Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel

Chitin powder and chitin-aerogel were prepared from shrimp wastes and used to uptake Y3+ from aqueous solutions and concentrate this rare earth element from phosphogypsum (PG). Chitin aerogel displays a specific surface area of 945 m2/g, while chitin powder is 3.6 m2/g, which largely influences its...

Full description

Autores:
dos Reis, Glaydson S.
Pinto, Diana
Lütke, Sabrina F.
Lima, Éder C.
Silva Oliveira, Luis Felipe
De Brum, Irineu A.S.
Dotto, Guilherme Luiz
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13315
Acceso en línea:
https://hdl.handle.net/11323/13315
https://repositorio.cuc.edu.co/
Palabra clave:
Rare earths
Sustainable material
Chitin powder
Chitin porous aerogel
Yttrium adsorption and recovery
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Description
Summary:Chitin powder and chitin-aerogel were prepared from shrimp wastes and used to uptake Y3+ from aqueous solutions and concentrate this rare earth element from phosphogypsum (PG). Chitin aerogel displays a specific surface area of 945 m2/g, while chitin powder is 3.6 m2/g, which largely influences its adsorption ability. Regarding the adsorption in synthetic solutions, the effect of pH on Y3+ removal is strong for chitin powder adsorbent. In contrast, no big pH influence was detected for chitin aerogel. Electrostatic interactions and chelation can highlight the proposed mechanism of Y3+ on chitin adsorbents for the powder and aerogel. Furthermore, in addition to these interactions, pore filling/pore diffusion is the main mechanism of Y3+ removal in the chitin aerogel. Chitin aerogel is efficient in concentrating 8 times the Y3+ from PG, a very complex matrix. The complex chitin aerogel-Y3+ can be a secondary source of rare earth elements for other applications.