Volcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from water

The present study verified the potential of volcanic rock powder residues originating from the extraction of semi-precious rocks in the state of Rio Grande do Sul, Brazil, as precursors or adsorbents for dyes and metallic ion removal from water. In this way, it is possible to add value and give an a...

Full description

Autores:
Rossatto, Diovani L.
Netto, Matias S.
O. Silva, Luis F.
Dotto, Guilherme Luiz
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9273
Acceso en línea:
https://hdl.handle.net/11323/9273
https://doi.org/10.1007/s11356-021-17749-z
https://repositorio.cuc.edu.co/
Palabra clave:
Adsorbent
Adsorption
Volcanic rock
Alkaline activation
Alkaline fusion
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Description
Summary:The present study verified the potential of volcanic rock powder residues originating from the extraction of semi-precious rocks in the state of Rio Grande do Sul, Brazil, as precursors or adsorbents for dyes and metallic ion removal from water. In this way, it is possible to add value and give an adequate destination to this waste. Volcanic rock powder residues from Ametista do Sul (AME) and Nova Prata (NP) were the starting materials. These were used naturally or submitted to the alkaline activation process at 60 °C and alkaline fusion at 550 °C. The analysis of the starting samples by X-ray fluorescence (XRF) revealed that they are mainly composed of aluminum, calcium, iron, and silicon oxides, which corroborates the presence of numerous crystalline phases observed in the X-ray diffraction spectra (XRD). Moreover, by XRD analysis of the synthesized samples, alkaline fusion proved to be more efficient in the dissolution of crystalline phases and consequently in the formation of the amorphous phase (more reactive). Furthermore, the adsorption tests with acid green and acid red dyes and Ag+, Co2+, and Cu2+ ions indicated the viability of using residual volcanic rock powder as raw material for the production of adsorbents functionalized with sodium hydroxide, being that the samples synthesized by alkaline fusion showed better results of removal and adsorption capacity for all the contaminants used in the study