Volcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from water
The present study verified the potential of volcanic rock powder residues originating from the extraction of semi-precious rocks in the state of Rio Grande do Sul, Brazil, as precursors or adsorbents for dyes and metallic ion removal from water. In this way, it is possible to add value and give an a...
- Autores:
-
Rossatto, Diovani L.
Netto, Matias S.
O. Silva, Luis F.
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9273
- Acceso en línea:
- https://hdl.handle.net/11323/9273
https://doi.org/10.1007/s11356-021-17749-z
https://repositorio.cuc.edu.co/
- Palabra clave:
- Adsorbent
Adsorption
Volcanic rock
Alkaline activation
Alkaline fusion
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_c74f953568fc27f5e4ca72cc8fa2f947 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9273 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Volcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from water |
title |
Volcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from water |
spellingShingle |
Volcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from water Adsorbent Adsorption Volcanic rock Alkaline activation Alkaline fusion |
title_short |
Volcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from water |
title_full |
Volcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from water |
title_fullStr |
Volcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from water |
title_full_unstemmed |
Volcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from water |
title_sort |
Volcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from water |
dc.creator.fl_str_mv |
Rossatto, Diovani L. Netto, Matias S. O. Silva, Luis F. Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
Rossatto, Diovani L. Netto, Matias S. O. Silva, Luis F. Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Adsorbent Adsorption Volcanic rock Alkaline activation Alkaline fusion |
topic |
Adsorbent Adsorption Volcanic rock Alkaline activation Alkaline fusion |
description |
The present study verified the potential of volcanic rock powder residues originating from the extraction of semi-precious rocks in the state of Rio Grande do Sul, Brazil, as precursors or adsorbents for dyes and metallic ion removal from water. In this way, it is possible to add value and give an adequate destination to this waste. Volcanic rock powder residues from Ametista do Sul (AME) and Nova Prata (NP) were the starting materials. These were used naturally or submitted to the alkaline activation process at 60 °C and alkaline fusion at 550 °C. The analysis of the starting samples by X-ray fluorescence (XRF) revealed that they are mainly composed of aluminum, calcium, iron, and silicon oxides, which corroborates the presence of numerous crystalline phases observed in the X-ray diffraction spectra (XRD). Moreover, by XRD analysis of the synthesized samples, alkaline fusion proved to be more efficient in the dissolution of crystalline phases and consequently in the formation of the amorphous phase (more reactive). Furthermore, the adsorption tests with acid green and acid red dyes and Ag+, Co2+, and Cu2+ ions indicated the viability of using residual volcanic rock powder as raw material for the production of adsorbents functionalized with sodium hydroxide, being that the samples synthesized by alkaline fusion showed better results of removal and adsorption capacity for all the contaminants used in the study |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11-30 |
dc.date.accessioned.none.fl_str_mv |
2022-06-21T15:35:22Z |
dc.date.available.none.fl_str_mv |
2022-11-30 2022-06-21T15:35:22Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.spa.fl_str_mv |
0944-1344 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9273 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1007/s11356-021-17749-z |
dc.identifier.doi.spa.fl_str_mv |
10.1007/s11356-021-17749-z |
dc.identifier.eissn.spa.fl_str_mv |
1614-7499 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0944-1344 10.1007/s11356-021-17749-z 1614-7499 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9273 https://doi.org/10.1007/s11356-021-17749-z https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Environmental Science and Pollution Research |
dc.relation.references.spa.fl_str_mv |
Asere TG, Verbeken K, Tessema DA, Fufa F, Stevens CV, Du Laing G (2017) Adsorption of As(III) versus As(V) from aqueous solutions by cerium-loaded volcanic rocks. Environ Sci Pollut Res 24:20446–20458. https://doi.org/10.1007/s11356-017-9692-z Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen Isotherms. J Amer Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126 Bugarčić MD, Milivojević M, Marinković A, Marković B, Sokić M, Petronijević N, Stojanović J (2018) Application of raw volcanic rock found in Etna valley as an adsorbent of chromates, arsenates and selenates. Metall Mater Eng 24:133–144. https://doi.org/10. 30544/366 Bui TKL, Do-Hong LC, Dao TS, Hoang TC (2016) Copper toxicity and the infuence of water quality of Dongnai River and Mekong River waters on copper bioavailability and toxicity to three tropical species. Chemosphere 144:872–878. https://doi.org/10.1016/j. chemosphere.2015.09.058 Çetintaş R, Soyer-Uzun S (2018) Relations between structural characteristics and compressive strength in volcanic ash based one–part geopolymer systems. J Build Eng 20:130–136. https://doi.org/10. 1016/j.jobe.2018.07.011 Chao C, Zhao Y, Song Q, Min J, Wang Z, Ma H, Li X (2019) Volcanic rock-based ceramsite adsorbent for highly selective fuoride removal: function optimization and mechanism. J Chem Technol Biotechnol 94:2263–2273. https://doi.org/10.1002/jctb.6014 Choi JW, Ryu JC, Kwon KS, Song MK, Lee S, Kim SB, Lee SH (2014) Adsorption of ammonium nitrogen and phosphate onto basanite and evaluation of toxicity. Water Air Soil Pollut 225:2059. https:// doi.org/10.1007/s11270-014-2059-x Dalla Valle C, Dorr AC (2020) A Comercialização de Pedras Preciosas No Mercado Nacional e Internacional: Uma Análise Da Região Do Médio Alto Uruguai Do Rio Grande Do Sul. Revista Científca Hermes (in Portuguese) 27:252–273 Dalmora AC, Ramos CG, Plata LG, da Costa ML, Kautzmann RM, Oliveira LFS (2020) Understanding the mobility of potential nutrients in rock mining by-products: an opportunity for more sustainable agriculture and mining. Sci Total Environ 710:136240. https://doi.org/10.1016/j.scitotenv.2019.136240 Duru CE, Duru IA, Ogbonna CE, Enedoh MC, Emele P (2019) Adsorption of copper ions from aqueous solution onto natural and pretreated maize husk: adsorption efciency and kinetic studies. J Chem Soc Nigeria 44:798–803 Duxson P, Fernández-JiménezA PJL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/ s10853-006-0637-z El-Shamy OAA, El-Azabawy RE, El-Azabawy OE (2019) Synthesis and characterization of magnetite-alginate nanoparticles for enhancement of nickel and cobalt ion adsorption from wastewater. J Nanomater 2019:6326012. https://doi.org/10.1155/2019/63260 12 Freitas ED, Carmo ACR, Almeida Neto AF, Vieira MGA (2017) Binary adsorption of silver and copper on Verde-lodo bentonite: kinetic and equilibrium study. Appl Clay Sci 137:69–76. https:// doi.org/10.1016/j.clay.2016.12.016 Giannopoulou I, Panias D (2010) Hydrolytic stability of sodium silicate gels in the presence of aluminum. J Mater Sci 45:5370– 5377. https://doi.org/10.1007/s10853-010-4586-1 Gómez V, Larrechi MS, Callao MP (2007) Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere 69:1151–1158. https://doi.org/10.1016/j.chemosphere.2007.03. 076 Gómez JM, Díez E, Bernabé I, Sáez P, Rodríguez A (2018) Efective adsorptive removal of cobalt using mesoporous carbons synthesized by silica gel replica method. Environ Process 5:225–242. https://doi.org/10.1007/s40710-018-0304-9 Hartmann LA, Medeiros JTN, Baggio SB, Antunes LM (2015) Controls on prolate and oblate geode geometries in the Veia Alta basalt fow, largest world producer of amethyst, Paraná volcanic province, Brazil. Ore Geol Ver 66:243–251. https://doi.org/10. 1016/j.oregeorev.2014.11.005 Hosseinzadeh H, Zorouf S, Mahdavinia GR (2015) Study on adsorption of cationic dye on novel kappa-carrageenan/poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels. Polym Bull 72:339–1363. https://doi.org/10.1007/s00289-015-1340-5 Jain SN, Gogate PR (2018) Efcient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: batch and column studies. J Environ Manage 210:226–238. https://doi.org/10.1016/j.jenvman.2018.01.008 Jeon C (2017) Adsorption of silver ions from industrial wastewater using waste cofee grounds. Korean J Chem Eng 34:384–391. https://doi.org/10.1007/s11814-016-0253-9 Korchagin J, Caner L, Bortoluzzi EC (2019) Variability of amethyst mining waste: a mineralogical and geochemical approach to evaluate the potential use in agriculture. J Clean Prod 210:749–758. https://doi.org/10.1016/j.jclepro.2018.11.039 Kyziol-Komosinska J, Rosik-Dulewska C, Pajak M, Czupiol J, Dzieniszewska A, Krzyzewska I (2015) Sorption of Acid Green 16 from aqueous solution onto low-moor peat and smectite clay co-occurring in lignite of Belchatow mine feld. Annu Set Environ Prot 17:165–187 Latif S, Rehman R, Imran M, Iqbal S (2018) Biosorptive decontamination of acid red-87 dye from wastewater by citrus limonum peels: ecofriendly approach. Pakistan J Anal Environ Chem 19:44–52. https://doi.org/10.21743/pjaec/2018.06.04 Lee SH, Park SS, Parambadath S, Ha CS (2016) Sulphonic acid functionalized periodic mesoporous organosilica with the bridged bissilylated urea groups for high selective adsorption of cobalt ion from artifcial seawater. Micro Meso Mater 226:179–190. https:// doi.org/10.1016/j.micromeso.2015.10.047 Lemougna PN, Chinje Melo UF, Delplancke MP, Rahier H (2014) Infuence of the chemical and mineralogical composition on the reactivity of volcanic ashes during alkali activation. Ceram Int 40:811–820. https://doi.org/10.1016/j.ceramint.2013.06.072 Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans - a review of the potential sources and systemic health efects. Toxicol 387:43–56. https://doi.org/10. 1016/j.tox.2017.05.015 Malhotra N, Ger TR, Uapipatanakul B, Huang JC, Chen KHC, Hsiao CD (2020) Review of copper and copper nanoparticle toxicity in fsh. Nanomater 10:1–28. https://doi.org/10.3390/nano10061126 Mohamad M, Prasad B (2014) Chemical design of smart chitosan/ polypyrrole/magnetite nanocomposite toward efcient water treatment. Phys Chem Chem Phys 16:21812–21819. https://doi.org/ 10.1039/C4CP03062A Ndjock BDL, Elimbi A, Cyr M (2017) Rational utilization of volcanic ashes based on factors afecting their alkaline activation. J Non Cryst Solids 463:31–39. https://doi.org/10.1016/j.jnoncrysol. 2017.02.024 Ontiveros-Cuadras JF, Ruiz-Fernández AC, Sanchez-Cabeza JA, PérezBernal LH, Preda M, Páez-Osuna F (2018) Mineralogical signatures and sources of recent sediment in a large tropical lake. Int J Sediment Res 33:183–190. https://doi.org/10.1016/j.ijsrc.2017. 12.002 Panias D, Giannopoulou IP, Perraki T (2007) Efect of synthesis parameters on the mechanical properties of fy ash-based geopolymers. Colloids Surf A Physicochem Eng Asp 301:246–254. https://doi. org/10.1016/j.colsurfa.2006.12.064 Pejman A, Bidhendi GN, Ardestani M, Saeedi M, Baghvand A (2015) A new index for assessing heavy metals contamination in sediments: a case study. Ecol Ind 58:365–373. https://doi.org/10. 1016/j.ecolind.2015.06.012 Petrakis GH, Motoki A, Sichel SE, Zucco LL, Aires JR, Mello SLM (2010) Geologia de jazidas de brita e areia artifcial de qualidade especial: Exemplos do álcali sienito de Nova Iguaçu, RJ, e riolito de Nova Prata, RS (In portuguese). Geociencias 29:21–32 Pinto VM, Hartmann LA (2011) Flow-by-fow chemical stratigraphy and evolution of thirteen Serra Geral Group basalt fows from Vista Alegre, southernmost Brazil. An Acad Braz Cienc 83:425– 440. https://doi.org/10.1590/S0001-37652011000200006 Remor MB, Sampaio SC, Rijk S, Vilas Boas MA, Gotardo JT, Pinto ET, Schardong FA (2018) Sediment geochemistry of the urban Lake Paulo Gorski. Int J Sediment Res 33:406–414. https://doi. org/10.1016/j.ijsrc.2018.04.009 Rossatto DL, Netto MS, Jahn SL, Mallmann ES, Dotto GL, Foletto EL (2020) Highly efcient adsorption performance of a novel magnetic geopolymer/Fe3O4 composite towards removal of aqueous acid green 16 dye. J Environ Chem Eng 8:103804. https://doi.org/ 10.1016/j.jece.2020.103804 Salman Naeem M, Javed S, Baheti V, Wiener J, Javed MU, Ul Hassan SZ, Mazari A, Naeem J (2018) Adsorption kinetics of acid red on activated carbon web prepared from acrylic fbrous waste. Fibers Polym 19:71–81. https://doi.org/10.1007/s12221-018-7189-5 Sarkar C, Basu JK, Samanta AN (2018) Synthesis of mesoporous geopolymeric powder from LD slag as superior adsorbent for zinc (II) removal. Adv Powder Technol 29:1142–1152. https://doi.org/10. 1016/j.apt.2018.02.005 Silva PRB, Makara CN, Munaro AP, Schintlzer DC, Wastowski AD, Poleto C (2016) Comparison of the analytical performance of EDXRF and FAAS techniques in the determination of metal species concentrations using protocol 3050B (USEPA). Int J River Basin Manage 14:401–406. https://doi.org/10.1080/15715124. 2016.1203792 Sitarz M, Handke M, Mozgawa W (2000) Identifcation of silicooxygen rings in SiO2 based on IR spectra. Spectrochim Acta - Part A Mol Biomol Spectrosc 56:1819–1823. https://doi.org/10.1016/ S1386-1425(00)00241-9 Song X, Gunawan P, Jiang R, Leong SSJ, Wang K, Xu R (2011) Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. J Hazard Mater 194:162–168. https://doi. org/10.1016/j.jhazmat.2011.07.076 Tchadjié LN, Djobo JNY, Ranjbar N, Tchakouté HK, Kenne BBD, Elimbi A, Njopwouo D (2016) Potential of using granite waste as raw material for geopolymer synthesis. Ceram Int 42:3046–3055. https://doi.org/10.1016/j.ceramint.2015.10.091 Tchakoute HK, Elimbi A, Yanne E, Djangang CN (2013) Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature. Cem Concr Compos 38:75–81. https://doi.org/10. 1016/j.cemconcomp.2013.03.010 Tchakoute Kouamo H, Elimbi A, Mbey JA, Ngally Sabouang CJ, Njopwouo D (2012) The efect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: a comparative study. Constr Build Mater 35:960–969. https://doi.org/10.1016/j.conbu ildmat.2012.04.023 Adsorption capacity of a volcanic rock-used in constructed wetlandsfor carbamazepine removal, and its modifcation with bioflm growth. Water (Switzerland) 9.https://doi.org/10.3390/w9090721 Thommes M (2010) Physical adsorption characterization of nanoporous materials. Chemie Ing Tech 82:1059–1073. https://doi.org/ 10.1002/cite.201000064 Vieira Y, Netto MS, Lima EC, Anastopoulos I, Oliveira MLS, Dotto GL (2021) An overview of geological originated materials as a trend for adsorption in wastewater treatment. Geosci Front In press 101150.https://doi.org/10.1016/j.gsf.2021.101150 Vosoogh A, Mohsen S, Raziyeh L (2016) Heavy metals relationship with water and size-fractionated sediments in rivers using canonical correlation analysis (CCA) case study, rivers of south western Caspian Sea. Environ Monit Assess 188:603. https://doi.org/10. 1007/s10661-016-5611-x Yankwa Djobo JN, Elimbi A, Dika Manga J, Ndjock IBDL (2016a) Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers. Constr Build Mater 113:673–681. https://doi.org/10.1016/j.conbuildmat. 2016.03.104 Yankwa Djobo JN, Elimbi A, Tchakouté HK, Kumar S (2016b) Mechanical activation of volcanic ash for geopolymer synthesis: Efect on reaction kinetics, gel characteristics, physical and mechanical properties. RSC Adv 6:39106–39117. https://doi.org/ 10.1039/c6ra03667h Yunsheng Z, Wei S, Zongjin L (2010) Composition design and microstructural characterization of calcined kaolin-based geopolymercement. Appl Clay Sci 47:271–275. https://doi.org/10.1016/j.clay. 2009.11.002 Zhu X, Song T, Lv Z, Ji G (2015) Removal of Cu(II) and Ni(II) ions from an aqueous solution using α-Fe2O3 nanoparticle-coated volcanic rocks. Water Sci Technol 72:2154–2165. https://doi.org/10. 2166/wst.2015.434 Zhuang XY, Chen L, Komarneni S, Zhou CH, Tong DS, Yang HM, Yu WH, Wang H (2016) Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod 125:253–267. https:// doi.org/10.1016/j.jclepro.2016.03.019 |
dc.relation.citationendpage.spa.fl_str_mv |
25693 |
dc.relation.citationstartpage.spa.fl_str_mv |
25685 |
dc.relation.citationvolume.spa.fl_str_mv |
29 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier BV |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/article/10.1007/s11356-021-17749-z |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/8ebe4556-f53d-48c6-ba52-8536f71e4591/download https://repositorio.cuc.edu.co/bitstreams/69052635-8309-479c-8d2e-73c779b9c245/download https://repositorio.cuc.edu.co/bitstreams/e02876af-2632-4da0-a2c2-0eea911e2b94/download https://repositorio.cuc.edu.co/bitstreams/4bbc54c6-f033-4b3b-bda4-993bd1dc19f6/download |
bitstream.checksum.fl_str_mv |
5bb95a9123b5eb430be2385c626aeec7 e30e9215131d99561d40d6b0abbe9bad 75bdad15707b865848c61c1405f41279 e16632f5316a060d47ec8330af104f7f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760759145758720 |
spelling |
Rossatto, Diovani L.Netto, Matias S.O. Silva, Luis F.Dotto, Guilherme Luiz2022-06-21T15:35:22Z2022-11-302022-06-21T15:35:22Z2021-11-300944-1344https://hdl.handle.net/11323/9273https://doi.org/10.1007/s11356-021-17749-z10.1007/s11356-021-17749-z1614-7499Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present study verified the potential of volcanic rock powder residues originating from the extraction of semi-precious rocks in the state of Rio Grande do Sul, Brazil, as precursors or adsorbents for dyes and metallic ion removal from water. In this way, it is possible to add value and give an adequate destination to this waste. Volcanic rock powder residues from Ametista do Sul (AME) and Nova Prata (NP) were the starting materials. These were used naturally or submitted to the alkaline activation process at 60 °C and alkaline fusion at 550 °C. The analysis of the starting samples by X-ray fluorescence (XRF) revealed that they are mainly composed of aluminum, calcium, iron, and silicon oxides, which corroborates the presence of numerous crystalline phases observed in the X-ray diffraction spectra (XRD). Moreover, by XRD analysis of the synthesized samples, alkaline fusion proved to be more efficient in the dissolution of crystalline phases and consequently in the formation of the amorphous phase (more reactive). Furthermore, the adsorption tests with acid green and acid red dyes and Ag+, Co2+, and Cu2+ ions indicated the viability of using residual volcanic rock powder as raw material for the production of adsorbents functionalized with sodium hydroxide, being that the samples synthesized by alkaline fusion showed better results of removal and adsorption capacity for all the contaminants used in the study9 páginasapplication/pdfengElsevier BVNetherlands© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfVolcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from waterArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://link.springer.com/article/10.1007/s11356-021-17749-zEnvironmental Science and Pollution ResearchAsere TG, Verbeken K, Tessema DA, Fufa F, Stevens CV, Du Laing G (2017) Adsorption of As(III) versus As(V) from aqueous solutions by cerium-loaded volcanic rocks. Environ Sci Pollut Res 24:20446–20458. https://doi.org/10.1007/s11356-017-9692-zBarrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen Isotherms. J Amer Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126Bugarčić MD, Milivojević M, Marinković A, Marković B, Sokić M, Petronijević N, Stojanović J (2018) Application of raw volcanic rock found in Etna valley as an adsorbent of chromates, arsenates and selenates. Metall Mater Eng 24:133–144. https://doi.org/10. 30544/366Bui TKL, Do-Hong LC, Dao TS, Hoang TC (2016) Copper toxicity and the infuence of water quality of Dongnai River and Mekong River waters on copper bioavailability and toxicity to three tropical species. Chemosphere 144:872–878. https://doi.org/10.1016/j. chemosphere.2015.09.058Çetintaş R, Soyer-Uzun S (2018) Relations between structural characteristics and compressive strength in volcanic ash based one–part geopolymer systems. J Build Eng 20:130–136. https://doi.org/10. 1016/j.jobe.2018.07.011Chao C, Zhao Y, Song Q, Min J, Wang Z, Ma H, Li X (2019) Volcanic rock-based ceramsite adsorbent for highly selective fuoride removal: function optimization and mechanism. J Chem Technol Biotechnol 94:2263–2273. https://doi.org/10.1002/jctb.6014Choi JW, Ryu JC, Kwon KS, Song MK, Lee S, Kim SB, Lee SH (2014) Adsorption of ammonium nitrogen and phosphate onto basanite and evaluation of toxicity. Water Air Soil Pollut 225:2059. https:// doi.org/10.1007/s11270-014-2059-xDalla Valle C, Dorr AC (2020) A Comercialização de Pedras Preciosas No Mercado Nacional e Internacional: Uma Análise Da Região Do Médio Alto Uruguai Do Rio Grande Do Sul. Revista Científca Hermes (in Portuguese) 27:252–273Dalmora AC, Ramos CG, Plata LG, da Costa ML, Kautzmann RM, Oliveira LFS (2020) Understanding the mobility of potential nutrients in rock mining by-products: an opportunity for more sustainable agriculture and mining. Sci Total Environ 710:136240. https://doi.org/10.1016/j.scitotenv.2019.136240Duru CE, Duru IA, Ogbonna CE, Enedoh MC, Emele P (2019) Adsorption of copper ions from aqueous solution onto natural and pretreated maize husk: adsorption efciency and kinetic studies. J Chem Soc Nigeria 44:798–803Duxson P, Fernández-JiménezA PJL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/ s10853-006-0637-zEl-Shamy OAA, El-Azabawy RE, El-Azabawy OE (2019) Synthesis and characterization of magnetite-alginate nanoparticles for enhancement of nickel and cobalt ion adsorption from wastewater. J Nanomater 2019:6326012. https://doi.org/10.1155/2019/63260 12Freitas ED, Carmo ACR, Almeida Neto AF, Vieira MGA (2017) Binary adsorption of silver and copper on Verde-lodo bentonite: kinetic and equilibrium study. Appl Clay Sci 137:69–76. https:// doi.org/10.1016/j.clay.2016.12.016Giannopoulou I, Panias D (2010) Hydrolytic stability of sodium silicate gels in the presence of aluminum. J Mater Sci 45:5370– 5377. https://doi.org/10.1007/s10853-010-4586-1Gómez V, Larrechi MS, Callao MP (2007) Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere 69:1151–1158. https://doi.org/10.1016/j.chemosphere.2007.03. 076Gómez JM, Díez E, Bernabé I, Sáez P, Rodríguez A (2018) Efective adsorptive removal of cobalt using mesoporous carbons synthesized by silica gel replica method. Environ Process 5:225–242. https://doi.org/10.1007/s40710-018-0304-9Hartmann LA, Medeiros JTN, Baggio SB, Antunes LM (2015) Controls on prolate and oblate geode geometries in the Veia Alta basalt fow, largest world producer of amethyst, Paraná volcanic province, Brazil. Ore Geol Ver 66:243–251. https://doi.org/10. 1016/j.oregeorev.2014.11.005Hosseinzadeh H, Zorouf S, Mahdavinia GR (2015) Study on adsorption of cationic dye on novel kappa-carrageenan/poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels. Polym Bull 72:339–1363. https://doi.org/10.1007/s00289-015-1340-5Jain SN, Gogate PR (2018) Efcient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: batch and column studies. J Environ Manage 210:226–238. https://doi.org/10.1016/j.jenvman.2018.01.008Jeon C (2017) Adsorption of silver ions from industrial wastewater using waste cofee grounds. Korean J Chem Eng 34:384–391. https://doi.org/10.1007/s11814-016-0253-9Korchagin J, Caner L, Bortoluzzi EC (2019) Variability of amethyst mining waste: a mineralogical and geochemical approach to evaluate the potential use in agriculture. J Clean Prod 210:749–758. https://doi.org/10.1016/j.jclepro.2018.11.039Kyziol-Komosinska J, Rosik-Dulewska C, Pajak M, Czupiol J, Dzieniszewska A, Krzyzewska I (2015) Sorption of Acid Green 16 from aqueous solution onto low-moor peat and smectite clay co-occurring in lignite of Belchatow mine feld. Annu Set Environ Prot 17:165–187Latif S, Rehman R, Imran M, Iqbal S (2018) Biosorptive decontamination of acid red-87 dye from wastewater by citrus limonum peels: ecofriendly approach. Pakistan J Anal Environ Chem 19:44–52. https://doi.org/10.21743/pjaec/2018.06.04Lee SH, Park SS, Parambadath S, Ha CS (2016) Sulphonic acid functionalized periodic mesoporous organosilica with the bridged bissilylated urea groups for high selective adsorption of cobalt ion from artifcial seawater. Micro Meso Mater 226:179–190. https:// doi.org/10.1016/j.micromeso.2015.10.047Lemougna PN, Chinje Melo UF, Delplancke MP, Rahier H (2014) Infuence of the chemical and mineralogical composition on the reactivity of volcanic ashes during alkali activation. Ceram Int 40:811–820. https://doi.org/10.1016/j.ceramint.2013.06.072Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans - a review of the potential sources and systemic health efects. Toxicol 387:43–56. https://doi.org/10. 1016/j.tox.2017.05.015Malhotra N, Ger TR, Uapipatanakul B, Huang JC, Chen KHC, Hsiao CD (2020) Review of copper and copper nanoparticle toxicity in fsh. Nanomater 10:1–28. https://doi.org/10.3390/nano10061126Mohamad M, Prasad B (2014) Chemical design of smart chitosan/ polypyrrole/magnetite nanocomposite toward efcient water treatment. Phys Chem Chem Phys 16:21812–21819. https://doi.org/ 10.1039/C4CP03062ANdjock BDL, Elimbi A, Cyr M (2017) Rational utilization of volcanic ashes based on factors afecting their alkaline activation. J Non Cryst Solids 463:31–39. https://doi.org/10.1016/j.jnoncrysol. 2017.02.024Ontiveros-Cuadras JF, Ruiz-Fernández AC, Sanchez-Cabeza JA, PérezBernal LH, Preda M, Páez-Osuna F (2018) Mineralogical signatures and sources of recent sediment in a large tropical lake. Int J Sediment Res 33:183–190. https://doi.org/10.1016/j.ijsrc.2017. 12.002Panias D, Giannopoulou IP, Perraki T (2007) Efect of synthesis parameters on the mechanical properties of fy ash-based geopolymers. Colloids Surf A Physicochem Eng Asp 301:246–254. https://doi. org/10.1016/j.colsurfa.2006.12.064Pejman A, Bidhendi GN, Ardestani M, Saeedi M, Baghvand A (2015) A new index for assessing heavy metals contamination in sediments: a case study. Ecol Ind 58:365–373. https://doi.org/10. 1016/j.ecolind.2015.06.012Petrakis GH, Motoki A, Sichel SE, Zucco LL, Aires JR, Mello SLM (2010) Geologia de jazidas de brita e areia artifcial de qualidade especial: Exemplos do álcali sienito de Nova Iguaçu, RJ, e riolito de Nova Prata, RS (In portuguese). Geociencias 29:21–32Pinto VM, Hartmann LA (2011) Flow-by-fow chemical stratigraphy and evolution of thirteen Serra Geral Group basalt fows from Vista Alegre, southernmost Brazil. An Acad Braz Cienc 83:425– 440. https://doi.org/10.1590/S0001-37652011000200006Remor MB, Sampaio SC, Rijk S, Vilas Boas MA, Gotardo JT, Pinto ET, Schardong FA (2018) Sediment geochemistry of the urban Lake Paulo Gorski. Int J Sediment Res 33:406–414. https://doi. org/10.1016/j.ijsrc.2018.04.009Rossatto DL, Netto MS, Jahn SL, Mallmann ES, Dotto GL, Foletto EL (2020) Highly efcient adsorption performance of a novel magnetic geopolymer/Fe3O4 composite towards removal of aqueous acid green 16 dye. J Environ Chem Eng 8:103804. https://doi.org/ 10.1016/j.jece.2020.103804Salman Naeem M, Javed S, Baheti V, Wiener J, Javed MU, Ul Hassan SZ, Mazari A, Naeem J (2018) Adsorption kinetics of acid red on activated carbon web prepared from acrylic fbrous waste. Fibers Polym 19:71–81. https://doi.org/10.1007/s12221-018-7189-5Sarkar C, Basu JK, Samanta AN (2018) Synthesis of mesoporous geopolymeric powder from LD slag as superior adsorbent for zinc (II) removal. Adv Powder Technol 29:1142–1152. https://doi.org/10. 1016/j.apt.2018.02.005Silva PRB, Makara CN, Munaro AP, Schintlzer DC, Wastowski AD, Poleto C (2016) Comparison of the analytical performance of EDXRF and FAAS techniques in the determination of metal species concentrations using protocol 3050B (USEPA). Int J River Basin Manage 14:401–406. https://doi.org/10.1080/15715124. 2016.1203792Sitarz M, Handke M, Mozgawa W (2000) Identifcation of silicooxygen rings in SiO2 based on IR spectra. Spectrochim Acta - Part A Mol Biomol Spectrosc 56:1819–1823. https://doi.org/10.1016/ S1386-1425(00)00241-9Song X, Gunawan P, Jiang R, Leong SSJ, Wang K, Xu R (2011) Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. J Hazard Mater 194:162–168. https://doi. org/10.1016/j.jhazmat.2011.07.076Tchadjié LN, Djobo JNY, Ranjbar N, Tchakouté HK, Kenne BBD, Elimbi A, Njopwouo D (2016) Potential of using granite waste as raw material for geopolymer synthesis. Ceram Int 42:3046–3055. https://doi.org/10.1016/j.ceramint.2015.10.091Tchakoute HK, Elimbi A, Yanne E, Djangang CN (2013) Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature. Cem Concr Compos 38:75–81. https://doi.org/10. 1016/j.cemconcomp.2013.03.010Tchakoute Kouamo H, Elimbi A, Mbey JA, Ngally Sabouang CJ, Njopwouo D (2012) The efect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: a comparative study. Constr Build Mater 35:960–969. https://doi.org/10.1016/j.conbu ildmat.2012.04.023Adsorption capacity of a volcanic rock-used in constructed wetlandsfor carbamazepine removal, and its modifcation with bioflm growth. Water (Switzerland) 9.https://doi.org/10.3390/w9090721Thommes M (2010) Physical adsorption characterization of nanoporous materials. Chemie Ing Tech 82:1059–1073. https://doi.org/ 10.1002/cite.201000064Vieira Y, Netto MS, Lima EC, Anastopoulos I, Oliveira MLS, Dotto GL (2021) An overview of geological originated materials as a trend for adsorption in wastewater treatment. Geosci Front In press 101150.https://doi.org/10.1016/j.gsf.2021.101150Vosoogh A, Mohsen S, Raziyeh L (2016) Heavy metals relationship with water and size-fractionated sediments in rivers using canonical correlation analysis (CCA) case study, rivers of south western Caspian Sea. Environ Monit Assess 188:603. https://doi.org/10. 1007/s10661-016-5611-xYankwa Djobo JN, Elimbi A, Dika Manga J, Ndjock IBDL (2016a) Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers. Constr Build Mater 113:673–681. https://doi.org/10.1016/j.conbuildmat. 2016.03.104Yankwa Djobo JN, Elimbi A, Tchakouté HK, Kumar S (2016b) Mechanical activation of volcanic ash for geopolymer synthesis: Efect on reaction kinetics, gel characteristics, physical and mechanical properties. RSC Adv 6:39106–39117. https://doi.org/ 10.1039/c6ra03667hYunsheng Z, Wei S, Zongjin L (2010) Composition design and microstructural characterization of calcined kaolin-based geopolymercement. Appl Clay Sci 47:271–275. https://doi.org/10.1016/j.clay. 2009.11.002Zhu X, Song T, Lv Z, Ji G (2015) Removal of Cu(II) and Ni(II) ions from an aqueous solution using α-Fe2O3 nanoparticle-coated volcanic rocks. Water Sci Technol 72:2154–2165. https://doi.org/10. 2166/wst.2015.434Zhuang XY, Chen L, Komarneni S, Zhou CH, Tong DS, Yang HM, Yu WH, Wang H (2016) Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod 125:253–267. https:// doi.org/10.1016/j.jclepro.2016.03.019256932568529AdsorbentAdsorptionVolcanic rockAlkaline activationAlkaline fusionPublicationORIGINALRossatto2022_Article_VolcanicRockPowderResiduesAsPr.pdfRossatto2022_Article_VolcanicRockPowderResiduesAsPr.pdfapplication/pdf1070147https://repositorio.cuc.edu.co/bitstreams/8ebe4556-f53d-48c6-ba52-8536f71e4591/download5bb95a9123b5eb430be2385c626aeec7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/69052635-8309-479c-8d2e-73c779b9c245/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTRossatto2022_Article_VolcanicRockPowderResiduesAsPr.pdf.txtRossatto2022_Article_VolcanicRockPowderResiduesAsPr.pdf.txttext/plain42080https://repositorio.cuc.edu.co/bitstreams/e02876af-2632-4da0-a2c2-0eea911e2b94/download75bdad15707b865848c61c1405f41279MD53THUMBNAILRossatto2022_Article_VolcanicRockPowderResiduesAsPr.pdf.jpgRossatto2022_Article_VolcanicRockPowderResiduesAsPr.pdf.jpgimage/jpeg15594https://repositorio.cuc.edu.co/bitstreams/4bbc54c6-f033-4b3b-bda4-993bd1dc19f6/downloade16632f5316a060d47ec8330af104f7fMD5411323/9273oai:repositorio.cuc.edu.co:11323/92732024-09-17 11:00:54.499https://creativecommons.org/licenses/by-nc-nd/4.0/© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |