Determinación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos

Introducción: En este proyecto se llevó a cabo una investigación experimental con el diseño, montaje y puesta en marcha de un banco de pruebas de transferencia de calor por convección.Objetivo: Determinar nuevas correlaciones estadísticas que permitan conocer los coeficientes de transferencia de cal...

Full description

Autores:
Meza Castro, Ismael Fernando
Herrera Acuña, Andrea Esther
Obregón Quiñones, Luis Guillermo
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2448
Acceso en línea:
http://hdl.handle.net/11323/2448
https://doi.org/10.17981/ingecuc.13.2.2017.01
https://repositorio.cuc.edu.co/
Palabra clave:
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id RCUC2_c6d034e259d924472fb1f169196a378b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2448
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Determinación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos
title Determinación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos
spellingShingle Determinación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos
title_short Determinación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos
title_full Determinación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos
title_fullStr Determinación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos
title_full_unstemmed Determinación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos
title_sort Determinación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos
dc.creator.fl_str_mv Meza Castro, Ismael Fernando
Herrera Acuña, Andrea Esther
Obregón Quiñones, Luis Guillermo
dc.contributor.author.spa.fl_str_mv Meza Castro, Ismael Fernando
Herrera Acuña, Andrea Esther
Obregón Quiñones, Luis Guillermo
description Introducción: En este proyecto se llevó a cabo una investigación experimental con el diseño, montaje y puesta en marcha de un banco de pruebas de transferencia de calor por convección.Objetivo: Determinar nuevas correlaciones estadísticas que permitan conocer los coeficientes de transferencia de calor por convección del aire, con mayor exactitud, en aplicaciones con diferentes configuraciones geometrías calefactoras.Metodología: Se estudiaron tres configuraciones geométricas, como lo son placa plana, cilindros y bancos de tubos en función de sus propiedades físicas a través de los números de Reynolds y Prandtl utilizando una interfaz de transmisión de datos mediante controladores Arduino® con los que se midió la temperatura del aire a través del ducto para obtener datos en tiempo real y relacionar el calor cedido del elemento calefactor al fluido y poder realizar el modelamiento matemático en un software estadístico especializado. El estudio se hizo para las tres geometrías mencionadas, una potencia por elemento calefactor y dos velocidades de salida de aire con 10 repeticiones.Resultados: Se obtuvieron tres correlaciones matemáticas con coeficientes de regresión mayores a 0.972, una para cada elemento calefactor, obteniéndose errores de predicción en los coeficientes convectivos de transferencia de calor de 7,50% para la placa plana, 2,85% para la placa cilíndrica y 1,57% para el banco de tubos.Conclusiones: Se observó que en geometrías constituidas por varios elementos individuales se logra un ajuste estadístico mucho más exacto para predecir el comportamiento de los coeficientes de calor por convección debido a que cada unidad alcanza una estabilidad en el perfil de temperatura de la superficie con mayor rapidez, otorgándole a la geometría en general una medición más precisa en los parámetros que rigen la transferencia de calor, como es en el caso de la geometría del banco de tubos.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-06-01
dc.date.accessioned.none.fl_str_mv 2019-02-13T19:21:06Z
dc.date.available.none.fl_str_mv 2019-02-13T19:21:06Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv I.F. Meza Castro, A.E. Herrera Acuña y L. G. Obregón Quiñones, “Determinación Experimental de Nuevas Correlaciones Estadísticas para el Cálculo del Coeficiente de Transferencia de Calor por Convección para Placa Plana, Cilindros y Bancos de Tubos,” INGE CUC, vol. 13, no. 2, pp. 9-17, 2017 DOI: http://dx.doi.org/10.17981/ingecuc.13.2.2017.01
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/2448
dc.identifier.url.spa.fl_str_mv https://doi.org/10.17981/ingecuc.13.2.2017.01
dc.identifier.doi.spa.fl_str_mv 10.17981/ingecuc.13.2.2017.01
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.pissn.spa.fl_str_mv 0122-6517
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv I.F. Meza Castro, A.E. Herrera Acuña y L. G. Obregón Quiñones, “Determinación Experimental de Nuevas Correlaciones Estadísticas para el Cálculo del Coeficiente de Transferencia de Calor por Convección para Placa Plana, Cilindros y Bancos de Tubos,” INGE CUC, vol. 13, no. 2, pp. 9-17, 2017 DOI: http://dx.doi.org/10.17981/ingecuc.13.2.2017.01
10.17981/ingecuc.13.2.2017.01
2382-4700
Corporación Universidad de la Costa
0122-6517
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/2448
https://doi.org/10.17981/ingecuc.13.2.2017.01
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartofseries.spa.fl_str_mv INGE CUC; Vol. 13, Núm. 2 (2017)
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
INGE CUC
dc.relation.references.spa.fl_str_mv [1] L.G. Obregón, J.C. Pertuz y R.A. Domínguez. (2017). Análisis del desempeño de una torre de enfriamiento a escala de laboratorio para diversos materiales de empaque, temperatura de entrada de agua y relación másica de flujo agua-aire. Prospectiva. [Online]. 15(a), 42-52. Disponible: http://dx.doi.org/10.15665/rp.v15i1.820
[2] E. Gutiérrez y S.L. Tolentino. (2005, Sep.). Determinación del coeficiente de convección crítico para la modificación de un sistema de enfriamiento de ánodo. Universidad, Ciencia y Tecnología. [Online]. 9(35), 147-150. Disponible: http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S1316-48212005000300005&lng=es&nrm=iso
[3] A. Naghash, S. Sattari y A. Rashidi. (2016, Sep.). Experimental assessment of convective heat transfer coefficient enhancement of nanofluids prepared from high surface area nanoporous graphene. International comunications in heat and mass transfer. [Online]. 78, 127-134. Available: http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.09.004
[4] S. Mendoza, J.C. Romero y E. Niebles. (2011, Sep.). Análisis de falla en evaporadores de placas de aluminio de sistemas de acondicionamiento de aire automotriz. INGE CUC. [Online]. 7(1), 59-74. Disponible:http://revistascientificas.cuc.edu.co/index.php/ingecuc/article/view/277
[5] Y.A. Cengel y A.J. Ghajar, Heat and mass transfer: fundamentals and applications. New York, USA: Mcgraw Hill, 2015, pp. 25-402.
[6] E. Tamayo, Y. Retirado y E. Góngora. (2014). Coeficientes de transferencia de calor experimental para el enfriamiento de licor en intercambiadores de placas. La Habana. [Online]. 17(1), 68-77. http://dx.doi.org/10.1051/epjconf/20122501036
[7] M.G. Rasul, Heat transfer calculation: industrial heat transfer calculation. New York, USA: Mcgraw Hill, 2006, pp. 17.
[8] F.P. Incropera y D.P. DeWitt, Fundamentos de Transferencia de Calor. Ciudad de México, México: Prentice Hall Hispanoamérica, 1999, pp. 17-20.
[9] F. Gonzales, “Determinación experimental de coeficiente de convección y factor de fricción de un intercambiador de placas,” Trabajo de Grado, Dep. Ing. Termi., Univ. Carlos III, Madrid, España, 2008.
[10] L. Uribe y C.A. Gómez, “Diseño y construcción de un banco de pruebas para determinar expresiones de coeficiente de transferencia de calor por convección promedio.,” Proyecto de Grado, Dep. Ing. Y Admón., Univ. Pont. Boliv., Bucaramanga, Colombia, 2008.
[11] A. Albis, I. Caicedo y P. Peña. (2009, Nov.). Determinación del Coeficiente de Transferencia de Calor a Través de una Aplicación de Computadoras. La Serena. [Online]. 21(5), 13-20. http://dx.doi.org/10.4067/S0718-07642010000500003
[12] J. Gonzales, “Determinación experimental de coeficientes de transferencia de calor para convección libre y forzada,” Tesis de Maestría, Dep. Ing. Mecá. Y Electr., Univ. Autono. N. León., San Nicolás de Garza, N.L. México, 1998.
[13] Ingeniería, Soluciones y Tecnología. (2017). RTD P100. [Online]. Disponible: http://www.teii.com.mx/RTDPT100.html
[14] Pixsys Electronics. (2016). Convertidor RTD y Termopares para cabezal DIN – Rfid (NFC). [Online]. Disponible:http://evirtual.lasalle.edu.co/info_basica/nuevos/guia/GuiaClaseNo.3.pdf
[15] Automatizanos Editorial. (2016). Medición de temperatura con RTD PT100, transmisor 4-20 mA y Arduino.[Online].Disponible:http://www.automatizanos.com/articles/2016/02/09/medicion-de-temperatura-con-rtd-pt100-transmisor-4-20-ma-y-arduino
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 13
dc.relation.ispartofjournalabbrev.spa.fl_str_mv INGE CUC
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv INGE CUC
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1499
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/2ae17c8c-d65f-483a-85f0-bad21ced896a/download
https://repositorio.cuc.edu.co/bitstreams/50e7a115-8b10-4fb9-bf58-3c0aa9038d61/download
https://repositorio.cuc.edu.co/bitstreams/b546bd06-1418-4b83-b104-2723d00b0142/download
https://repositorio.cuc.edu.co/bitstreams/e99e254a-6073-4ecd-9126-6b2aca065b68/download
bitstream.checksum.fl_str_mv e75616c506839a3ac5bb76d0b280d0b2
8a4605be74aa9ea9d79846c1fba20a33
e8273c3f55e2532a5ab1ebd0151419fb
e05319f7e3faf7bacecf6d0f30e420a1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760682910089216
spelling Meza Castro, Ismael FernandoHerrera Acuña, Andrea EstherObregón Quiñones, Luis Guillermo2019-02-13T19:21:06Z2019-02-13T19:21:06Z2017-06-01I.F. Meza Castro, A.E. Herrera Acuña y L. G. Obregón Quiñones, “Determinación Experimental de Nuevas Correlaciones Estadísticas para el Cálculo del Coeficiente de Transferencia de Calor por Convección para Placa Plana, Cilindros y Bancos de Tubos,” INGE CUC, vol. 13, no. 2, pp. 9-17, 2017 DOI: http://dx.doi.org/10.17981/ingecuc.13.2.2017.01http://hdl.handle.net/11323/2448https://doi.org/10.17981/ingecuc.13.2.2017.0110.17981/ingecuc.13.2.2017.012382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introducción: En este proyecto se llevó a cabo una investigación experimental con el diseño, montaje y puesta en marcha de un banco de pruebas de transferencia de calor por convección.Objetivo: Determinar nuevas correlaciones estadísticas que permitan conocer los coeficientes de transferencia de calor por convección del aire, con mayor exactitud, en aplicaciones con diferentes configuraciones geometrías calefactoras.Metodología: Se estudiaron tres configuraciones geométricas, como lo son placa plana, cilindros y bancos de tubos en función de sus propiedades físicas a través de los números de Reynolds y Prandtl utilizando una interfaz de transmisión de datos mediante controladores Arduino® con los que se midió la temperatura del aire a través del ducto para obtener datos en tiempo real y relacionar el calor cedido del elemento calefactor al fluido y poder realizar el modelamiento matemático en un software estadístico especializado. El estudio se hizo para las tres geometrías mencionadas, una potencia por elemento calefactor y dos velocidades de salida de aire con 10 repeticiones.Resultados: Se obtuvieron tres correlaciones matemáticas con coeficientes de regresión mayores a 0.972, una para cada elemento calefactor, obteniéndose errores de predicción en los coeficientes convectivos de transferencia de calor de 7,50% para la placa plana, 2,85% para la placa cilíndrica y 1,57% para el banco de tubos.Conclusiones: Se observó que en geometrías constituidas por varios elementos individuales se logra un ajuste estadístico mucho más exacto para predecir el comportamiento de los coeficientes de calor por convección debido a que cada unidad alcanza una estabilidad en el perfil de temperatura de la superficie con mayor rapidez, otorgándole a la geometría en general una medición más precisa en los parámetros que rigen la transferencia de calor, como es en el caso de la geometría del banco de tubos.Introduction− This project carried out an experimental research with the design, assembly and commissioning of a convection heat transfer test bench.Objective−To determine new statistical correlations that allow to know the heat transfer coefficients by air convection with greater accuracy in ap-plications with different heating geometry configurations.Methodology−Three geometric configurations, such as flat plate, cylin-ders and tube banks were studied according to their physical properties through Reynolds and Prandtl numbers, using a data transmission inter-face using Arduino® controllers Measured the air temperature through the duct to obtain real-time data and to relate the heat transferred from the heating element to the fluid and to perform mathematical modeling in spe-cialized statistical software. The study was made for the three geometries mentioned, one power per heating element and two air velocities with 10 repetitions.Results− Three mathematical correlations were obtained with regression coefficients greater than 0.972, one for each heating element, obtaining prediction errors in the heat transfer convective coefficients of 7.50% for the flat plate, 2.85% for the plate Cylindrical and 1.57% for the tube bank.Conclusions−It was observed that in geometries constituted by several individual elements, a much more accurate statistical adjustment was ob-tained to predict the behavior of the convection heat coefficients, since each unit reaches a stability in the surface temperature profile with Greater speed, giving the geometry in general, a more precise measurement in the parameters that govern the transfer of heat, as it is in the case of the ge-ometry of the tube bankMeza Castro, Ismael Fernando-ce36ba0e-f86e-4cc4-9536-50381ad832be-0Herrera Acuña, Andrea Esther-014be632-f30c-47bd-9411-c5d07496008e-0Obregón Quiñones, Luis Guillermo-3df16534-2903-4a9b-bfe0-2960775b1907-0application/pdfspaCorporación Universidad de la CostaINGE CUC; Vol. 13, Núm. 2 (2017)INGE CUCINGE CUC[1] L.G. Obregón, J.C. Pertuz y R.A. Domínguez. (2017). Análisis del desempeño de una torre de enfriamiento a escala de laboratorio para diversos materiales de empaque, temperatura de entrada de agua y relación másica de flujo agua-aire. Prospectiva. [Online]. 15(a), 42-52. Disponible: http://dx.doi.org/10.15665/rp.v15i1.820[2] E. Gutiérrez y S.L. Tolentino. (2005, Sep.). Determinación del coeficiente de convección crítico para la modificación de un sistema de enfriamiento de ánodo. Universidad, Ciencia y Tecnología. [Online]. 9(35), 147-150. Disponible: http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S1316-48212005000300005&lng=es&nrm=iso[3] A. Naghash, S. Sattari y A. Rashidi. (2016, Sep.). Experimental assessment of convective heat transfer coefficient enhancement of nanofluids prepared from high surface area nanoporous graphene. International comunications in heat and mass transfer. [Online]. 78, 127-134. Available: http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.09.004[4] S. Mendoza, J.C. Romero y E. Niebles. (2011, Sep.). Análisis de falla en evaporadores de placas de aluminio de sistemas de acondicionamiento de aire automotriz. INGE CUC. [Online]. 7(1), 59-74. Disponible:http://revistascientificas.cuc.edu.co/index.php/ingecuc/article/view/277[5] Y.A. Cengel y A.J. Ghajar, Heat and mass transfer: fundamentals and applications. New York, USA: Mcgraw Hill, 2015, pp. 25-402.[6] E. Tamayo, Y. Retirado y E. Góngora. (2014). Coeficientes de transferencia de calor experimental para el enfriamiento de licor en intercambiadores de placas. La Habana. [Online]. 17(1), 68-77. http://dx.doi.org/10.1051/epjconf/20122501036[7] M.G. Rasul, Heat transfer calculation: industrial heat transfer calculation. New York, USA: Mcgraw Hill, 2006, pp. 17.[8] F.P. Incropera y D.P. DeWitt, Fundamentos de Transferencia de Calor. Ciudad de México, México: Prentice Hall Hispanoamérica, 1999, pp. 17-20.[9] F. Gonzales, “Determinación experimental de coeficiente de convección y factor de fricción de un intercambiador de placas,” Trabajo de Grado, Dep. Ing. Termi., Univ. Carlos III, Madrid, España, 2008.[10] L. Uribe y C.A. Gómez, “Diseño y construcción de un banco de pruebas para determinar expresiones de coeficiente de transferencia de calor por convección promedio.,” Proyecto de Grado, Dep. Ing. Y Admón., Univ. Pont. Boliv., Bucaramanga, Colombia, 2008.[11] A. Albis, I. Caicedo y P. Peña. (2009, Nov.). Determinación del Coeficiente de Transferencia de Calor a Través de una Aplicación de Computadoras. La Serena. [Online]. 21(5), 13-20. http://dx.doi.org/10.4067/S0718-07642010000500003[12] J. Gonzales, “Determinación experimental de coeficientes de transferencia de calor para convección libre y forzada,” Tesis de Maestría, Dep. Ing. Mecá. Y Electr., Univ. Autono. N. León., San Nicolás de Garza, N.L. México, 1998.[13] Ingeniería, Soluciones y Tecnología. (2017). RTD P100. [Online]. Disponible: http://www.teii.com.mx/RTDPT100.html[14] Pixsys Electronics. (2016). Convertidor RTD y Termopares para cabezal DIN – Rfid (NFC). [Online]. Disponible:http://evirtual.lasalle.edu.co/info_basica/nuevos/guia/GuiaClaseNo.3.pdf[15] Automatizanos Editorial. (2016). Medición de temperatura con RTD PT100, transmisor 4-20 mA y Arduino.[Online].Disponible:http://www.automatizanos.com/articles/2016/02/09/medicion-de-temperatura-con-rtd-pt100-transmisor-4-20-ma-y-arduino213INGE CUCINGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1499Determinación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubosArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALDeterminación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos.pdfDeterminación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos.pdfapplication/pdf1077930https://repositorio.cuc.edu.co/bitstreams/2ae17c8c-d65f-483a-85f0-bad21ced896a/downloade75616c506839a3ac5bb76d0b280d0b2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/50e7a115-8b10-4fb9-bf58-3c0aa9038d61/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILDeterminación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos.pdf.jpgDeterminación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos.pdf.jpgimage/jpeg52447https://repositorio.cuc.edu.co/bitstreams/b546bd06-1418-4b83-b104-2723d00b0142/downloade8273c3f55e2532a5ab1ebd0151419fbMD54TEXTDeterminación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos.pdf.txtDeterminación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubos.pdf.txttext/plain38259https://repositorio.cuc.edu.co/bitstreams/e99e254a-6073-4ecd-9126-6b2aca065b68/downloade05319f7e3faf7bacecf6d0f30e420a1MD5511323/2448oai:repositorio.cuc.edu.co:11323/24482024-09-16 16:47:34.973open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=