Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel

Chitin powder and chitin-aerogel were prepared from shrimp wastes and used to uptake Y3+ from aqueous solutions and concentrate this rare earth element from phosphogypsum (PG). Chitin aerogel displays a specific surface area of 945 m2/g, while chitin powder is 3.6 m2/g, which largely influences its...

Full description

Autores:
dos Reis, Glaydson S.
Pinto, Diana
Lütke, Sabrina F.
Lima, Éder C.
Silva Oliveira, Luis Felipe
De Brum, Irineu A.S.
Dotto, Guilherme Luiz
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13315
Acceso en línea:
https://hdl.handle.net/11323/13315
https://repositorio.cuc.edu.co/
Palabra clave:
Rare earths
Sustainable material
Chitin powder
Chitin porous aerogel
Yttrium adsorption and recovery
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_c7453e72077b6e7dd8c0a0403c4f4a04
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13315
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel
title Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel
spellingShingle Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel
Rare earths
Sustainable material
Chitin powder
Chitin porous aerogel
Yttrium adsorption and recovery
title_short Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel
title_full Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel
title_fullStr Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel
title_full_unstemmed Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel
title_sort Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel
dc.creator.fl_str_mv dos Reis, Glaydson S.
Pinto, Diana
Lütke, Sabrina F.
Lima, Éder C.
Silva Oliveira, Luis Felipe
De Brum, Irineu A.S.
Dotto, Guilherme Luiz
dc.contributor.author.none.fl_str_mv dos Reis, Glaydson S.
Pinto, Diana
Lütke, Sabrina F.
Lima, Éder C.
Silva Oliveira, Luis Felipe
De Brum, Irineu A.S.
Dotto, Guilherme Luiz
dc.subject.proposal.eng.fl_str_mv Rare earths
Sustainable material
Chitin powder
Chitin porous aerogel
Yttrium adsorption and recovery
topic Rare earths
Sustainable material
Chitin powder
Chitin porous aerogel
Yttrium adsorption and recovery
description Chitin powder and chitin-aerogel were prepared from shrimp wastes and used to uptake Y3+ from aqueous solutions and concentrate this rare earth element from phosphogypsum (PG). Chitin aerogel displays a specific surface area of 945 m2/g, while chitin powder is 3.6 m2/g, which largely influences its adsorption ability. Regarding the adsorption in synthetic solutions, the effect of pH on Y3+ removal is strong for chitin powder adsorbent. In contrast, no big pH influence was detected for chitin aerogel. Electrostatic interactions and chelation can highlight the proposed mechanism of Y3+ on chitin adsorbents for the powder and aerogel. Furthermore, in addition to these interactions, pore filling/pore diffusion is the main mechanism of Y3+ removal in the chitin aerogel. Chitin aerogel is efficient in concentrating 8 times the Y3+ from PG, a very complex matrix. The complex chitin aerogel-Y3+ can be a secondary source of rare earth elements for other applications.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-12T19:21:57Z
dc.date.available.none.fl_str_mv 2024-09-12T19:21:57Z
dc.date.issued.none.fl_str_mv 2024-04-04
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Glaydson S. dos Reis, Diana Pinto, Sabrina F. Lütke, Éder C. Lima, Luis F.O. Silva, Irineu A.S. De Brum, Guilherme L. Dotto, Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel, Journal of Rare Earths, Volume 42, Issue 4, 2024, Pages 775-782, ISSN 1002-0721, https://doi.org/10.1016/j.jre.2023.04.008.
dc.identifier.issn.spa.fl_str_mv 1002-0721
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13315
dc.identifier.doi.none.fl_str_mv 10.1016/j.jre.2023.04.008
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Glaydson S. dos Reis, Diana Pinto, Sabrina F. Lütke, Éder C. Lima, Luis F.O. Silva, Irineu A.S. De Brum, Guilherme L. Dotto, Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel, Journal of Rare Earths, Volume 42, Issue 4, 2024, Pages 775-782, ISSN 1002-0721, https://doi.org/10.1016/j.jre.2023.04.008.
1002-0721
10.1016/j.jre.2023.04.008
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13315
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Rare Earths
dc.relation.references.spa.fl_str_mv 1. Silva LFO, Oliveira MLS, Crissien TJ, Santosh M, Bolivar J, Shao L, et al. A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles. Chemosphere. 2022;286:131513.
2. Lütke SF, Oliveira MLS, Silva LFO, Cadaval TRS, Dotto GL. Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry. Chemosphere. 2020;256:127138.
3. Lütke SF, Oliveira MLS, Waechter SR, Silva LFO, Cadaval TRS, Duarte FA, et al. Leaching of rare earth elements from phosphogypsum. Chemosphere. 2022;301:134661.
4. Chen Z. Global rare earth resources and scenarios of future rare earth industry. J Rare Earths. 2011;29:1.
5. Emsbo P, McLaughlin PM, Breit GN. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis? Gondwana Res. 2015;27: 776.
6. Ni S, Chen Q, Gao Y, Guo X, Sun X. Recovery of rare earths from industrial wastewater using extractionprecipitation strategy for resource and environmental concerns. Miner Eng. 2020;151:106315.
7. Wang Y, Zhou H, Wang Y, Li F, Sun X. Separation of high-purity yttrium from ion-absorbed rare earth concentrate using (2,6-dimethylheptyl) phenoxy acetic/propanoic acid. Sep Purif Technol. 2017;184:280.
8. Zhao Q, Zhang Z, Li Y, Bian X, Liao W. Solvent extraction and separation of rare earths from chloride media using a-aminophosphonic acid extractant HEHAMP. Solvent Extr Ion Exch. 2018;36:136.
9. Yamil YL, Georgin J, dos Reis GS, Dotto GL. Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin. Environ Sci Pollut Res. 2020;27:33307.
10. dos Reis GS, Guy M, Mathieu M, Jebrane M, Lima EC, Thyrel M, et al. A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2, and KOH on physicochemical properties and acetaminophen adsorption performance of biobased porous materials from tree bark residues. Colloids Surf A Physicochem Eng Asp. 2022;642:1.
11. Talan D, Huang Q. Separation of radionuclides from a rare earth-containing solution by zeolite adsorption. Minerals. 2021;11:20.
12. Cavalcante EHM, Candido ICM, de Oliveira HP, Silveira KB, Allvares TVS, Lima EC, et al. 3-Aminopropyl-triethoxysilane-Functionalized tannin-rich grape biomass for the adsorption of methyl orange dye: synthesis, characterization, and the adsorption mechanism. ACS Omega. 2022;7:18997.
13. Sarmadi N, Gharabaghi M, Saray MT. Highly mesoporous hybrid transition metal oxide nanowires for enhanced adsorption of rare earth elements from wastewater. INORGA. 2012;60:175.
14. Dotto GL, McKay G. Current scenario and challenges in adsorption for water treatment. J Environ Chem Eng. 2020;8:103988.
15. Muzzarelli RAA. Natural chelating polymers. New York: Pergamon Press; 1973.
16. Druzian SP, Zanatta NP, Borchardt RK, Cortes LN, Streit AFM, Severo EC, et al. Chitin-psyllium based aerogel for the efcient removal of crystal violet from aqueous solutions. Int J Biol Macromol. 2021;179:366.
17. Franco DSP, Vieillard J, Salau NPG, Dotto GL. Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: a mass transfer model approach. J Mol Liq. 2020;304:112758.
18. Tsurkan MV, Voronkina A, Khrunyk Y, Wysokowski M, Petrenko I, Ehrlich H. Progress in chitin analytics. Carbohydr Polym. 2021;252:117204.
19. Kayaa M, Mujtaba M, Ehrlich H, Salaberria AM, Barand T, Amemiya CT, et al. On chemistry of g-chitin. Carbohydr Polym. 2017;176:177.
20. Khrunyk Y, Lach S, Petrenko I, Ehrlich H. Progress in modern marine biomaterials research. Mar Drugs. 2020;18:589.
21. Tsurkan D, Wysokowski M, Petrenko I, Voronkina A, Khrunyk Y, Fursov A, et al. Modern scafolding strategies based on naturally pre-fabricated 3D biomaterials of poriferan origin. Appl Phys. 2020;126:382.
22. Nowacki K, Ste˛pniak I, Langer E, Tsurkan M, Wysokowski M, Petrenko I, et al. Electrochemical approach for isolation of chitin from the skeleton of the black coral Cirrhipathes sp. (antipatharia). Mar Drugs. 2020;18:297.
23. Machałowski T, Wysokowski M, Tsurkan MV, Galli R, Schimpf C, Rafaja D, et al. Spider chitin: an ultrafast microwave-assisted method for chitin isolation from Caribena versicolor spider molt cuticle. Molecules. 2019;24:3736.
24. Kertmen A, Ehrlich H. Patentology of chitinous biomaterials. Part I: chitin. Carbohydr Polym. 2022;282:119102.
25. Kertmen A, Dziedzic I, Ehrlich H. Patentology of chitinous biomaterials. Part II: chitosan. Carbohydr Polym. 2013;301:120224.
26. Schleuter D, Günther A, Paascha S, Ehrlicha H, Kljajic Z, Hanke T, et al. Chitinbased renewable materials from marine sponges for uranium adsorption. Carbohydr Polym. 2013;92:712.
27. Machałowski T, Wysokowski M, Petrenko I, Fursov A, Rahimi-Nasrabadi M, Amro MM, et al. Naturally pre-designed biomaterials: spider molting cuticle as a functional crude oil sorbent. J Environ Manag. 2020;261:110218.
28. Liu Y, Liu J, Song P. Recent advances in polysaccharide-based carbon aerogels for environmental remediation and sustainable energy. Sust Mat Technol. 2021;27:e00240.
29. Sun HY, Xu Z, Gao C. Multifunctional, ultra-flyweight synergistically assembled carbon aerogels. Adv Mater. 2013;25:2554.
30. Sirajuheen P, Poovathumkuzhi NC, Vigneshwaran S, Chelaveettil BM, Meenakshi S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water d a comprehensive review. Carbohydr Polym. 2021;273:118604.
31. Dotto GL, Pinto LAA. Adsorption of food dyes onto chitosan: optimization process and kinetic. Carbohydr Polym. 2011;84:231.
32. Ahmed MJ, Hameed BH, Hummadi EH. Review on recent progress in chitosan/ chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydr Polym. 2020;247:116690.
33. Vasylyeva H, Mironyuk I, Mykytyn I, Savka K. Equilibrium studies of yttrium adsorption from aqueous solutions by titanium dioxide. Appl Radiat Isot. 2021;168:109473.
34. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraj an JC, Anastopoulos I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq. 2019;273: 425.
35. Bonilla-Petriciolet A, Mendoza-Castillo DI, Dotto GL, Duran-Valle CJ. Adsorption in water treatment, reference module in chemistry. In: Molecular Sciences and chemical engineering. Amsterdam: Elsevier; 2019.
36. Wang Z, Kang SB, Won SW. Selective adsorption of palladium(II) from aqueous solution using epichlorohydrin crosslinked polyethylenimine-chitin adsorbent: batch and column studies. J Environ Chem Eng. 2021;9:105058.
37. Chen H, Liu L, Chen F, Fan Y, Yong Q. Re-dispersible chitin nanofibrils with improved stability in green solvents for fabricating hydrophobic aerogels. Carbohydr Polym. 2022;283:119138.
38. Gonzalez-Hourcade M, dos Reis GS, Grimm A, Dinh VM, Lima EC, Larsson SH, et al. Microalgae biomass as a sustainable precursor to produce nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous media. J Clean Prod. 2022;348:131280.
39. Guy M, Mathieu M, Anastopoulos IP, Martínez MG, Rousseau F, Dotto GL, et al. Process parameters optimization, characterization, and application of KOHactivated Norway Spruce Bark graphitic biochars for efficient azo dye adsorption. Molecules. 2022;27:456.
40. Chen X, Chew SL, Kerton FM, Yan N. Direct conversion of chitin into a Ncontaining furan derivative. Green Chem. 2014;16:2204.
41. Osorio-Madrazo A, David L, Trombotto S, Lucas JM, Peniche-Covas C, Domard A. Kinetics study of the solid-state acid hydrolysis of chitosan: evolution of the crystallinity and macromolecular structure. Biomacromolecules. 2010;11:1376.
42. Ding B, Cai J, Huang J, Zhang L, Chen Y, Shi X, et al. Facile preparation of robust and biocompatible chitin aerogels. J Mater Chem. 2012;22:5801.
43. Zhang X, Elsayed I, Navarathna C, Schueneman GT, Hassan EB. Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification. ACS Appl Mater Interfaces. 2019;11:50.
44. Liang CL, Shen JL. Removal of yttrium from rare-earth wastewater by Serratia marcescens: biosorption optimization and mechanisms studies. Sci Rep. 2022;12:4861.
45. Wang C, Wang H. Carboxyl functionalized Cinnamomum camphora for removal of heavy metals from synthetic wastewater contribution to sustainability in agroforestry. J Clean Prod. 2018;184:921.
46. dos Reis GS, Larsson SH, Thyrel M, Pham TN, Lima EC, de Oliveira HP, et al. Preparation and application of efficient biobased carbon adsorbents prepared from spruce bark residues for efficient removal of reactive dyes and colors from synthetic effluents. Coatings. 2021;11:772.
47. Cunha MR, Lima EC, Lima DR, da Silva RS, Thue PS, Seliem MK, et al. Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: use of activated carbon derived from Butia catarinensis. J Environ Chem Eng. 2012;8:1.
48. Teixeira RA, Lima EC, Benetti AD, Thue PS, Cunha MR, Cimirro NFGM, et al. Preparation of hybrids of wood sawdust with 3-aminopropyltriethoxysilane, Application as an adsorbent to remove Reactive Blue 4 dye from wastewater efuents. J Taiwan Inst Chem Eng. 2021;125:141.
49. Zulfikar MA, Zarlina R, Handayani N, Alni A, Wahyuningrum D. Separation of yttrium from aqueous solution using ionic imprinted polymers. Russ J Non-Ferr. 2017;58:614.
50. Wang J. Adsorption of aqueous neodymium, europium, gadolinium, terbium, and yttrium ions onto nZVI-montmorillonite: kinetics, thermodynamic mechanism, and the influence of coexisting ions. Environ Sci Pollut Res. 2018;25:33521.
51. Dubey SS, Grandhi S. Sorption studies of yttrium (III) ions on surfaces of nanothorium (IV) oxide and nano-zirconium (IV) oxide. Inter J Environ Sci Technol. 2017;16:59.
52. Qiu S, Zhao Z, Sun X. Development of Magnetic Silica Hybrid Material with P507 for Rare Earth Adsorption. J Chem Eng Data 1016;62:469.
53. Smith YR, Bhattacharyya D, Willhard T, Misra M. Adsorption of aqueous rare earth elements using carbon black derived from recycled tires. Chem Eng J. 2016;296:102.
54. Ashour RM, El-Sayed R, Abdel-Magied AF, Adbel-khalek AA, Ali MM, Forsberg K, et al. Selective separation of rare earth ions from aqueous solution using functionalized magnetite nanoparticles: kinetic and thermodynamic studies. Chem Eng J. 2017;327:286.
55. Kusrini E, Usman A, Sani FA, Wilson LD, Abdullah MAA. Simultaneous adsorption of lanthanum and yttrium from aqueous solution by durian rind biosorbent. Environ Monit Assess. 2019;191:488.
56. Cimirro NFGM, Lima EC, Cunha MR, Thue PS, Grimm A, dos Reis GS, et al. Removal of diphenols using pine biochar. Kinetics, equilibrium, thermodynamics, and mechanism of uptake. J Mol Liq. 2022;364:119979.
57. dos Reis GS, Pinto D, Lima EC, Knani L, Grimm A, Silva LFO, et al. Lanthanum uptake from water using chitosan with different configurations. React Funct Polym. 2022;180:105395.
58. Duan Y, Freyburger A, Kunz W, Zollfrank C. Lignin/chitin films and their adsorption characteristics for heavy metal ions. ACS Sustainable Chem Eng. 2018;6:6965.
59. Gerente C, Lee VKC, Le Cloirec P, McKay G. Application of chitosan for the removal of metals from wastewaters by adsorptionemechanisms and models review. Crit Rev Environ Sci Technol. 2007;37:41.
60. Wang N, Xu X, Li H, Yuan L, Yu H. Enhanced selective adsorption of Pb(II) from aqueous solutions by one-pot synthesis of xanthate-modified chitosan sponge: behaviors and mechanisms. Ind Eng Chem Res. 2016;55:12222.
61. Javadian H, Taghavi M, Ruiz M, Tyagi I, Farsadrooh M, Sastre AM. Adsorption of neodymium, terbium and dysprosium using a synthetic polymer-based magnetic adsorbent. J Rare Earths. 2023;41(11):1796.
62. Li W, Huang L, Xiao B, Duan X, Li H, Li L, et al. Efficient and selective recovery of Gd(III) via polyethyleneimine modification of lanthanum-based metaleorganic frameworks. J Rare Earths. 2024;42(1):210.
63. Zhi H, Ni S, Su X, Xie W, Zhang H, Sun X. Separation and recovery of rare earth from waste nickel-metal hydride batteries by phosphate based extractionprecipitation. J Rare Earths. 2022;40:974.
dc.relation.citationendpage.spa.fl_str_mv 785
dc.relation.citationstartpage.spa.fl_str_mv 775
dc.relation.citationissue.spa.fl_str_mv 4
dc.relation.citationvolume.spa.fl_str_mv 42
dc.rights.eng.fl_str_mv © 2023 Chinese Society of Rare Earths. Published by Elsevier B.V. All rights reserved.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2023 Chinese Society of Rare Earths. Published by Elsevier B.V. All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 8 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Editorial Office of Chinese Rare Earths
dc.publisher.place.spa.fl_str_mv China
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1002072123001084?pes=vor
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/1b1e3d55-0a91-40fd-9226-0b48769e95e3/download
https://repositorio.cuc.edu.co/bitstreams/9b27ffb8-b75d-4632-930d-e1a9028ccf49/download
https://repositorio.cuc.edu.co/bitstreams/ba3a4350-e91e-4c36-91bf-7821cf6ba753/download
https://repositorio.cuc.edu.co/bitstreams/d9d8eb30-244b-44c2-abb8-4994e5a5cf67/download
bitstream.checksum.fl_str_mv 517bb8c1dc9370982e22468ef47fbbe3
2f9959eaf5b71fae44bbf9ec84150c7a
4abab383ec4d66605dbb5346d6267fa9
c1c6c6a1b693c7c0c6b54bacd1b977cc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166827282268160
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 Chinese Society of Rare Earths. Published by Elsevier B.V. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfdos Reis, Glaydson S.Pinto, DianaLütke, Sabrina F.Lima, Éder C.Silva Oliveira, Luis FelipeDe Brum, Irineu A.S.Dotto, Guilherme Luiz2024-09-12T19:21:57Z2024-09-12T19:21:57Z2024-04-04Glaydson S. dos Reis, Diana Pinto, Sabrina F. Lütke, Éder C. Lima, Luis F.O. Silva, Irineu A.S. De Brum, Guilherme L. Dotto, Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel, Journal of Rare Earths, Volume 42, Issue 4, 2024, Pages 775-782, ISSN 1002-0721, https://doi.org/10.1016/j.jre.2023.04.008.1002-0721https://hdl.handle.net/11323/1331510.1016/j.jre.2023.04.008Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Chitin powder and chitin-aerogel were prepared from shrimp wastes and used to uptake Y3+ from aqueous solutions and concentrate this rare earth element from phosphogypsum (PG). Chitin aerogel displays a specific surface area of 945 m2/g, while chitin powder is 3.6 m2/g, which largely influences its adsorption ability. Regarding the adsorption in synthetic solutions, the effect of pH on Y3+ removal is strong for chitin powder adsorbent. In contrast, no big pH influence was detected for chitin aerogel. Electrostatic interactions and chelation can highlight the proposed mechanism of Y3+ on chitin adsorbents for the powder and aerogel. Furthermore, in addition to these interactions, pore filling/pore diffusion is the main mechanism of Y3+ removal in the chitin aerogel. Chitin aerogel is efficient in concentrating 8 times the Y3+ from PG, a very complex matrix. The complex chitin aerogel-Y3+ can be a secondary source of rare earth elements for other applications.8 páginasapplication/pdfengEditorial Office of Chinese Rare EarthsChinahttps://www.sciencedirect.com/science/article/pii/S1002072123001084?pes=vorAdsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogelArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Rare Earths1. Silva LFO, Oliveira MLS, Crissien TJ, Santosh M, Bolivar J, Shao L, et al. A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles. Chemosphere. 2022;286:131513.2. Lütke SF, Oliveira MLS, Silva LFO, Cadaval TRS, Dotto GL. Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry. Chemosphere. 2020;256:127138.3. Lütke SF, Oliveira MLS, Waechter SR, Silva LFO, Cadaval TRS, Duarte FA, et al. Leaching of rare earth elements from phosphogypsum. Chemosphere. 2022;301:134661.4. Chen Z. Global rare earth resources and scenarios of future rare earth industry. J Rare Earths. 2011;29:1.5. Emsbo P, McLaughlin PM, Breit GN. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis? Gondwana Res. 2015;27: 776.6. Ni S, Chen Q, Gao Y, Guo X, Sun X. Recovery of rare earths from industrial wastewater using extractionprecipitation strategy for resource and environmental concerns. Miner Eng. 2020;151:106315.7. Wang Y, Zhou H, Wang Y, Li F, Sun X. Separation of high-purity yttrium from ion-absorbed rare earth concentrate using (2,6-dimethylheptyl) phenoxy acetic/propanoic acid. Sep Purif Technol. 2017;184:280.8. Zhao Q, Zhang Z, Li Y, Bian X, Liao W. Solvent extraction and separation of rare earths from chloride media using a-aminophosphonic acid extractant HEHAMP. Solvent Extr Ion Exch. 2018;36:136.9. Yamil YL, Georgin J, dos Reis GS, Dotto GL. Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin. Environ Sci Pollut Res. 2020;27:33307.10. dos Reis GS, Guy M, Mathieu M, Jebrane M, Lima EC, Thyrel M, et al. A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2, and KOH on physicochemical properties and acetaminophen adsorption performance of biobased porous materials from tree bark residues. Colloids Surf A Physicochem Eng Asp. 2022;642:1.11. Talan D, Huang Q. Separation of radionuclides from a rare earth-containing solution by zeolite adsorption. Minerals. 2021;11:20.12. Cavalcante EHM, Candido ICM, de Oliveira HP, Silveira KB, Allvares TVS, Lima EC, et al. 3-Aminopropyl-triethoxysilane-Functionalized tannin-rich grape biomass for the adsorption of methyl orange dye: synthesis, characterization, and the adsorption mechanism. ACS Omega. 2022;7:18997.13. Sarmadi N, Gharabaghi M, Saray MT. Highly mesoporous hybrid transition metal oxide nanowires for enhanced adsorption of rare earth elements from wastewater. INORGA. 2012;60:175.14. Dotto GL, McKay G. Current scenario and challenges in adsorption for water treatment. J Environ Chem Eng. 2020;8:103988.15. Muzzarelli RAA. Natural chelating polymers. New York: Pergamon Press; 1973.16. Druzian SP, Zanatta NP, Borchardt RK, Cortes LN, Streit AFM, Severo EC, et al. Chitin-psyllium based aerogel for the efcient removal of crystal violet from aqueous solutions. Int J Biol Macromol. 2021;179:366.17. Franco DSP, Vieillard J, Salau NPG, Dotto GL. Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: a mass transfer model approach. J Mol Liq. 2020;304:112758.18. Tsurkan MV, Voronkina A, Khrunyk Y, Wysokowski M, Petrenko I, Ehrlich H. Progress in chitin analytics. Carbohydr Polym. 2021;252:117204.19. Kayaa M, Mujtaba M, Ehrlich H, Salaberria AM, Barand T, Amemiya CT, et al. On chemistry of g-chitin. Carbohydr Polym. 2017;176:177.20. Khrunyk Y, Lach S, Petrenko I, Ehrlich H. Progress in modern marine biomaterials research. Mar Drugs. 2020;18:589.21. Tsurkan D, Wysokowski M, Petrenko I, Voronkina A, Khrunyk Y, Fursov A, et al. Modern scafolding strategies based on naturally pre-fabricated 3D biomaterials of poriferan origin. Appl Phys. 2020;126:382.22. Nowacki K, Ste˛pniak I, Langer E, Tsurkan M, Wysokowski M, Petrenko I, et al. Electrochemical approach for isolation of chitin from the skeleton of the black coral Cirrhipathes sp. (antipatharia). Mar Drugs. 2020;18:297.23. Machałowski T, Wysokowski M, Tsurkan MV, Galli R, Schimpf C, Rafaja D, et al. Spider chitin: an ultrafast microwave-assisted method for chitin isolation from Caribena versicolor spider molt cuticle. Molecules. 2019;24:3736.24. Kertmen A, Ehrlich H. Patentology of chitinous biomaterials. Part I: chitin. Carbohydr Polym. 2022;282:119102.25. Kertmen A, Dziedzic I, Ehrlich H. Patentology of chitinous biomaterials. Part II: chitosan. Carbohydr Polym. 2013;301:120224.26. Schleuter D, Günther A, Paascha S, Ehrlicha H, Kljajic Z, Hanke T, et al. Chitinbased renewable materials from marine sponges for uranium adsorption. Carbohydr Polym. 2013;92:712.27. Machałowski T, Wysokowski M, Petrenko I, Fursov A, Rahimi-Nasrabadi M, Amro MM, et al. Naturally pre-designed biomaterials: spider molting cuticle as a functional crude oil sorbent. J Environ Manag. 2020;261:110218.28. Liu Y, Liu J, Song P. Recent advances in polysaccharide-based carbon aerogels for environmental remediation and sustainable energy. Sust Mat Technol. 2021;27:e00240.29. Sun HY, Xu Z, Gao C. Multifunctional, ultra-flyweight synergistically assembled carbon aerogels. Adv Mater. 2013;25:2554.30. Sirajuheen P, Poovathumkuzhi NC, Vigneshwaran S, Chelaveettil BM, Meenakshi S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water d a comprehensive review. Carbohydr Polym. 2021;273:118604.31. Dotto GL, Pinto LAA. Adsorption of food dyes onto chitosan: optimization process and kinetic. Carbohydr Polym. 2011;84:231.32. Ahmed MJ, Hameed BH, Hummadi EH. Review on recent progress in chitosan/ chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydr Polym. 2020;247:116690.33. Vasylyeva H, Mironyuk I, Mykytyn I, Savka K. Equilibrium studies of yttrium adsorption from aqueous solutions by titanium dioxide. Appl Radiat Isot. 2021;168:109473.34. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraj an JC, Anastopoulos I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq. 2019;273: 425.35. Bonilla-Petriciolet A, Mendoza-Castillo DI, Dotto GL, Duran-Valle CJ. Adsorption in water treatment, reference module in chemistry. In: Molecular Sciences and chemical engineering. Amsterdam: Elsevier; 2019.36. Wang Z, Kang SB, Won SW. Selective adsorption of palladium(II) from aqueous solution using epichlorohydrin crosslinked polyethylenimine-chitin adsorbent: batch and column studies. J Environ Chem Eng. 2021;9:105058.37. Chen H, Liu L, Chen F, Fan Y, Yong Q. Re-dispersible chitin nanofibrils with improved stability in green solvents for fabricating hydrophobic aerogels. Carbohydr Polym. 2022;283:119138.38. Gonzalez-Hourcade M, dos Reis GS, Grimm A, Dinh VM, Lima EC, Larsson SH, et al. Microalgae biomass as a sustainable precursor to produce nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous media. J Clean Prod. 2022;348:131280.39. Guy M, Mathieu M, Anastopoulos IP, Martínez MG, Rousseau F, Dotto GL, et al. Process parameters optimization, characterization, and application of KOHactivated Norway Spruce Bark graphitic biochars for efficient azo dye adsorption. Molecules. 2022;27:456.40. Chen X, Chew SL, Kerton FM, Yan N. Direct conversion of chitin into a Ncontaining furan derivative. Green Chem. 2014;16:2204.41. Osorio-Madrazo A, David L, Trombotto S, Lucas JM, Peniche-Covas C, Domard A. Kinetics study of the solid-state acid hydrolysis of chitosan: evolution of the crystallinity and macromolecular structure. Biomacromolecules. 2010;11:1376.42. Ding B, Cai J, Huang J, Zhang L, Chen Y, Shi X, et al. Facile preparation of robust and biocompatible chitin aerogels. J Mater Chem. 2012;22:5801.43. Zhang X, Elsayed I, Navarathna C, Schueneman GT, Hassan EB. Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification. ACS Appl Mater Interfaces. 2019;11:50.44. Liang CL, Shen JL. Removal of yttrium from rare-earth wastewater by Serratia marcescens: biosorption optimization and mechanisms studies. Sci Rep. 2022;12:4861.45. Wang C, Wang H. Carboxyl functionalized Cinnamomum camphora for removal of heavy metals from synthetic wastewater contribution to sustainability in agroforestry. J Clean Prod. 2018;184:921.46. dos Reis GS, Larsson SH, Thyrel M, Pham TN, Lima EC, de Oliveira HP, et al. Preparation and application of efficient biobased carbon adsorbents prepared from spruce bark residues for efficient removal of reactive dyes and colors from synthetic effluents. Coatings. 2021;11:772.47. Cunha MR, Lima EC, Lima DR, da Silva RS, Thue PS, Seliem MK, et al. Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: use of activated carbon derived from Butia catarinensis. J Environ Chem Eng. 2012;8:1.48. Teixeira RA, Lima EC, Benetti AD, Thue PS, Cunha MR, Cimirro NFGM, et al. Preparation of hybrids of wood sawdust with 3-aminopropyltriethoxysilane, Application as an adsorbent to remove Reactive Blue 4 dye from wastewater efuents. J Taiwan Inst Chem Eng. 2021;125:141.49. Zulfikar MA, Zarlina R, Handayani N, Alni A, Wahyuningrum D. Separation of yttrium from aqueous solution using ionic imprinted polymers. Russ J Non-Ferr. 2017;58:614.50. Wang J. Adsorption of aqueous neodymium, europium, gadolinium, terbium, and yttrium ions onto nZVI-montmorillonite: kinetics, thermodynamic mechanism, and the influence of coexisting ions. Environ Sci Pollut Res. 2018;25:33521.51. Dubey SS, Grandhi S. Sorption studies of yttrium (III) ions on surfaces of nanothorium (IV) oxide and nano-zirconium (IV) oxide. Inter J Environ Sci Technol. 2017;16:59.52. Qiu S, Zhao Z, Sun X. Development of Magnetic Silica Hybrid Material with P507 for Rare Earth Adsorption. J Chem Eng Data 1016;62:469.53. Smith YR, Bhattacharyya D, Willhard T, Misra M. Adsorption of aqueous rare earth elements using carbon black derived from recycled tires. Chem Eng J. 2016;296:102.54. Ashour RM, El-Sayed R, Abdel-Magied AF, Adbel-khalek AA, Ali MM, Forsberg K, et al. Selective separation of rare earth ions from aqueous solution using functionalized magnetite nanoparticles: kinetic and thermodynamic studies. Chem Eng J. 2017;327:286.55. Kusrini E, Usman A, Sani FA, Wilson LD, Abdullah MAA. Simultaneous adsorption of lanthanum and yttrium from aqueous solution by durian rind biosorbent. Environ Monit Assess. 2019;191:488.56. Cimirro NFGM, Lima EC, Cunha MR, Thue PS, Grimm A, dos Reis GS, et al. Removal of diphenols using pine biochar. Kinetics, equilibrium, thermodynamics, and mechanism of uptake. J Mol Liq. 2022;364:119979.57. dos Reis GS, Pinto D, Lima EC, Knani L, Grimm A, Silva LFO, et al. Lanthanum uptake from water using chitosan with different configurations. React Funct Polym. 2022;180:105395.58. Duan Y, Freyburger A, Kunz W, Zollfrank C. Lignin/chitin films and their adsorption characteristics for heavy metal ions. ACS Sustainable Chem Eng. 2018;6:6965.59. Gerente C, Lee VKC, Le Cloirec P, McKay G. Application of chitosan for the removal of metals from wastewaters by adsorptionemechanisms and models review. Crit Rev Environ Sci Technol. 2007;37:41.60. Wang N, Xu X, Li H, Yuan L, Yu H. Enhanced selective adsorption of Pb(II) from aqueous solutions by one-pot synthesis of xanthate-modified chitosan sponge: behaviors and mechanisms. Ind Eng Chem Res. 2016;55:12222.61. Javadian H, Taghavi M, Ruiz M, Tyagi I, Farsadrooh M, Sastre AM. Adsorption of neodymium, terbium and dysprosium using a synthetic polymer-based magnetic adsorbent. J Rare Earths. 2023;41(11):1796.62. Li W, Huang L, Xiao B, Duan X, Li H, Li L, et al. Efficient and selective recovery of Gd(III) via polyethyleneimine modification of lanthanum-based metaleorganic frameworks. J Rare Earths. 2024;42(1):210.63. Zhi H, Ni S, Su X, Xie W, Zhang H, Sun X. Separation and recovery of rare earth from waste nickel-metal hydride batteries by phosphate based extractionprecipitation. J Rare Earths. 2022;40:974.785775442Rare earthsSustainable materialChitin powderChitin porous aerogelYttrium adsorption and recoveryPublicationORIGINALAdsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel.pdfAdsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel.pdfArtículoapplication/pdf1639477https://repositorio.cuc.edu.co/bitstreams/1b1e3d55-0a91-40fd-9226-0b48769e95e3/download517bb8c1dc9370982e22468ef47fbbe3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/9b27ffb8-b75d-4632-930d-e1a9028ccf49/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTAdsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel.pdf.txtAdsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel.pdf.txtExtracted texttext/plain43708https://repositorio.cuc.edu.co/bitstreams/ba3a4350-e91e-4c36-91bf-7821cf6ba753/download4abab383ec4d66605dbb5346d6267fa9MD53THUMBNAILAdsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel.pdf.jpgAdsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel.pdf.jpgGenerated Thumbnailimage/jpeg16330https://repositorio.cuc.edu.co/bitstreams/d9d8eb30-244b-44c2-abb8-4994e5a5cf67/downloadc1c6c6a1b693c7c0c6b54bacd1b977ccMD5411323/13315oai:repositorio.cuc.edu.co:11323/133152024-09-17 14:14:45.627https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 Chinese Society of Rare Earths. Published by Elsevier B.V. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=