Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real

Introduction− In this paper, the Real-time Hybrid Simulation (RTHS) of a Non-linear Tuned Mass Damper (NTMD) is described, and compares the results with those obtained from conventional experimental tests of a shear, single-storey structure with the NTMD. Objective− The objetive of this article is t...

Full description

Autores:
RIASCOS GONZALEZ, CARLOS ANDRÉS
Thomson, Peter
Dyke, Shirley
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5806
Acceso en línea:
http://hdl.handle.net/11323/5806
https://doi.org/10.17981/ingecuc.15.2.2019.02
https://repositorio.cuc.edu.co/
Palabra clave:
Control estructural
Amortiguador no lineal de masa sintonizado
Simulación híbrida en tiempo real
Mesa vibratoria
Interacción amortiguador-estructura
Structural control
Non-linear tuned mass damper
Real-time hybrid simulation
Shaking table
Damper-structure interaction
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_c70eb55afdeadb510efbd576906983d0
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5806
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
dc.title.translated.spa.fl_str_mv Performance evaluation of a non-linear tuned mass damper through real-time hybrid simulation
title Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
spellingShingle Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
Control estructural
Amortiguador no lineal de masa sintonizado
Simulación híbrida en tiempo real
Mesa vibratoria
Interacción amortiguador-estructura
Structural control
Non-linear tuned mass damper
Real-time hybrid simulation
Shaking table
Damper-structure interaction
title_short Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
title_full Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
title_fullStr Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
title_full_unstemmed Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
title_sort Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
dc.creator.fl_str_mv RIASCOS GONZALEZ, CARLOS ANDRÉS
Thomson, Peter
Dyke, Shirley
dc.contributor.author.spa.fl_str_mv RIASCOS GONZALEZ, CARLOS ANDRÉS
Thomson, Peter
Dyke, Shirley
dc.subject.proposal.spa.fl_str_mv Control estructural
Amortiguador no lineal de masa sintonizado
Simulación híbrida en tiempo real
Mesa vibratoria
Interacción amortiguador-estructura
topic Control estructural
Amortiguador no lineal de masa sintonizado
Simulación híbrida en tiempo real
Mesa vibratoria
Interacción amortiguador-estructura
Structural control
Non-linear tuned mass damper
Real-time hybrid simulation
Shaking table
Damper-structure interaction
dc.subject.proposal.eng.fl_str_mv Structural control
Non-linear tuned mass damper
Real-time hybrid simulation
Shaking table
Damper-structure interaction
description Introduction− In this paper, the Real-time Hybrid Simulation (RTHS) of a Non-linear Tuned Mass Damper (NTMD) is described, and compares the results with those obtained from conventional experimental tests of a shear, single-storey structure with the NTMD. Objective− The objetive of this article is to evaluate the effectiveness of an RTHS in estimating the performance of an NTMD. Methodology− The methodology consisted of the following three stages: main structure identification, NTMD design, and experimental evaluation of the structure-NTMD system. For the third stage, RTHS and vibrating table tests were used. Results− The results of the vibrating table tests showed that the NTMD reduced 77% and 63% of the peak accelerations and RMS of the main structure, with respect to the structure without control. The values of these reductions obtained with RTHS were 73% and 63%, respectively. The precision indices of the transfer system corresponded to a generalized amplitude of 1.01 and a delay of 2 ms. Conclusions− The NTMD, with a mass ratio of 10%, achieved reductions of more than 60% of the structural response. RTHS and the vibrating table test demonstrated that the NTMDstructure system had only one peak in frequency response. The noise in the RTHS feedback increased the degree of damping of the controlled structure. Finally, the experimental results demonstrated how RTHS is a technique that effectively predicts the RMS acceleration of the structure-NTMD system and can slightly overestimate its peak acceleration.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-09-13
dc.date.accessioned.none.fl_str_mv 2020-01-10T22:10:03Z
dc.date.available.none.fl_str_mv 2020-01-10T22:10:03Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv C. Riascos-González; P. Thomson; S. Dyke “Evaluación del Desempeño de un Amortiguador de Masa Sintonizado no Lineal Mediante Simulaciones Híbridas en Tiempo Real,” INGE CUC, vol. 15, no. 2, pp. 11-22, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.02
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/5806
dc.identifier.url.spa.fl_str_mv https://doi.org/10.17981/ingecuc.15.2.2019.02
dc.identifier.doi.spa.fl_str_mv 10.17981/ingecuc.15.2.2019.02
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.pissn.none.fl_str_mv 0122-6517
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv C. Riascos-González; P. Thomson; S. Dyke “Evaluación del Desempeño de un Amortiguador de Masa Sintonizado no Lineal Mediante Simulaciones Híbridas en Tiempo Real,” INGE CUC, vol. 15, no. 2, pp. 11-22, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.02
10.17981/ingecuc.15.2.2019.02
2382-4700
Corporación Universidad de la Costa
0122-6517
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/5806
https://doi.org/10.17981/ingecuc.15.2.2019.02
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartofseries.spa.fl_str_mv INGE CUC; Vol. 15, Núm. 2 (2019)
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
INGE CUC
dc.relation.references.spa.fl_str_mv [1] J. A. Oviedo and M. D. P. Duque, “Status of seismic response control techniques in Colombia,” Rev. EIA, vol. 2009, no. 12, pp. 113–124, Jan. 2009.
[2] A. Filiatrault and C. Christopoulos, Principles of passive supplemental damping and seismic isolation. IUSS Press, Pavia, Italy, 2006.
[3] C. Sun, S. Nagarajaiah and A. J. Dick, “Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel,” Nonlinear Dyn., vol 78, no. 4, pp. 2699– 2715, Aug. 2014. https://doi.org/10.1007/s11071-014- 1619-3
[4] G. Gatti, “Fundamental insight on the performance of a nonlinear tuned mass damper,” Meccanica, vol. 53, no. 1–2, pp. 111–123, Jul. 2018. https://doi.org/10.1007/s11012-017-0723-0
[5] V. Gattulli and A. Luongo, “Nonlinear tuned mass damper for self-excited oscillations,” Wind Struct., vol. 7, no. 4, pp. 251–264, Aug. 2004. https://doi.org/10.12989/was.2004.7.4.251
[6] Y. R. Wang, C. K. Feng and S. Y. Chen, “Damping effects of linear and nonlinear tuned mass dampers on nonlinear hinged-hinged beam,” J. Sound Vib., vol. 430, pp. 150–173, Sep. 2018. https://doi.org/10.1016/j. jsv.2018.05.033
[7] b. Farshi and A. Assadi, “Development of a chaotic nonlinear tuned mass damper for optimal vibration response,” Commun. Nonlinear Sci. Numer. Simul., vol. 16, no. 11, pp. 4514–4523, Nov. 2011. https://doi. org/10.1016/j.cnsns.2011.02.011
[8] K.-C. Chen, J.-H. Wang, b.-S. Huang, C.-C. Liu, and W.-G. Huang, “Vibrations of the TAIPEI 101 skyscraper caused by the 2011 Tohoku earthquake, Japan,” Earth, Planets Sp., vol. 64, no. 12, pp. 1277–1286, Jan. 2013.
[9] P. V. b. Guimarães, M. V. G. de Morais and S. M. Avila, “Tuned Mass Damper Inverted Pendulum to Reduce Offshore Wind Turbine Vibrations,” in Vibration Engineering and Technology of Machinerym, J. K. Sinha, Ed., Mánchester: University of Manchester, UK., 2015, pp. 379–388. https://doi.org/10.1007/978-3-319-099187_34
[10] G. Mosqueda, b. Stojadinovic and S. A. Mahin, “Energy-based procedure for monitoring experimental errors in hybrid simulations,” in 8NCEE, 100th Anniversary Earthquake Conference, San Francisco, CA, Apr. 18–22 2006, pp. 1535–1544
[11] G. Mosqueda, b. Stojadinovic and S. A. Mahin, “Realtime error monitoring for hybrid simulation. Part I: methodology and experimental verification,” J. Struct. Eng., vol. 133, no. 8, pp. 1100–1108, Aug. 2007. https:// doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1100)
[12] A. Maghareh, A. I. Ozdagli and S. J. Dyke, “Modeling and implementation of distributed real-time hybrid simulation,” in NCEE 2014, 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, Anchorage, Alaska, Jul. 21–25, 2014. https://doi.org/10.4231/D32B8VC4F
[13] Y. Qian, G. Ou, A. Maghareh and S. J. Dyke, “Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation,” Mech. Syst. Signal Process., vol. 48, no. 1–2, pp. 260–273, Oct. 2014. https:// doi.org/10.1016/j.ymssp.2014.03.001
[14] M. L. brodersen, G. Ou, J. Høgsberg and S. Dyke, “Analysis of hybrid viscous damper by real time hybrid simulations,” Eng. Struct., vol. 126, pp. 675–688, Nov. 2016. https://doi.org/10.1016/j.engstruct.2016.08.020
[15] R. zhang, P. V Lauenstein and b. M. Phillips, “Real-time hybrid simulation of a shear building with a uni-axial shake table,” Eng. Struct., vol. 119, pp. 217–229, Jul. 2016. https://doi.org/10.1016/j.engstruct.2016.04.022
[16] J. T. Wang, Y. Gui, F. Zhu, F. Jin and M. X. Zhou, “Real-time hybrid simulation of multi-story structures installed with tuned liquid damper,” Struct. Control Heal. Monit., vol. 23, no. 7, pp. 1015–1031, Dec. 2016. https:// doi.org/10.1002/stc.1822
[17] F. zhu, J. T. Wang, F. Jin and L. Q. Lu, “Real-time hybrid simulation of full-scale tuned liquid column dampers to control multi-order modal responses of structures,” Eng. Struct., vol. 138, pp. 74–90, May. 2017. https://doi. org/10.1016/j.engstruct.2017.02.004
[18] C. Chen, J. M. Ricles, T. L. Karavasilis, Y. Chae and R. Sause, “Evaluation of a real-time hybrid simulation system for performance evaluation of structures with rate dependent devices subjected to seismic loading,” Eng. Struct., vol. 35, pp. 71–82, Feb. 2012. https://doi. org/10.1016/j.engstruct.2011.10.006
[19] M. S. Williams and A. blakeborough, “Laboratory testing of structures under dynamic loads: An introductory review,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 359, no. 1786. pp. 1651–1669, Sep. 2001. https://doi. org/10.1098/rsta.2001.0860
[20] W. J. Chung, C. b. Yun, N. S. Kim and J. W. Seo, “Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures,” Eng. Struct., vol. 21, no. 4, pp. 365–379, Apr. 1999. https://doi.org/10.1016/S0141-0296(97)00211-3
[21] G. Ou, S. J. Dyke and A. Prakash, “Real time hybrid simulation with online model updating: An analysis of accuracy,” Mech. Syst. Signal Process., vol. 84, Part. B. pp. 223–240, Feb. 2017. https://doi.org/10.1016/j.ymssp.2016.06.015
[22] X. Gao, N. Castaneda and S. J. Dyke, “Real time hybrid simulation: From dynamic system, motion control to experimental error,” Earthq. Eng. Struct. Dyn., vol. 42, no. 6, pp. 815–832, Aug. 2013. https://doi.org/10.1002/ eqe.2246
[23] G. Ou, A. Prakash and S. Dyke, “Modified Runge-Kutta Integration Algorithm for Improved Stability and Accuracy in Real Time Hybrid Simulation,” J. Earthq. Eng., vol. 19, no. 7, pp. 1112–1139, Jun. 2015. https://doi.org/1 0.1080/13632469.2015.1027018.
[24] G. Ou, A. I. Ozdagli, S. J. Dyke and b. Wu, “Robust integrated actuator control: Experimental verification and real-time hybrid-simulation implementation,” Earthq. Eng. Struct. Dyn., vol. 44, no. 3, pp. 441–460, Oct. 2015. https://doi.org/10.1002/eqe.2479
[25] A. Friedman et al., “Large-scale real-time hybrid simulation for evaluation of advanced damping system performance,” J. Struct. Eng., vol. 141, no. 6, p. 04014150, Jul. 2015. https://doi.org/10.1061/(ASCE)ST.1943-541X. 0001093
[26] C. Riascos, J. Marulanda and P. Thomson, “Semi-active tuned liquid column damper implementation with realtime hybrid simulations,” Active and Passive Smart Structures and Integrated Systems 2016, vol. 9799, p. 979919, Apr. 2016. https://doi.org/10.1117/12.2220004
[27] G. Mosqueda, B. Stojadinović and S. A. Mahin, “Implementation and accuracy of continuous hybrid simulation with geographically distributed substructures,” Earthq. Eng. Res. Center, University of California, berkeley, CA, Tech. Rep. UCB/EERC, 2005.
[28] R. Christenson et al., “Hybrid Simulation: A Discussion of Current Assessment Measures,” Earthq. Eng. Res., NSF, NEES, West Lafayette, Indiana, Tech. Rep. Cmmi, 2014.
[29] A. Y. Tuan and G. Q. Shang, “Vibration control in a 101-storey building using a tuned mass damper,” J. Appl. Sci. Eng., vol. 17, no. 2, pp. 141–156, Jan. 2014. https:// doi.org/10.6180/jase.2014.17.2.05
[30] R. N. Jabary and G. S. P. Madabhushi, “Tuned Mass Damper Positioning Effects on the Seismic Response of a Soil-MDOF-Structure System,” J. Earthq. Eng., vol. 22, no. 2, pp. 281–302, Jan. 2018. https://doi.org/10.1080/136 32469.2016.1224743
[31] J. L. Almazán, J. C. De la Llera, J. A. Inaudi, D. LópezGarcía and L. E. Izquierdo, “A bidirectional and homogeneous tuned mass damper: A new device for passive control of vibrations,” Eng. Struct., vol. 29, no. 7, pp. 1548–1560, Jul. 2007. https://doi.org/10.1016/j.engstruct.2006.09.005
[32] F. Weber, C. Boston and M. Maślanka, “An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper,” Smart Mater. Struct., vol. 20, no. 1, Dec. 2011. https://doi. org/10.1088/0964-1726/20/1/015012
[33] D. C. Johnson, “Mechanical Vibrations,” Nature, vol. 169, no. 641, pp. 271–288, Abr. 1952. https://doi. org/10.1038/169641b0
[34] T. T. Soong and G. F. Dargush, Passive energy dissipation systems in structural engineering, New York, USA: MCEER, 1997.
dc.relation.citationendpage.none.fl_str_mv 22
dc.relation.citationstartpage.none.fl_str_mv 11
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.ispartofjournalabbrev.spa.fl_str_mv INGE CUC
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv INGE CUC
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1963
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/5806/1/Evaluaci%c3%b3n%20del%20desempe%c3%b1o%20de%20un%20amortiguador%20de%20masa%20sintonizado%20no%20lineal%20mediante%20simulaciones%20h%c3%adbridas%20en%20tiempo%20real.pdf
https://repositorio.cuc.edu.co/bitstream/11323/5806/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/5806/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/5806/5/Evaluaci%c3%b3n%20del%20desempe%c3%b1o%20de%20un%20amortiguador%20de%20masa%20sintonizado%20no%20lineal%20mediante%20simulaciones%20h%c3%adbridas%20en%20tiempo%20real.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/5806/6/Evaluaci%c3%b3n%20del%20desempe%c3%b1o%20de%20un%20amortiguador%20de%20masa%20sintonizado%20no%20lineal%20mediante%20simulaciones%20h%c3%adbridas%20en%20tiempo%20real.pdf.txt
bitstream.checksum.fl_str_mv 6c2390c24467255cd46b9841ef8f4140
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
0f09910581002574dc073a4a14671ff0
dfd16b34e80a8765890d934713cb3ec6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400160938524672
spelling RIASCOS GONZALEZ, CARLOS ANDRÉS176f1d88ef885544473b42ed31fbe615Thomson, Peter98c0262866fbfb9b3fa43565109699f3Dyke, Shirleyd09ad12401463137900ab6a4ff1456672020-01-10T22:10:03Z2020-01-10T22:10:03Z2019-09-13C. Riascos-González; P. Thomson; S. Dyke “Evaluación del Desempeño de un Amortiguador de Masa Sintonizado no Lineal Mediante Simulaciones Híbridas en Tiempo Real,” INGE CUC, vol. 15, no. 2, pp. 11-22, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.02http://hdl.handle.net/11323/5806https://doi.org/10.17981/ingecuc.15.2.2019.0210.17981/ingecuc.15.2.2019.022382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introduction− In this paper, the Real-time Hybrid Simulation (RTHS) of a Non-linear Tuned Mass Damper (NTMD) is described, and compares the results with those obtained from conventional experimental tests of a shear, single-storey structure with the NTMD. Objective− The objetive of this article is to evaluate the effectiveness of an RTHS in estimating the performance of an NTMD. Methodology− The methodology consisted of the following three stages: main structure identification, NTMD design, and experimental evaluation of the structure-NTMD system. For the third stage, RTHS and vibrating table tests were used. Results− The results of the vibrating table tests showed that the NTMD reduced 77% and 63% of the peak accelerations and RMS of the main structure, with respect to the structure without control. The values of these reductions obtained with RTHS were 73% and 63%, respectively. The precision indices of the transfer system corresponded to a generalized amplitude of 1.01 and a delay of 2 ms. Conclusions− The NTMD, with a mass ratio of 10%, achieved reductions of more than 60% of the structural response. RTHS and the vibrating table test demonstrated that the NTMDstructure system had only one peak in frequency response. The noise in the RTHS feedback increased the degree of damping of the controlled structure. Finally, the experimental results demonstrated how RTHS is a technique that effectively predicts the RMS acceleration of the structure-NTMD system and can slightly overestimate its peak acceleration.Introducción− En este artículo se describe la Simulación Híbrida en Tiempo Real (RTHS) de un Amortiguador no Lineal de Masa Sintonizado (NTMD) y se comparan los resultados con los obtenidos de ensayos experimentales convencionales de una estructura a cortante, de un piso, con el NTMD. Objetivo− El objetivo de este artículo es valuar la efectividad de una RTHS para estimar el desempeño de un NTMD. Metodología− La metodología consistió de las siguientes tres etapas: identificación de la estructura principal, diseño del NTMD y evaluación experimental del sistema estructura-NTMD. Para la tercera etapa, se utilizaron RTHS y ensayos sobre mesa vibratoria. Resultados− Los resultados de los ensayos en mesa vibratoria demostraron que el NTMD redujo el 77% y 63% de las aceleraciones pico y RMS de la estructura principal, con respecto a la estructura sin control. Los valores de estas reducciones obtenidos con RTHS fueron 73% y 63%, respectivamente. Los índices de precisión del sistema de transferencia correspondieron a una amplitud generalizada de 1.01 y un retraso de 2 ms. Conclusiones− El NTMD, con una razón de masas del 10%, alcanzó reducciones superiores al 60% de la respuesta estructural. La RTHS y el ensayo de mesa vibratoria demostraron que el sistema estructura-NTMD tuvo solo un pico en la respuesta en frecuencia. El ruido en la retroalimentación de la RTHS aumentó el grado de amortiguamiento de la estructura controlada. Finalmente, los resultados experimentales demostraron como la RTHS es una técnica que predice efectivamente la aceleración RMS del sistema estructura-NTMD y puede sobreestimar ligeramente su aceleración pico.12 páginasapplication/pdfspaCorporación Universidad de la CostaINGE CUC; Vol. 15, Núm. 2 (2019)INGE CUCINGE CUC[1] J. A. Oviedo and M. D. P. Duque, “Status of seismic response control techniques in Colombia,” Rev. EIA, vol. 2009, no. 12, pp. 113–124, Jan. 2009.[2] A. Filiatrault and C. Christopoulos, Principles of passive supplemental damping and seismic isolation. IUSS Press, Pavia, Italy, 2006.[3] C. Sun, S. Nagarajaiah and A. J. Dick, “Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel,” Nonlinear Dyn., vol 78, no. 4, pp. 2699– 2715, Aug. 2014. https://doi.org/10.1007/s11071-014- 1619-3[4] G. Gatti, “Fundamental insight on the performance of a nonlinear tuned mass damper,” Meccanica, vol. 53, no. 1–2, pp. 111–123, Jul. 2018. https://doi.org/10.1007/s11012-017-0723-0[5] V. Gattulli and A. Luongo, “Nonlinear tuned mass damper for self-excited oscillations,” Wind Struct., vol. 7, no. 4, pp. 251–264, Aug. 2004. https://doi.org/10.12989/was.2004.7.4.251[6] Y. R. Wang, C. K. Feng and S. Y. Chen, “Damping effects of linear and nonlinear tuned mass dampers on nonlinear hinged-hinged beam,” J. Sound Vib., vol. 430, pp. 150–173, Sep. 2018. https://doi.org/10.1016/j. jsv.2018.05.033[7] b. Farshi and A. Assadi, “Development of a chaotic nonlinear tuned mass damper for optimal vibration response,” Commun. Nonlinear Sci. Numer. Simul., vol. 16, no. 11, pp. 4514–4523, Nov. 2011. https://doi. org/10.1016/j.cnsns.2011.02.011[8] K.-C. Chen, J.-H. Wang, b.-S. Huang, C.-C. Liu, and W.-G. Huang, “Vibrations of the TAIPEI 101 skyscraper caused by the 2011 Tohoku earthquake, Japan,” Earth, Planets Sp., vol. 64, no. 12, pp. 1277–1286, Jan. 2013.[9] P. V. b. Guimarães, M. V. G. de Morais and S. M. Avila, “Tuned Mass Damper Inverted Pendulum to Reduce Offshore Wind Turbine Vibrations,” in Vibration Engineering and Technology of Machinerym, J. K. Sinha, Ed., Mánchester: University of Manchester, UK., 2015, pp. 379–388. https://doi.org/10.1007/978-3-319-099187_34[10] G. Mosqueda, b. Stojadinovic and S. A. Mahin, “Energy-based procedure for monitoring experimental errors in hybrid simulations,” in 8NCEE, 100th Anniversary Earthquake Conference, San Francisco, CA, Apr. 18–22 2006, pp. 1535–1544[11] G. Mosqueda, b. Stojadinovic and S. A. Mahin, “Realtime error monitoring for hybrid simulation. Part I: methodology and experimental verification,” J. Struct. Eng., vol. 133, no. 8, pp. 1100–1108, Aug. 2007. https:// doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1100)[12] A. Maghareh, A. I. Ozdagli and S. J. Dyke, “Modeling and implementation of distributed real-time hybrid simulation,” in NCEE 2014, 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, Anchorage, Alaska, Jul. 21–25, 2014. https://doi.org/10.4231/D32B8VC4F[13] Y. Qian, G. Ou, A. Maghareh and S. J. Dyke, “Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation,” Mech. Syst. Signal Process., vol. 48, no. 1–2, pp. 260–273, Oct. 2014. https:// doi.org/10.1016/j.ymssp.2014.03.001[14] M. L. brodersen, G. Ou, J. Høgsberg and S. Dyke, “Analysis of hybrid viscous damper by real time hybrid simulations,” Eng. Struct., vol. 126, pp. 675–688, Nov. 2016. https://doi.org/10.1016/j.engstruct.2016.08.020[15] R. zhang, P. V Lauenstein and b. M. Phillips, “Real-time hybrid simulation of a shear building with a uni-axial shake table,” Eng. Struct., vol. 119, pp. 217–229, Jul. 2016. https://doi.org/10.1016/j.engstruct.2016.04.022[16] J. T. Wang, Y. Gui, F. Zhu, F. Jin and M. X. Zhou, “Real-time hybrid simulation of multi-story structures installed with tuned liquid damper,” Struct. Control Heal. Monit., vol. 23, no. 7, pp. 1015–1031, Dec. 2016. https:// doi.org/10.1002/stc.1822[17] F. zhu, J. T. Wang, F. Jin and L. Q. Lu, “Real-time hybrid simulation of full-scale tuned liquid column dampers to control multi-order modal responses of structures,” Eng. Struct., vol. 138, pp. 74–90, May. 2017. https://doi. org/10.1016/j.engstruct.2017.02.004[18] C. Chen, J. M. Ricles, T. L. Karavasilis, Y. Chae and R. Sause, “Evaluation of a real-time hybrid simulation system for performance evaluation of structures with rate dependent devices subjected to seismic loading,” Eng. Struct., vol. 35, pp. 71–82, Feb. 2012. https://doi. org/10.1016/j.engstruct.2011.10.006[19] M. S. Williams and A. blakeborough, “Laboratory testing of structures under dynamic loads: An introductory review,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 359, no. 1786. pp. 1651–1669, Sep. 2001. https://doi. org/10.1098/rsta.2001.0860[20] W. J. Chung, C. b. Yun, N. S. Kim and J. W. Seo, “Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures,” Eng. Struct., vol. 21, no. 4, pp. 365–379, Apr. 1999. https://doi.org/10.1016/S0141-0296(97)00211-3[21] G. Ou, S. J. Dyke and A. Prakash, “Real time hybrid simulation with online model updating: An analysis of accuracy,” Mech. Syst. Signal Process., vol. 84, Part. B. pp. 223–240, Feb. 2017. https://doi.org/10.1016/j.ymssp.2016.06.015[22] X. Gao, N. Castaneda and S. J. Dyke, “Real time hybrid simulation: From dynamic system, motion control to experimental error,” Earthq. Eng. Struct. Dyn., vol. 42, no. 6, pp. 815–832, Aug. 2013. https://doi.org/10.1002/ eqe.2246[23] G. Ou, A. Prakash and S. Dyke, “Modified Runge-Kutta Integration Algorithm for Improved Stability and Accuracy in Real Time Hybrid Simulation,” J. Earthq. Eng., vol. 19, no. 7, pp. 1112–1139, Jun. 2015. https://doi.org/1 0.1080/13632469.2015.1027018.[24] G. Ou, A. I. Ozdagli, S. J. Dyke and b. Wu, “Robust integrated actuator control: Experimental verification and real-time hybrid-simulation implementation,” Earthq. Eng. Struct. Dyn., vol. 44, no. 3, pp. 441–460, Oct. 2015. https://doi.org/10.1002/eqe.2479[25] A. Friedman et al., “Large-scale real-time hybrid simulation for evaluation of advanced damping system performance,” J. Struct. Eng., vol. 141, no. 6, p. 04014150, Jul. 2015. https://doi.org/10.1061/(ASCE)ST.1943-541X. 0001093[26] C. Riascos, J. Marulanda and P. Thomson, “Semi-active tuned liquid column damper implementation with realtime hybrid simulations,” Active and Passive Smart Structures and Integrated Systems 2016, vol. 9799, p. 979919, Apr. 2016. https://doi.org/10.1117/12.2220004[27] G. Mosqueda, B. Stojadinović and S. A. Mahin, “Implementation and accuracy of continuous hybrid simulation with geographically distributed substructures,” Earthq. Eng. Res. Center, University of California, berkeley, CA, Tech. Rep. UCB/EERC, 2005.[28] R. Christenson et al., “Hybrid Simulation: A Discussion of Current Assessment Measures,” Earthq. Eng. Res., NSF, NEES, West Lafayette, Indiana, Tech. Rep. Cmmi, 2014.[29] A. Y. Tuan and G. Q. Shang, “Vibration control in a 101-storey building using a tuned mass damper,” J. Appl. Sci. Eng., vol. 17, no. 2, pp. 141–156, Jan. 2014. https:// doi.org/10.6180/jase.2014.17.2.05[30] R. N. Jabary and G. S. P. Madabhushi, “Tuned Mass Damper Positioning Effects on the Seismic Response of a Soil-MDOF-Structure System,” J. Earthq. Eng., vol. 22, no. 2, pp. 281–302, Jan. 2018. https://doi.org/10.1080/136 32469.2016.1224743[31] J. L. Almazán, J. C. De la Llera, J. A. Inaudi, D. LópezGarcía and L. E. Izquierdo, “A bidirectional and homogeneous tuned mass damper: A new device for passive control of vibrations,” Eng. Struct., vol. 29, no. 7, pp. 1548–1560, Jul. 2007. https://doi.org/10.1016/j.engstruct.2006.09.005[32] F. Weber, C. Boston and M. Maślanka, “An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper,” Smart Mater. Struct., vol. 20, no. 1, Dec. 2011. https://doi. org/10.1088/0964-1726/20/1/015012[33] D. C. Johnson, “Mechanical Vibrations,” Nature, vol. 169, no. 641, pp. 271–288, Abr. 1952. https://doi. org/10.1038/169641b0[34] T. T. Soong and G. F. Dargush, Passive energy dissipation systems in structural engineering, New York, USA: MCEER, 1997.2211215INGE CUCCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2INGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1963Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo realPerformance evaluation of a non-linear tuned mass damper through real-time hybrid simulationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionControl estructuralAmortiguador no lineal de masa sintonizadoSimulación híbrida en tiempo realMesa vibratoriaInteracción amortiguador-estructuraStructural controlNon-linear tuned mass damperReal-time hybrid simulationShaking tableDamper-structure interactionORIGINALEvaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real.pdfEvaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real.pdfapplication/pdf2196945https://repositorio.cuc.edu.co/bitstream/11323/5806/1/Evaluaci%c3%b3n%20del%20desempe%c3%b1o%20de%20un%20amortiguador%20de%20masa%20sintonizado%20no%20lineal%20mediante%20simulaciones%20h%c3%adbridas%20en%20tiempo%20real.pdf6c2390c24467255cd46b9841ef8f4140MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/5806/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstream/11323/5806/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAILEvaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real.pdf.jpgEvaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real.pdf.jpgimage/jpeg83515https://repositorio.cuc.edu.co/bitstream/11323/5806/5/Evaluaci%c3%b3n%20del%20desempe%c3%b1o%20de%20un%20amortiguador%20de%20masa%20sintonizado%20no%20lineal%20mediante%20simulaciones%20h%c3%adbridas%20en%20tiempo%20real.pdf.jpg0f09910581002574dc073a4a14671ff0MD55open accessTEXTEvaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real.pdf.txtEvaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real.pdf.txttext/plain51489https://repositorio.cuc.edu.co/bitstream/11323/5806/6/Evaluaci%c3%b3n%20del%20desempe%c3%b1o%20de%20un%20amortiguador%20de%20masa%20sintonizado%20no%20lineal%20mediante%20simulaciones%20h%c3%adbridas%20en%20tiempo%20real.pdf.txtdfd16b34e80a8765890d934713cb3ec6MD56open access11323/5806oai:repositorio.cuc.edu.co:11323/58062023-12-14 15:46:15.916CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=