-626, 10.1109/tevc.2015.250442066 S. Mirjalili, A. Lewis The whale optimization algorithm Adv. Eng. Software, 95 (2016), pp. 51-67, 10.1016/j.advengsoft.2016.01.00867 W. Zhao, Z. Zhang, L. Wang Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications Eng. Appl. Artif. Intell., 87 (2020), p. 103300, 10.1016/j.engappai.2019.10330068 S. Ahmed, K.K. Ghosh, S. Mirjalili, R. Sarkar AIEOU: automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection Knowl. Base Syst., 228 (2021), p. 107283, 10.1016/j.knosys.2021.10728369 Y. Yang, H. Chen, A.A. Heidari, A.H. Gandomi Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts Expert Syst. Appl., 177 (2021), p. 114864, 10.1016/j.eswa.2021.11486470 Y.O. Shaker, D. Yousri, A. Osama, A. Al-Gindy, E. Tag-Eldin, D. Allam Optimal charging/discharging decision of energy storage community in grid-connected microgrid using multi-objective hunger game search optimizer IEEE Access, 9 (2021), pp. 120774-120794, 10.1109/ACCESS.2021.310183971 H. Nguyen, X.-N. Bui A novel hunger games search optimization-based artificial neural network for predicting ground vibration intensity induced by mine blasting Nat. Resour. Res., 30 (2021), pp. 3865-3880, 10.1007/s11053-021-09903-872 X. Zhou, W. Gui, A.A. Heidari, Z. Cai, H. Elmannai, M. Hamdi, G. Liang, H. Chen Advanced orthogonal learning and Gaussian barebone hunger games for engineering design J. Comput. Des. Eng., 9 (2022), pp. 1699-1736, 10.1093/jcde/qwac07573 R. Li, X. Wu, H. Tian, N. Yu, C. Wang Hybrid memetic pretrained factor analysis-based deep belief networks for transient electromagnetic inversion IEEE Trans. Geosci. Rem. Sens., 60 (2022), pp. 1-2074 S. Chakraborty, A.K. Saha, R. Chakraborty, M. Saha, S. Nama HSWOA: an ensemble of hunger games search and whale optimization algorithm for global optimization Int. J. Intell. Syst., 37 (2022), pp. 52-104, 10.1002/int.2261775 S. Li, X. Li, H. Chen, Y. Zhao, J. Dong A novel hybrid hunger games search algorithm with differential evolution for improving the behaviors of non-cooperative animals IEEE Access, 9 (2021), pp. 164188-164205, 10.1109/ACCESS.2021.313261776 R. Liang, T. Le-Hung, T. Nguyen-Thoi Energy consumption prediction of air-conditioning systems in eco-buildings using hunger games search optimization-based artificial neural network model J. Build. Eng., 59 (2022), p. 105087, 10.1016/j.jobe.2022.10508777 S. Yu, A.A. Heidari, C. He, Z. Cai, M.M. Althobaiti, R.F. Mansour, G. Liang, H. Chen Parameter estimation of static solar photovoltaic models using Laplacian Nelder-Mead hunger games search Sol. Energy, 242 (2022), pp. 79-104, 10.1016/j.solener.2022.06.04678 R. Manjula Devi, M. Premkumar, P. Jangir, B. Santhosh Kumar, D. Alrowaili, K. Sooppy Nisar BHGSO: binary hunger games search optimization algorithm for feature selection problem Comput. Mater. Continua (CMC), 70 (2022), pp. 557-579, 10.32604/cmc.2022.01961179 Houssein, E.H., Hosney, M.E., Mohamed, W.M., Ali, A.A., and Younis, E.M.G. Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data. Neural Comput. Appl.. 10.1007/s00521-022-07916-980 B.J. Ma, S. Liu, A.A. Heidari Multi-strategy ensemble binary hunger games search for feature selection Knowl. Base Syst., 248 (2022), p. 108787, 10.1016/j.knosys.2022.10878781 T. Blackwell A study of collapse in bare bones particle swarm optimization IEEE Trans. Evol. Comput., 16 (2012), pp. 354-372, 10.1109/TEVC.2011.213634782 X. Chen, H. Huang, A.A. Heidari, C. Sun, Y. Lv, W. Gui, G. Liang, Z. Gu, H. Chen, C. Li, P. Chen An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images Comput. Biol. Med., 142 (2022), p. 105179, 10.1016/j.compbiomed.2021.10517983 W. Cao, X. Wang, Z. Ming, J. Gao A review on neural networks with random weights Neurocomputing, 275 (2018), pp. 278-287, 10.1016/j.neucom.2017.08.04084 W. Cao, Z. Xie, J. Li, Z. Xu, Z. Ming, X. Wang Bidirectional stochastic configuration network for regression problems Neural Network., 140 (2021), pp. 237-246, 10.1016/j.neunet.2021.03.01685 S. Jadhav, H. He, K. Jenkins Information gain directed genetic algorithm wrapper feature selection for credit rating Appl. Soft Comput., 69 (2018), pp. 541-553, 10.1016/j.asoc.2018.04.03386 F. Tempola, R. Rosihan, R. Adawiyah Holdout validation for comparison classfication naïve bayes and KNN of recipient kartu Indonesia pintar IOP Conf. Ser. Mater. Sci. Eng., 1125 (2021)87 H.K. Jeon, C.S. Yang Enhancement of ship type classification from a combination of CNN and KNN Electronics, 10 (2021), p. 116988 F. Zhu, X. Jia-kun, W. Zhong-yu, L. Pei-Chen, Q. Shu-jun, H. Lei Image classification method based on improved KNN algorithm J. Phys. Conf. (2021)89 M.H. Nadimi-Shahraki, H. Zamani, S. Mirjalili Enhanced whale optimization algorithm for medical feature selection: a COVID-19 case study Comput. Biol. Med., 148 (2022), p. 105858, 10.1016/j.compbiomed.2022.10585890 J. Yedukondalu, L.D. Sharma Cognitive load detection using circulant singular spectrum analysis and Binary Harris Hawks Optimization based feature selection Biomed. Signal Process Control, 79 (2022), p. 104006, 10.1016/j.bspc.2022.10400691 E. Emary, H.M. Zawbaa, A.E. Hassanien Binary grey wolf optimization approaches for feature selection Neurocomputing, 172 (2016), pp. 371-381, 10.1016/j.neucom.2015.06.08392 J. Hu, W. Gui, A.A. Heidari, Z. Cai, G. Liang, H. Chen, Z. Pan Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection Knowl. Base Syst., 237 (2022), p. 107761, 10.1016/j.knosys.2021.10776193 W. Zhou, P. Wang, A.A. Heidari, X. Zhao, H. Chen Spiral Gaussian mutation sine cosine algorithm: framework and comprehensive performance optimization Expert Syst. Appl., 209 (2022), p. 118372, 10.1016/j.eswa.2022.11837294 H. Ren, J. Li, H. Chen, C. Li Adaptive levy-assisted salp swarm algorithm: analysis and optimization case studies Math. Comput. Simulat., 181 (2021), pp. 380-40995 D. Xu, N. Ning, Y. Xu, B. Wang, Q. Cui, Z. Liu, X. Wang, D. Liu, H. Chen, M.G. Kong An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks Cancer Cell Int., 19 (2019), pp. 135-155, 10.1016/j.eswa.2019.03.04396 A.A. Heidari, R. Ali Abbaspour, H. Chen Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training Appl. Soft Comput., 81 (2019), p. 105521, 10.1016/j.asoc.2019.10552197 P. Civicioglu, E. Besdok, M.A. Gunen, U.H. Atasever Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms Neural Comput. Appl., 32 (2020), pp. 3923-3937, 10.1007/s00521-018-3822-598 M.M. Dehshibi, M. Sourizaei, M. Fazlali, O. Talaee, H. Samadyar, J. Shanbehzadeh A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding Multimed. Tool. Appl., 76 (2017), pp. 15951-15986, 10.1007/s11042-016-3891-399 H. Nenavath, R.K. Jatoth Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking Appl. Soft Comput., 62 (2018), pp. 1019-1043, 10.1016/j.asoc.2017.09.039100 Y. Zhou, J. Xie, L. Li, M. Ma Cloud model bat algorithm Sci. World J., 2014 (2014), p. 237102, 10.1155/2014/237102101 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier Deduction of sudden rainstorm scenarios: integrating decision makers' emotions, dynamic Bayesian network and DS evidence theory Nat. Hazards (2022), pp. 1-17102 S. Xiong, B. Li, S. Zhu DCGNN: a single-stage 3D object detection network based on density clustering and graph neural network Complex Intell. Systems (2022), pp. 1-10103 X. Chen, Y. Xu, L. Meng, X. Chen, L. Yuan, Q. Cai, W. Shi, G. Huang Non-parametric partial least squares–discriminant analysis model based on sum of ranking difference algorithm for tea grade identification using electronic tongue data Sensor. Actuator. B Chem., 311 (2020), p. 127924104 X. Zenggang, Z. Mingyang, Z. Xuemin, Z. Sanyuan, X. Fang, Z. Xiaochao, W. Yunyun, L. Xiang Social similarity routing algorithm based on socially aware networks in the big data environment J. Signal Process. Syst., 94 (2022), pp. 1253-1267105 J. Xu, S. Pan, P.Z.H. Sun, S. Hyeong Park, K. Guo Human-Factors-in-Driving-Loop: driver identification and verification via a deep learning approach using psychological behavioral data IEEE Trans. Intell. Transport. Syst., 24 (2023), pp. 3383-3394106 X. Qin, Z. Liu, Y. Liu, S. Liu, B. Yang, L. Yin, M. Liu, W. Zheng User OCEAN personality model construction method using a BP neural network Electronics, 11 (2022), p. 3022 View article CrossRefView in ScopusGoogle Scholar107 B. Li, Y. Lu, W. Pang, H. Xu Image Colorization using CycleGAN with semantic and spatial rationality Multimed. Tool. Appl. (2023), pp. 1-15108 Q. Xu, Y. Zeng, W. Tang, W. Peng, T. Xia, Z. Li, F. Teng, W. Li, J. Guo Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network IEEE J. Biomed. Health Inform., 24 (2020), pp. 2481-2489109 X.-F. Wang, P. Gao, Y.-F. Liu, H.-F. Li, F. Lu Predicting thermophilic proteins by machine learning Curr. Bioinf., 15 (2020), pp. 493-502110 A. Seifi, M. Ehteram, V.P. Singh, A. Mosavi Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN Sustainability, 12 (2020), p. 4023111 F. Yang, H. Moayedi, A. Mosavi Predicting the degree of dissolved oxygen using three types of multi-layer perceptron-based artificial neural networks Sustainability, 13 (2021), p. 9898112 C. Zhao, H. Wang, H. Chen, W. Shi, Y. Feng, Y. Wang, H. Xiao, J. Zheng JAMSNet: a remote pulse extraction network based on joint attention and multi-scale fusion Crit. Rev. Food Sci. Nutr. (2022), pp. 1-19, 10.1109/TCSVT.2022.3227348 View article Google Scholar113 J. Lv, G. Li, X. Tong, W. Chen, J. Huang, C. Wang, G. Yang Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction Comput. Biol. Med., 134 (2021), p. 104504, 10.1016/j.compbiomed.2021.104504114 S. Wang, B. Wang, Z. Zhang, A.A. Heidari, H. Chen, X. Wang, L.P. Wang, Y.B. Fu Class-aware sample reweighting optimal transport for multi-source domain adaptation Neurocomputing, 523 (2023), pp. 213-223, 10.1016/j.neucom.2022.12.048115 Z. Wu, S. Xuan, J. Xie, C. Lin, C. Lu How to ensure the confidentiality of electronic medical records on the cloud: a technical perspective Comput. Biol. Med., 147 (2022), p. 105726, 10.1016/j.compbiomed.2022.105726116 Z. Wu, G. Li, S. Shen, X. Lian, E. Chen, G. Xu Constructing dummy query sequences to protect location privacy and query privacy in location-based services World Wide Web, 24 (2021), pp. 25-49, 10.1007/s11280-020-00830-x117 B. Yan, Y. Li, L. Li, X. Yang, T.-q. Li, G. Yang, M. Jiang Quantifying the impact of Pyramid Squeeze Attention mechanism and filtering approaches on Alzheimer's disease classification Comput. Biol. Med., 148 (2022), p. 105944, 10.1016/j.compbiomed.2022.105944118 X. Sun, X. Cao, B. Zeng, Q. Zhai, X. Guan Multistage dynamic planning of integrated hydrogen-electrical microgrids under multiscale uncertainties IEEE Trans. Smart Grid (2022), p. 1, 10.1109/TSG.2022.3232545119 Z. Wu, S. Shen, X. Lian, X. Su, E. Chen A dummy-based user privacy protection approach for text information retrieval Knowl. Base Syst., 195 (2020), p. 105679, 10.1016/j.knosys.2020.105679120 Z. Wu, S. Shen, H. Li, H. Zhou, C. Lu A basic framework for privacy protection in personalized information retrieval: an effective framework for user privacy protection J. Organ. End User Comput., 33 (2022), pp. 1-26121 Z. Wu, S. Shen, H. Zhou, H. Li, C. Lu, D. Zou An effective approach for the protection of user commodity viewing privacy in e-commerce website Knowl. Base Syst., 220 (2021), p. 106952, 10.1016/j.knosys.2021.106952122 Z. Wu, J. Xie, S. Shen, C. Lin, G. Xu, E. Chen A confusion method for the protection of user topic privacy in Chinese keyword based book retrieval ACM Transactions on Asian and Low-Resource Language Information Processing (2023)123 X. Cao, T. Cao, Z. Xu, B. Zeng, F. Gao, X. Guan Resilience constrained scheduling of mobile emergency resources in electricity-hydrogen distribution network IEEE Trans. Sustain. Energy, 14 (2023), pp. 1269-1284, 10.1109/TSTE.2022.3217514124 Y. Dai, J. Wu, Y. Fan, J. Wang, J. Niu, F. Gu, S. Shen MSEva: a musculoskeletal rehabilitation evaluation system based on EMG signals ACM Trans. Sens. Netw., 19 (2022), pp. 1-23125 J. Zhou, X. Zhang, Z. Jiang Recognition of imbalanced epileptic EEG signals by a graph-based extreme learning machine Wireless Commun. Mobile Comput., 2021 (2021), pp. 1-12, 10.1155/2021/5871684126 J. Chen, X. Zhu, H. Liu A mutual neighbor-based clustering method and its medical applications Comput. Biol. Med., 150 (2022), p. 106184, 10.1016/j.compbiomed.2022.106184127 Y. Chen, Y. Zhang, Y. Wang, S. Ta, M. Shi, Y. Zhou, M. Li, J. Fu, L. Wang, X. Liu, et al. Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet J. Diabetes, 15 (2023), pp. 264-274128 Y. Li, Y. Zhang, W. Cui, B. Lei, X. Kuang, T. Zhang Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation IEEE Trans. Med. Imag., 41 (2022), pp. 1975-1989, 10.1109/TMI.2022.3151666129 L. Abualigah, M.A. Elaziz, P. Sumari, Z.W. Geem, A.H. Gandomi Reptile Search Algorithm (RSA): a nature-inspired meta-heuristic optimizer Expert Syst. Appl., 191 (2022), p. 116158, 10.1016/j.eswa.2021.116158130 C. Kumar, T.D. Raj, M. Premkumar, T.D. Raj A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters Optik, 223 (2020), p. 165277, 10.1016/j.ijleo.2020.165277131 E. Zorarpacı, S.A. Özel A hybrid approach of differential evolution and artificial bee colony for feature selection Expert Syst. Appl., 62 (2016), pp. 91-103, 10.1016/j.eswa.2016.06.004391526GeneticsComputational bioinformaticsAlgorithmsPublicationORIGINALAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection.pdfAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection.pdfArtículosapplication/pdf11659818https://repositorio.cuc.edu.co/bitstreams/dbf99241-62b0-4a24-9c39-1be9de80feeb/download02f7999ee62e6217d0a99d7233b1d588MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/550c1ba2-8bb3-4949-a722-88119ca8b41d/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection.pdf.txtAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection.pdf.txtExtracted texttext/plain129763https://repositorio.cuc.edu.co/bitstreams/b6fe4328-3dbf-44aa-bb26-05197b9bcf52/download1efd2acc0f00fd95f21a188255ec5dc6MD53THUMBNAILAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection.pdf.jpgAn artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection.pdf.jpgGenerated Thumbnailimage/jpeg14007https://repositorio.cuc.edu.co/bitstreams/f142a7a0-403d-4ff3-a058-e724736f57ae/downloadf6cc898a1537232d442ff7fec2e33479MD5411323/10499oai:repositorio.cuc.edu.co:11323/104992024-09-17 10:55:36.466https://creativecommons.org/licenses/by/4.0/© 2023 The Author(s).open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |