Advances and future perspectives of water defluoridation by adsorption technology: a review
Fluoride contamination in water sources poses a significant challenge to human health and the environment. In recent years, adsorption technology has emerged as a promising approach for water defluoridation due to its efficiency and cost-effectiveness. This review article comprehensively explores th...
- Autores:
-
Noureddine, EL MESSAOUDI
Dison S.P., Franco
Gubernat, Sylwia
georgin, jordana
Şenol, Zeynep Mine
Ciğeroğlu, Zeynep
Allouss, Dalia
El Hajam, Maryam
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13360
- Acceso en línea:
- https://hdl.handle.net/11323/13360
https://repositorio.cuc.edu.co/
- Palabra clave:
- Adsorption technology
Advances
Fluoride
Future perspectives
Water defluoridation
Fluoride
Water defluoridation
Adsorption technology
Advances
Future perspectives
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_c67e1041f1691f50efb445fd73e8c55f |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13360 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Advances and future perspectives of water defluoridation by adsorption technology: a review |
title |
Advances and future perspectives of water defluoridation by adsorption technology: a review |
spellingShingle |
Advances and future perspectives of water defluoridation by adsorption technology: a review Adsorption technology Advances Fluoride Future perspectives Water defluoridation Fluoride Water defluoridation Adsorption technology Advances Future perspectives |
title_short |
Advances and future perspectives of water defluoridation by adsorption technology: a review |
title_full |
Advances and future perspectives of water defluoridation by adsorption technology: a review |
title_fullStr |
Advances and future perspectives of water defluoridation by adsorption technology: a review |
title_full_unstemmed |
Advances and future perspectives of water defluoridation by adsorption technology: a review |
title_sort |
Advances and future perspectives of water defluoridation by adsorption technology: a review |
dc.creator.fl_str_mv |
Noureddine, EL MESSAOUDI Dison S.P., Franco Gubernat, Sylwia georgin, jordana Şenol, Zeynep Mine Ciğeroğlu, Zeynep Allouss, Dalia El Hajam, Maryam |
dc.contributor.author.none.fl_str_mv |
Noureddine, EL MESSAOUDI Dison S.P., Franco Gubernat, Sylwia georgin, jordana Şenol, Zeynep Mine Ciğeroğlu, Zeynep Allouss, Dalia El Hajam, Maryam |
dc.subject.armarc.none.fl_str_mv |
Adsorption technology Advances Fluoride Future perspectives Water defluoridation |
topic |
Adsorption technology Advances Fluoride Future perspectives Water defluoridation Fluoride Water defluoridation Adsorption technology Advances Future perspectives |
dc.subject.proposal.eng.fl_str_mv |
Fluoride Water defluoridation Adsorption technology Advances Future perspectives |
description |
Fluoride contamination in water sources poses a significant challenge to human health and the environment. In recent years, adsorption technology has emerged as a promising approach for water defluoridation due to its efficiency and cost-effectiveness. This review article comprehensively explores the advances in water defluoridation through adsorption processes. Various adsorbents, including natural and synthetic materials, have been investigated for their efficacy in removing fluoride ions from water. The mechanisms underlying adsorption interactions are elucidated, shedding light on the factors influencing defluoridation efficiency. Moreover, the review outlines the current state of technology, highlighting successful case studies and field applications. Future perspectives in the field of water defluoridation by adsorption are discussed, emphasizing the need for sustainable and scalable solutions. The integration of novel materials, process optimization, and the development of hybrid technologies are proposed as pathways to address existing challenges and enhance the overall efficacy of water defluoridation. This comprehensive assessment of the advances and future directions in adsorption-based water defluoridation provides valuable insights for researchers, policymakers, and practitioners working towards ensuring safe and accessible drinking water for all. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-09-23T20:40:01Z |
dc.date.available.none.fl_str_mv |
2024-09-23T20:40:01Z 2025-07-01 |
dc.date.issued.none.fl_str_mv |
2024-07-01 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Noureddine El Messaoudi, Dison Stracke Pfingsten Franco, Sylwia Gubernat, Jordana Georgin, Zeynep Mine Şenol, Zeynep Ciğeroğlu, Dalia Allouss, Maryam El Hajam, Advances and future perspectives of water defluoridation by adsorption technology: A review, Environmental Research, Volume 252, Part 1, 2024, 118857, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2024.118857. |
dc.identifier.issn.spa.fl_str_mv |
0013-9351 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13360 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.envres.2024.118857 |
dc.identifier.eissn.none.fl_str_mv |
1096-0953 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Noureddine El Messaoudi, Dison Stracke Pfingsten Franco, Sylwia Gubernat, Jordana Georgin, Zeynep Mine Şenol, Zeynep Ciğeroğlu, Dalia Allouss, Maryam El Hajam, Advances and future perspectives of water defluoridation by adsorption technology: A review, Environmental Research, Volume 252, Part 1, 2024, 118857, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2024.118857. 0013-9351 10.1016/j.envres.2024.118857 1096-0953 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13360 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Environmental Research |
dc.relation.references.none.fl_str_mv |
Acosta-Herrera et al., 2021 A.A. Acosta-Herrera, V. Hernández-Montoya, F. Castillo-Borja, M.A. Pérez-Cruz, M.A. Montes-Morán, F.J. Cervantes Competitive adsorption of pollutants from anodizing wastewaters to promote water reuse J. Environ. Manag., 293 (2021), Article 112877, 10.1016/J.JENVMAN.2021.112877 Adamu et al., 2023 D.B. Adamu, E. Zereffa, T.A. Segne, M.H. Razali, B.R. Lemu Synthesis of iron-substituted hydroxyapatite nanomaterials by co-precipitation method for defluoridation Mater. Res. Express, 10 (2023), Article 45006 Adu-Boahene et al., 2023 F. Adu-Boahene, P. Boakye, F.O. Agyemang, J. Kanjua, S. Oduro-Kwarteng Understanding fluoride adsorption from groundwater by alumina modified with alum using PHREEQC surface complexation model Sci. Rep. (2023), pp. 1-19, 10.1038/s41598-023-38564-1 2023 131 13 Agostini et al., 2018 J.F. Agostini, H.C.Z.D. Toé, K.M. Vieira, S.L. Baldin, N.L.F. Costa, C.U. Cruz, L. Longo, M.M. Machado, T.R. da Silveira, P.F. Schuck, E.P. Rico Cholinergic system and oxidative stress changes in the brain of a zebrafish model Chronically exposed to ethanol Neurotox. Res., 33 (2018), pp. 749-758, 10.1007/s12640-017-9816-8 Ahamad et al., 2018 K.U. Ahamad, R. Singh, I. Baruah, H. Choudhury, M.R. Sharma Equilibrium and kinetics modeling of fluoride adsorption onto activated alumina, alum and brick powder Groundw. Sustain. Dev., 7 (2018), pp. 452-458, 10.1016/J.GSD.2018.06.005 Ahmad et al., 2022 S. Ahmad, R. Singh, T. Arfin, K. Neeti Fluoride contamination, consequences and removal techniques in water: a review Environ. Sci. Adv, 1 (2022), pp. 620-661, 10.1039/D1VA00039J Ahmadijokani et al., 2021 F. Ahmadijokani, H. Molavi, M. Rezakazemi, T.M. Aminabhavi, M. Arjmand Simultaneous detection and removal of fluoride from water using smart metal-organic framework-based adsorbents Coord. Chem. Rev. (2021), 10.1016/j.ccr.2021.214037 Al-Asheh et al., 2021 S. Al-Asheh, M. Bagheri, A. Aidan Membrane bioreactor for wastewater treatment: a review Case Stud. Chem. Environ. Eng., 4 (2021), Article 100109, 10.1016/J.CSCEE.2021.100109 Alagumuthu and Rajan, 2010 G. Alagumuthu, M. Rajan Equilibrium and kinetics of adsorption of fluoride onto zirconium impregnated cashew nut shell carbon Chem. Eng. J., 158 (2010), pp. 451-457, 10.1016/J.CEJ.2010.01.017 Amrutha et al., 2023 Amrutha, G. Jeppu, C.R. Girish, B. Prabhu, K. Mayer Multi-component adsorption isotherms: review and modeling studies Environ. Process., 10 (2023), pp. 1-52, 10.1007/S40710-023-00631-0/FIGURES/2 Aoun et al., 2018 A. Aoun, F. Darwiche, S. Al Hayek, J. Doumit The fluoride debate: the pros and cons of fluoridation Prev. Nutr. Food Sci., 23 (2018), p. 171, 10.3746/PNF.2018.23.3.171 Araga et al., 2017 R. Araga, S. Soni, C.S. Sharma Fluoride adsorption from aqueous solution using activated carbon obtained from KOH-treated jamun (Syzygium cumini) seed J. Environ. Chem. Eng., 5 (2017), pp. 5608-5616, 10.1016/J.JECE.2017.10.023 Arslan et al., 2024 D.Ş. Arslan, H. Ertap, Z.M. Şenol, N. El Messaoudi, V. Mehmeti Preparation of polyacrylamide titanium dioxide hybrid nanocomposite by direct polymerization and its applicability in removing crystal violet from aqueous solution J. Polym. Environ., 32 (2024), pp. 573-587, 10.1007/S10924-023-03004-8 Ayalew, 2023 A.A. Ayalew Comparative adsorptive performance of adsorbents developed from kaolin clay and limestone for de-fluoridation of groundwater South Afr. J. Chem. Eng., 44 (2023), pp. 1-13, 10.1016/J.SAJCE.2022.11.002 Ayaz et al., 2022 I. Ayaz, M. Rizwan, J.L. Ullman, H. Haroon, A. Qayyum, N. Ahmed, B.H. Elesawy, A.E. Askary, A.F. Gharib, K.A. Ismail Lignocellulosic based biochar adsorbents for the removal of fluoride and arsenic from aqueous solution: isotherm and kinetic modeling Polymers (2022), 10.3390/polym14040715 Bansal et al., 2023 P. Bansal, D. Mishra, A. Vijayakumar, S. Chatterjee Aluminium terephthalate (Al-BDC) based metal organic framework decorated carboxymethylated filter cloth for defluoridation application J. Environ. Chem. Eng., 110233 (2023) Baunthiyal and Ranghar, 2014 M. Baunthiyal, S. Ranghar Physiological and biochemical responses of plants under fluoride stress: an overview Fluoride, 47 (2014), pp. 287-293 Bera et al., 2023 B. Bera, S.S. Chowdhury, V.R. Sonawane, S. De High capacity aluminium substituted hydroxyapatite incorporated granular wood charcoal (Al-HApC) for fluoride removal from aqueous medium: batch and column study Chem. Eng. J., 466 (2023), Article 143264 Bhattacharya et al., 2017 P. Bhattacharya, A.C. Samal, S. Banerjee, J. Pyne, S.C. Santra Assessment of potential health risk of fluoride consumption through rice, pulses, and vegetables in addition to consumption of fluoride-contaminated drinking water of West Bengal, India Environ. Sci. Pollut. Res., 24 (2017), pp. 20300-20314, 10.1007/s11356-017-9649-2 Bhaumik and Mondal, 2016 R. Bhaumik, N.K. Mondal Optimizing adsorption of fluoride from water by modified banana peel dust using response surface modelling approach Appl. Water Sci., 6 (2016), pp. 115-135, 10.1007/S13201-014-0211-9/FIGURES/14 Bilici Baskan and Biyikli, 2021 M. Bilici Baskan, A.R. Biyikli The adsorption of fluoride from aqueous solutions by Fe, Mn, and Fe/Mn modified natural clinoptilolite and optimization using response surface methodology Water Environ. Res., 93 (2021), pp. 620-635, 10.1002/WER.1464 Borgohain et al., 2020 X. Borgohain, A. Boruah, G.K. Sarma, M.H. Rashid Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water J. Mol. Liq., 305 (2020), Article 112799, 10.1016/j.molliq.2020.112799 Brahman et al., 2014 K.D. Brahman, T.G. Kazi, J.A. Baig, H.I. Afridi, A. Khan, S.S. Arain, M.B. Arain Fluoride and arsenic exposure through water and grain crops in nagarparkar, Pakistan Chemosphere, 100 (2014), pp. 182-189, 10.1016/j.chemosphere.2013.11.035 Bustingorri et al., 2015 C. Bustingorri, K. Balestrasse, R.S. Lavado Efecto de altas concentraciones de arsénico y flúor en el suelo sobre plantas de soja Phyton, 84 (2015), pp. 407-416 Cai et al., 2012 P. Cai, H. Zheng, C. Wang, H. Ma, J. Hu, Y. Pu, P. Liang Competitive adsorption characteristics of fluoride and phosphate on calcined Mg–Al–CO3 layered double hydroxides J. Hazard Mater., 213–214 (2012), pp. 100-108, 10.1016/J.JHAZMAT.2012.01.069 Camarena-Rangel et al., 2015 N. Camarena-Rangel, A.N. Rojas Velázquez, M. del S. Santos-Díaz Fluoride bioaccumulation by hydroponic cultures of camellia (Camellia japonica spp.) and sugar cane (Saccharum officinarum spp.) Chemosphere, 136 (2015), pp. 56-62, 10.1016/j.chemosphere.2015.03.071 Cao et al., 2003 J. Cao, Y. Zhao, J. Liu, R. Xirao, S. Danzeng, D. Daji, Y. Yan Brick tea fluoride as a main source of adult fluorosis Food Chem. Toxicol., 41 (2003), pp. 535-542, 10.1016/S0278-6915(02)00285-5 Cao, Y., Kamel, M., Mohammadifard, K., Heshmati, J., A, M., Poor Heravi, M.R., Ghaffar Ebadi, A., 2021. Probing and comparison of graphene, boron nitride and boron carbide nanosheets for Flutamide adsorption: a DFT computational study. J. Mol. Liq. 343, 117487 https://doi.org/10.1016/j.molliq.2021.117487. Castro, T.F.D., Paiva, I.M., Carvalho, A.F.S., Assis, I.L., Palmieri, M.J., Andrade-Vieira, L. F., Marcussi, S., Solis-Murgas, L.D., 2018. Genotoxicity of spent pot liner as determined with the zebrafish (Danio rerio) experimental model. Environ. Sci. Pollut. Res. 25, 11527–11535. https://doi.org/10.1007/s11356-018-1404-9. Chae, G.T., Yun, S.T., Mayer, B., Kim, K.H., Kim, S.Y., Kwon, J.S., Kim, K., Koh, Y.K., 2007. Fluorine geochemistry in bedrock groundwater of South Korea. Sci. Total Environ. 385, 272–283. https://doi.org/10.1016/j.scitotenv.2007.06.038. Chen, C.-L., Shih, Y.-J., Su, J.F., Chen, K.-L., Huang, C.-P., 2022. Mesoporous zirconium pyrophosphate for the adsorption of fluoride from dilute aqueous solutions. Chem. Eng. J. 427, 132034 https://doi.org/10.1016/j.cej.2021.132034. Chen, W., Tang, H., Li, H., Zhao, Y., Wang, X., Chen, J., Chen, Z., Zhu, Y., Yang, W., 2023a. Efficient defluoridation of water by utilizing nanosized Ce-Fe bimetal oxyhydroxides encapsulated inside porous polystyrene anion exchanger. Chem. Eng. J. 461, 141820. Chen, Y., Chen, Q., Kasomo, R.M., Jin, Y., Yang, P., Zheng, H., Weng, X., Li, H., Song, S., 2023b. Adsorption of fluoride from aqueous solutions using graphene oxide composite materials at a neutral pH. J. Mol. Liq. 377, 121467 https://doi.org/ 10.1016/j.molliq.2023.121467. Chigondo, M., Paumo, H.K., Bhaumik, M., Pillay, K., Maity, A., 2018. Rapid high adsorption performance of hydrous cerium-magnesium oxides for removal of fluoride from water. J. Mol. Liq. 265, 496–509. https://doi.org/10.1016/J. MOLLIQ.2018.06.015. Chioca, L.R., Raupp, I.M., Da Cunha, C., Losso, E.M., Andreatini, R., 2008. Subchronic fluoride intake induces impairment in habituation and active avoidance tasks in rats. Eur. J. Pharmacol. 579, 196–201. https://doi.org/10.1016/j.ejphar.2007.10.019. Chirumari, K., Reddy, P.K., 2007. Dose-dependent effects of fluoride on neurochemical milieu in the hippocampus and neocortex of rat brain. Fluoride 40, 101–110. Choi, M.Y., Kang, J.K., Lee, C.G., Park, S.J., 2022. Feasibility of fluoride removal using calcined Mactra veneriformis shells: adsorption mechanism and optimization study using RSM and ANN. Chem. Eng. Res. Des. 188, 1042–1053. https://doi.org/ 10.1016/j.cherd.2022.10.031. Choong, C.E., Wong, K.T., Jang, S.B., Nah, I.W., Choi, J., Ibrahim, S., Yoon, Y., Jang, M., 2020. Fluoride removal by palm shell waste based powdered activated carbon vs. functionalized carbon with magnesium silicate: implications for their application in water treatment. Chemosphere 239, 124765. https://doi.org/10.1016/J. CHEMOSPHERE.2019.124765. Choudhary, M., Kumar, R., Neogi, S., 2020. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J. Hazard Mater. 392, 122441 https://doi.org/10.1016/j. jhazmat.2020.122441. Cigero ˘ glu, ˘ Z., El Messaoudi, N., S¸ enol, Z.M., Bas¸kan, G., Georgin, J., Gubernat, S., 2024. Clay-based nanomaterials and their adsorptive removal efficiency for dyes and antibiotics: a review. Mater. Today Sustain. 26, 100735 https://doi.org/10.1016/J. MTSUST.2024.100735. Cigero ˘ glu, ˘ Z., Kazan-Kaya, E.S., El Messaoudi, N., Fernine, Y., Am´erico-Pinheiro, J.H.P., Jada, A., 2023. Remediation of tetracycline from aqueous solution through adsorption on g-C3N4-ZnO-BaTiO3 nanocomposite: optimization, modeling, and theoretical calculation. J. Mol. Liq. 369, 120866 https://doi.org/10.1016/J. MOLLIQ.2022.120866. Costa, L.R. de C., Jurado-Davila, I.V., Oliveira, J.T. De, Nunes, K.G.P., Estumano, D.C., Oliveira, R.A. de, Carissimi, E., F´eris, L.A., 2024. Exploring key parameters in adsorption for effective fluoride removal: a comprehensive review and engineering implications. Appl. Sci. 2024 14. https://doi.org/10.3390/APP14052161, 2161 14, 2161. da Silva, A.F.V., da Silva, J., Vicente, R., Ambrosi, A., Zin, G., Di Luccio, M., de Oliveira, J.V., 2023. Recent advances in surface modification using polydopamine for the development of photocatalytic membranes for oily wastewater treatment. J. Water Process Eng. 53, 103743 https://doi.org/10.1016/j.jwpe.2023.103743. Damtie, M.M., Woo, Y.C., Kim, B., Hailemariam, R.H., Park, K.D., Shon, H.K., Park, C., Choi, J.S., 2019. Removal of fluoride in membrane-based water and wastewater treatment technologies: performance review. J. Environ. Manag. 251, 109524 https://doi.org/10.1016/J.JENVMAN.2019.109524. Das, L., Das, P., Bhowal, A., 2023. Synthesis and application of alginate-nanocellulose composite beads for defluoridation process in a batch and fluidized bed reactor. J. Environ. Manag. 344, 118569. Daverey, A., Pandey, D., Verma, P., Verma, S., Shah, V., Dutta, K., Arunachalam, K., 2019. Recent advances in energy efficient biological treatment of municipal wastewater. Bioresour. Technol. Rep. 7, 100252 https://doi.org/10.1016/J. BITEB.2019.100252. Dehghani, M.H., Karri, R.R., Lima, E.C., Mahvi, A.H., Nazmara, S., Ghaedi, A.M., Fazlzadeh, M., Gholami, S., 2020. Regression and mathematical modeling of fluoride ion adsorption from contaminated water using a magnetic versatile biomaterial & chelating agent: insight on production & experimental approaches, mechanism and effects of potential interferers. J. Mol. Liq. 315, 113653 https://doi.org/10.1016/j. molliq.2020.113653. Dehmani, Y., Franco, D.S.P., Georgin, J., Lamhasni, T., Brahmi, Y., Oukhrib, R., Mustapha, B., Moussout, H., Ouallal, H., Sadik, A., 2023. Comparison of Phenol Adsorption Property and Mechanism onto Different Moroccan Clays. Dewi, R., Shamsuddin, N., Bakar, M.S.A., Santos, J.H., Bilad, M.R., Lim, L.H., 2021. Progress in emerging contaminants removal by adsorption/membrane filtrationbased technologies: a review. Indones. J. Sci. Technol. 6, 577–618. Dhillon, A., Kumar, D., 2015. Development of a nanoporous adsorbent for the removal of health-hazardous fluoride ions from aqueous systems. J. Mater. Chem. A 3, 4215–4228. https://doi.org/10.1039/C4TA06147K. Dhillon, A., Sapna, Choudhary, B.L., Kumar, D., Prasad, S., 2018. Excellent disinfection and fluoride removal using bifunctional nanocomposite. Chem. Eng. J. 337, 193–200. https://doi.org/10.1016/J.CEJ.2017.12.030. Dhillon, A., Soni, S.K., Kumar, D., 2017. Enhanced fluoride removal performance by Ce–Zn binary metal oxide: adsorption characteristics and mechanism. J. Fluor. Chem. 199, 67–76. https://doi.org/10.1016/J.JFLUCHEM.2017.05.002. Dolejˇs, D., Baker, D.R., 2007. Liquidus equilibria in the system K2O-Na2 O-A12O3-SiO2- F2O-1 -H2O to 100 MPa: I. Silicate-fluoride liquid immiscibility in anhydrous systems. J. Petrol. 48, 785–806. https://doi.org/10.1093/petrology/egm001. Dondossola, E.R., Pacheco, S.D., Visentin, S.C., Mendes, N.V., Baldin, S.L., Bernardo, H. T., Scussel, R., Rico, E.P., 2022. Prolonged fluoride exposure alters neurotransmission and oxidative stress in the zebrafish brain. Neurotoxicology 89, 92–98. https://doi.org/10.1016/j.neuro.2022.01.008. EL Kaim Billah, R., Zaghloul, A., Ahsaine, H.A., BaQais, A., Khadoudi, I., El Messaoudi, N., Agunaou, M., Soufiane, A., Jugade, R., 2022. Methyl orange adsorption studies on glutaraldehyde cross-linking chitosan/fluorapatite-based natural phosphate composite. Int. J. Environ. Anal. Chem. https://doi.org/10.1080/ 03067319.2022.2130690. El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Fernine, Y., Bouich, A., Lacherai, A., Jada, A., 2022a. Modification of low-cost adsorbent prepared from agricultural solid waste for the adsorption and desorption of cationic dye. Emergent Mater 5, 1679–1688. https://doi.org/10.1007/S42247-022-00390-Y. El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Lacherai, A., Chegini, Z.G., Bouich, A., 2022b. Removal of Congo red from aqueous solution in single and binary mixture systems using Argan nutshell wood. Pigment Resin Technol. 51, 477–488. https://doi.org/10.1108/PRT-04-2021-0045. El Messaoudi, N., Cigero ˘ glu, ˘ Z., S¸ enol, Z.M., Bouich, A., Kazan-Kaya, E.S., Noureen, L., Am´erico-Pinheiro, J.H.P., 2024a. Green synthesis of nanoparticles for remediation organic pollutants in wastewater by adsorption. Adv. Chem. Pollution, Environ. Manag. Prot. 10, 305–345. https://doi.org/10.1016/BS.APMP.2023.06.016. El Messaoudi, N., Cigero ˘ glu, ˘ Z., S¸ enol, Z.M., El Hajam, M., Noureen, L., 2023a. A comparative review of the adsorption and photocatalytic degradation of tetracycline in aquatic environment by g-C3N4-based materials. J. Water Process Eng. 55, 104150 https://doi.org/10.1016/J.JWPE.2023.104150. El Messaoudi, N., Cigero ˘ glu, ˘ Z., S¸ enol, Z.M., Kazan-Kaya, E.S., Fernine, Y., Gubernat, S., Lopicic, Z., 2024b. Green synthesis of CuFe2O4 nanoparticles from bioresource extracts and their applications in different areas: a review. Biomass Convers. Biorefinery 2024, 1–22. https://doi.org/10.1007/S13399-023-05264-9. El Messaoudi, N., El Khomri, M., Chegini, Z.G., Bouich, A., Dbik, A., Bentahar, S., Labjar, N., Iqbal, M., Jada, A., Lacherai, A., 2022a. Dye removal from aqueous solution using nanocomposite synthesized from oxalic acid-modified agricultural solid waste and ZnFe2O4 nanoparticles. Nanotechnol. Environ. Eng. 7, 797–811. https://doi.org/10.1007/S41204-021-00173-6. El Messaoudi, N., El Khomri, M., Chlif, N., Chegini, Z.G., Dbik, A., Bentahar, S., Lacherai, A., 2021. Desorption of Congo red from dye-loaded Phoenix dactylifera date stones and Ziziphus lotus jujube shells. Groundw Sustain Dev 12, 100552. https://doi.org/10.1016/j.gsd.2021.100552. El Messaoudi, N., El Khomri, M., Dbik, A., Bentahar, S., Lacherai, A., 2016. Selective and competitive removal of dyes from binary and ternary systems in aqueous solutions by pretreated jujube shell (Zizyphus lotus). J. Dispersion Sci. Technol. 38, 1168–1174. https://doi.org/10.1080/01932691.2016.1228070. El Messaoudi, N., El Mouden, A., Fernine, Y., El Khomri, M., Bouich, A., Faska, N., Cigero ˘ glu, ˘ Z., Am´erico-Pinheiro, J.H.P., Jada, A., Lacherai, A., 2023b. Green synthesis of Ag2O nanoparticles using Punica granatum leaf extract for sulfamethoxazole antibiotic adsorption: characterization, experimental study, modeling, and DFT calculation. Environ. Sci. Pollut. Res. 30, 81352–81369. https:// doi.org/10.1007/S11356-022-21554-7 El Messaoudi, N., Mouden, A. El, Khomri, M. El, Bouich, A., Fernine, Y., Cigero ˘ glu, ˘ Z., Am´erico-Pinheiro, J.H.P., Labjar, N., Jada, A., Sillanpa¨¨ a, M., Lacherai, A., 2022b. Experimental study and theoretical statistical modeling of acid blue 25 remediation using activated carbon from Citrus sinensis leaf. Fluid Phase Equil. 563, 113585 https://doi.org/10.1016/J.FLUID.2022.113585. El Mouden, A., El Guerraf, A., El Messaoudi, N., Haounati, R., Ait El Fakir, A., Lacherai, A., 2022. Date stone functionalized with 3-aminopropyltriethoxysilane as a potential biosorbent for heavy metal ions removal from aqueous solution. Chem. Africa 5, 745–759. https://doi.org/10.1007/S42250-022-00350-3. El Mouden, A., El Messaoudi, N., El Guerraf, A., Bouich, A., Mehmeti, V., Lacherai, A., Jada, A., Pinˆe Am´erico-Pinheiro, J.H., 2023. Removal of cadmium and lead ions from aqueous solutions by novel dolomite-quartz@Fe3O4 nanocomposite fabricated as nanoadsorbent. Environ. Res. 225, 115606 https://doi.org/10.1016/J. ENVRES.2023.115606. Fako, V.E., Furgeson, D.Y., 2009. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv. Drug Deliv. Rev. 61, 478–486. https://doi. org/10.1016/j.addr.2009.03.008. Fan, J., Chen, K., Xu, J., Abm, K., Chen, Y., Chen, L., Yan, X., 2022. Physiological effects induced by aluminium and fluoride stress in tall fescue (Festuca arundinacea Schreb). Ecotoxicol. Environ. Saf. 231, 113192 https://doi.org/10.1016/J. ECOENV.2022.113192. Fiyadh, S.S., Alardhi, S.M., Al Omar, M., Aljumaily, M.M., Al Saadi, M.A., Fayaed, S.S., Ahmed, S.N., Salman, A.D., Abdalsalm, A.H., Jabbar, N.M., El-Shafi, A., 2023. A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique. Heliyon 9, e15455. https://doi.org/10.1016/J.HELIYON.2023.E15455. Fluoridation, 2015. U.S. Public health service recommendation for fluoride concentration in drinking water for the prevention of dental caries. Publ. Health Rep. 130, 318. https://doi.org/10.1177/003335491513000408. U.S.D. of H. and H.S.F.P. on C.W. Franco, Dison S.P., Georgin, J., Lima, E.C., Silva, L.F.O., 2022a. Journal of Water Process Engineering Advances made in removing paraquat herbicide by adsorption technology : a review. J. Water Process Eng. 49, 102988 https://doi.org/10.1016/j. jwpe.2022.102988. Franco, Dison S.P., Georgin, J., Netto, M.S., da Boit Martinello, K., Silva, L.F.O., 2022b. Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model. J. Mol. Liq. 356, 119021 https://doi.org/10.1016/j.molliq.2022.119021. Gao, M., Wang, W., Yang, H., Ye, B.C., 2019. Hydrothermal synthesis of hierarchical hollow hydroxyapatite microspheres with excellent fluoride adsorption property. Microporous Mesoporous Mater. 289 https://doi.org/10.1016/j. micromeso.2019.109620. Gao, Y., Li, M., Ru, Y., Fu, J., 2021. Fluoride removal from water by using micron zirconia/zeolite molecular sieve: characterization and mechanism. Groundw. Sustain. Dev. 13, 100567 https://doi.org/10.1016/J.GSD.2021.100567. Georgin, J., Franco, D.S.P., Da Boit Martinello, K., Lima, E.C., Silva, L.F.O., 2022. A review of the toxicology presence and removal of ketoprofen through adsorption technology. J. Environ. Chem. Eng. 10, 107798 https://doi.org/10.1016/j. jece.2022.107798. Georgin, J., Franco, D.S.P., Manzar, M.S., Meili, L., El Messaoudi, N., 2024. A critical and comprehensive review of the current status of 17β-estradiol hormone remediation through adsorption technology. Environ. Sci. Pollut. Res. 2024, 1–34. https://doi. org/10.1007/S11356-024-32876-Z. Georgin, J., Stracke, D., Franco, P., Sher, F., 2023. A review of the antibiotic ofloxacin : current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology. Chem. Eng. Res. Des. 193, 99–120. https://doi. org/10.1016/j.cherd.2023.03.025. Gonzalez-Aguiñaga, ˜ E., P´erez-Tavares, J.A., Patakfalvi, R., Szabo, ´ T., Ill´es, E., P´erez Ladron ´ de Guevara, H., Cardoso-Avila, P.E., Castaneda-Contreras, ˜ J., Saavedra Arroyo, Q.E., 2022. Amino acid complexes of zirconium in a carbon composite for the efficient removal of fluoride ions from water. Int. J. Environ. Res. Publ. Health. https://doi.org/10.3390/ijerph19063640. Grzegorzek, M., Majewska-Nowak, K., Ahmed, A.E., 2020. Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes. Sci. Total Environ. 722, 137681 https://doi.org/10.1016/J. SCITOTENV.2020.137681. Gubernat, S., Masłon, ´ A., Czarnota, J., Koszelnik, P., 2022. Phosphorus removal from wastewater using marl and travertine and their thermal modifications. Desalination Water Treat. 275, 35–46. https://doi.org/10.5004/dwt.2022.28529. Gubernat, S., Czarnota, J., Masłon, ´ A., Koszelnik, P., 2023a. Physicochemical properties of marl and travertine and their thermally modified forms in the perspective of phosphorus removal from wastewater. J. Ecol. Eng. 24. Gubernat, S., Czarnota, J., Masłon, ´ A., Koszelnik, P., Pękala, A., Skwarczynska-Wojsa, ´ A., 2023b. Efficiency of phosphorus removal and recovery from wastewater using marl and travertine and their thermally treated forms. J. Water Process Eng. 53, 103642 https://doi.org/10.1016/j.jwpe.2023.103642 Gubernat, S., Masłon, ´ A., Czarnota, J., Koszelnik, P., 2020. Reactive materials in the removal of phosphorus compounds from wastewater-A review. Materials 13, 3377. https://doi.org/10.3390/ma13153377 Guth, S., Hüser, S., Roth, A., Degen, G., Diel, P., Edlund, K., Eisenbrand, G., Engel, K.H., Epe, B., Grune, T., Heinz, V., Henle, T., Humpf, H.U., Jager, ¨ H., Joost, H.G., Kulling, S.E., Lampen, A., Mally, A., Marchan, R., Marko, D., Mühle, E., Nitsche, M. A., Rohrdanz, ¨ E., Stadler, R., van Thriel, C., Vieths, S., Vogel, R.F., Wascher, E., Watzl, C., Nothlings, ¨ U., Hengstler, J.G., 2020. Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Archives of Toxicology. Springer, Berlin Heidelberg. https://doi.org/10.1007/s00204-020-02725-2. Halder, S., Maiti, P., Karmakar, S., Roy, M.B., Roy, P.K., 2023. Enhanced fluoride removal from groundwater using red and white kaolinite lithomarge to develop a low cost eco-friendly defluoridation unit in rural areas of Shilabati river basin, West Bengal. J. Water Process Eng. 53, 103698. He, J., Yang, Y., Wu, Z., Xie, C., Zhang, K., Kong, L., Liu, J., 2020. Review of fluoride removal from water environment by adsorption. J. Environ. Chem. Eng. 8, 104516 https://doi.org/10.1016/J.JECE.2020.104516 He, L., Tu, C., He, S., Long, J., Sun, Ya, Sun, Yan, Lin, C., 2021. Fluorine enrichment of vegetables and soil around an abandoned aluminium plant and its risk to human health. Environ. Geochem. Health 43, 1137–1154. https://doi.org/10.1007/s10653- 020-00568-5. He, S., Ji, J., Huang, H., Xiao, B., Yi, Y., Yang, J., 2019. Experimental study on removal of high concentration fluoride wastewater by ultra-magnetic separator and adsorption method. Environ. Eng. 37, 20–23. Hirscher, M., Yartys, V.A., Baricco, M., Bellosta von Colbe, J., Blanchard, D., Bowman, R. C., Broom, D.P., Buckley, C.E., Chang, F., Chen, P., Cho, Y.W., Crivello, J.C., Cuevas, F., David, W.I.F., de Jongh, P.E., Denys, R.V., Dornheim, M., Felderhoff, M., Filinchuk, Y., Froudakis, G.E., Grant, D.M., Gray, E.M.A., Hauback, B.C., He, T., Humphries, T.D., Jensen, T.R., Kim, S., Kojima, Y., Latroche, M., Li, H.W., Lototskyy, M.V., Makepeace, J.W., Møller, K.T., Naheed, L., Ngene, P., Nor´eus, D., Nygård, M.M., Orimo, S. ichi, Paskevicius, M., Pasquini, L., Ravnsbæk, D.B., Veronica Sofianos, M., Udovic, T.J., Vegge, T., Walker, G.S., Webb, C.J., Weidenthaler, C., Zlotea, C., 2020. Materials for hydrogen-based energy storage – past, recent progress and future outlook. J. Alloys Compd. 827, 153548 https://doi. org/10.1016/J.JALLCOM.2019.153548. Hongtao, L., Shuxia, L., Hua, Z., Yanling, Q., Daqiang, Y., Jianfu, Z., Zhiliang, Z., 2018. Comparative study on synchronous adsorption of arsenate and fluoride in aqueous solution onto MgAlFe-LDHs with different intercalating anions. RSC Adv. 8, 33301–33313. https://doi.org/10.1039/C8RA05968C. Hu, C.Y., Lo, S.L., Kuan, W.H., Lee, Y.D., 2005. Removal of fluoride from semiconductor wastewater by electrocoagulation–flotation. Water Res. 39, 895–901. https://doi. org/10.1016/J.WATRES.2004.11.034 Hu, J., Song, J., Han, X., Wen, Q., Yang, W., Pan, W., Jian, S., Jiang, S., 2023. Fabrication of Ce-La-MOFs for defluoridation in aquatic systems: a kinetics, thermodynamics and mechanisms study. Sep. Purif. Technol. 314, 123562. Hu, Q., Zhang, Z., 2019. Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: a theoretical analysis. J. Mol. Liq. 277, 646–648. https:// doi.org/10.1016/J.MOLLIQ.2019.01.005. Huang, H., Liu, J., Zhang, P., Zhang, D., Gao, F., 2017. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem. Eng. J. 307, 696–706. https://doi. org/10.1016/J.CEJ.2016.08.134 Huang, J., Liu, T., Zhang, Y., Hu, P., 2023a. Reinforced adsorption mechanism of fluorine ions by calcium-depleted hydroxyapatite and application in the raffinate from the vanadium industry. Chem. Eng. J. 452 https://doi.org/10.1016/j.cej.2022.139379 Huang, S., Zhang, X., Wang, L., Li, D., Zhang, C., Yang, L., He, Q., Gao, B., 2023b. Enhanced water defluoridation using ion channel modified hydroxyapatite: experimental, mechanisms and DFT calculation. Appl. Surf. Sci. 615, 156351. Huang, Y., Wang, X., Xu, Y., Feng, S., Liu, J., Wang, H., 2021. Amino-functionalized porous PDVB with high adsorption and regeneration performance for fluoride removal from water. Green Chem. Eng. 2, 224–232. https://doi.org/10.1016/j. gce.2020.11.011. Ibrahim, M., Siddique, A., Verma, L., Singh, J., Koduru, J.R., 2019. Adsorptive removal of fluoride from aqueous solution by biogenic iron permeated activated carbon derived from sweet lime waste. Acta Chim. Slov. 66 https://doi.org/10.17344/ acsi.2018.4717. Iriel, A., Bruneel, S.P., Schenone, N., Cirelli, A.F., 2018. The removal of fluoride from aqueous solution by a lateritic soil adsorption: kinetic and equilibrium studies. Ecotoxicol. Environ. Saf. 149, 166–172. https://doi.org/10.1016/J. ECOENV.2017.11.016. Irshad, Z., Bibi, I., Ghafoor, A., Majid, F., Kamal, S., Ezzine, S., Elqahtani, Z.M., Alwadai, N., El Messaoudi, N., Iqbal, M., 2022. Ni doped SrFe12O19 nanoparticles synthesized via micro-emulsion route and photocatalytic activity evaluation for the degradation of crystal violet under visible light irradiation. Results Phys. 42, 106006 https://doi.org/10.1016/J.RINP.2022.106006. Izuagie, A.A., Gitari, W.M., Gumbo, J.R., 2016. Synthesis and performance evaluation of Al/Fe oxide coated diatomaceous earth in groundwater defluoridation: towards fluorosis mitigation. J. Environ. Sci. Heal. Part A 51, 810–824. https://doi.org/ 10.1080/10934529.2016.1181445. Izuora, K., Twombly, J.G., Whitford, G.M., Demertzis, J., Pacifici, R., Whyte, M.P., 2011. Skeletal fluorosis from brewed tea. J. Clin. Endocrinol. Metab. 96, 2318–2324. https://doi.org/10.1210/jc.2010-2891. Jeyaseelan, A., Katubi, K.M.M., Alsaiari, N.S., Naushad, M., Viswanathan, N., 2021. Design and fabrication of sulfonic acid functionalized graphene oxide for enriched fluoride adsorption. Diam. Relat. Mater. 117, 108446 https://doi.org/10.1016/j. diamond.2021.108446. Jeyaseelan, A., Viswanathan, N., Govindasamy, M., Alsaiari, N.S., Katubi, K.M., 2023a. Fabricated design of hydrotalcite embedded lanthanum organic frameworks for defluoridation of water. Environ. Prog. Sustain. Energy, e14132. Jeyaseelan, A., Viswanathan, N., Kumar, I.A., Ansar, S., 2023b. Effective defluoridation using lanthanum-organic frameworks encapsulated hydrotalcite based bio-hybrid beads. J. Solid State Chem. 124301. Jeyaseelan, A., Viswanathan, N., Kumar, I.A., Naushad, M., 2023c. Design of hydrotalcite and biopolymers entrapped tunable cerium organic cubic hybrid material for superior fluoride adsorption. Colloids Surf. B Biointerfaces 224, 113190. https://doi. org/10.1016/j.colsurfb.2023.113190. Jeyaseelan, A., Viswanathan, N., Kumar, I.A., Naushad, M., 2023d. Construction of magnetic particles sprayed hydroxyapatite based bio-ceramic beads for selective fluoride removal. J. Mol. Liq. 383, 122125. Jha, S.K., Nayak, A.K., Sharma, Y.K., 2008. Response of spinach (Spinacea oleracea) to the added fluoride in an alkaline soil. Food Chem. Toxicol. 46, 2968–2971. https:// doi.org/10.1016/j.fct.2008.05.024. Jia, Y., Zhu, B.S., Zhang, K.S., Jin, Z., Sun, B., Luo, T., Yu, X.Y., Kong, L.T., Liu, J.H., 2015. Porous 2-line ferrihydrite/bayerite composites (LFBC): fluoride removal performance and mechanism. Chem. Eng. J. 268, 325–336. https://doi.org/ 10.1016/J.CEJ.2015.01.080. Jian, S., Chen, Y., Shi, F., Liu, Y., Jiang, W., Hu, J., Han, X., Jiang, S., Yang, W., 2022a. Template-free synthesis of magnetic La-Mn-Fe tri-metal oxide nanofibers for efficient fluoride remediation: kinetics, isotherms, thermodynamics and reusability. Polymers 14. https://doi.org/10.3390/polym14245417. Jian, S., Cheng, Y., Ma, X., Guo, H., Hu, J., Zhang, K., Jiang, S., Yang, W., Duan, G., 2022b. Excellent fluoride removal performance by electrospun La–Mn bimetal oxide nanofibers. New J. Chem. 46, 490–497. https://doi.org/10.1039/D1NJ04976C. Jiang, Y., 2020. Study on Treatment of Fluoride-Containing Beneficiatic on Wastewater by Chemical Precipitation and Adsorption Composite Technology. Southwest University of Science and Technology, Mianyang, China. https://doi.org/10.33750/ ijhi.v4i1.102. Jiao, W., Chen, W., Chang, A.C., Page, A.L., 2012. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environ. Pollut. 168, 44–53. https://doi.org/10.1016/j.envpol.2012.03.052. Jin, Z., Jia, Y., Zhang, K.S., Kong, L.T., Sun, B., Shen, W., Meng, F.L., Liu, J.H., 2016. Effective removal of fluoride by porous MgO nanoplates and its adsorption mechanism. J. Alloys Compd. 675, 292–300. https://doi.org/10.1016/J. JALLCOM.2016.03.118 Kahu, S., Shekhawat, A., Saravanan, D., Jugade, R., 2017. Stannic chloride impregnated chitosan for defluoridation of water. Int. J. Biol. Macromol. 104, 1528–1538. https://doi.org/10.1016/J.IJBIOMAC.2017.02.101. Kahya, N., Erim, F.B., 2023. Removal of fluoride ions from water by ceriumcarboxymethyl cellulose beads doped with CeO2 nanoparticles. Int. J. Biol. Macromol. 242, 124595. Kang, D., Yu, X., Ge, M., Lin, M., Yang, X., Jing, Y., 2018. Insights into adsorption mechanism for fluoride on cactus-like amorphous alumina oxide microspheres. Chem. Eng. J. 345, 252–259. https://doi.org/10.1016/J.CEJ.2018.03.174. Kazi, T.G., Brahman, K.D., Baig, J.A., Afridi, H.I., 2019. Bioaccumulation of arsenic and fluoride in vegetables from growing media: health risk assessment among different age groups. Environ. Geochem. Health 41, 1223–1234. https://doi.org/10.1007/ s10653-018-0207-8 Kern, M.L., Vieiro, A.P., Machado, G., 2008. The fluoride in the groundwater of Guarani Aquifer System: the origin associated with black shales of Parana ´ Basin. Environ. Geol. 55, 1219–1233. https://doi.org/10.1007/s00254-007-1067-1. Kesari, K.K., Soni, R., Jamal, Q.M.S., Tripathi, P., Lal, J.A., Jha, N.K., Siddiqui, M.H., Kumar, P., Tripathi, V., Ruokolainen, J., 2021. Wastewater treatment and reuse: a review of its applications and health implications. Water Air Soil Pollut. 232, 1–28. https://doi.org/10.1007/S11270-021-05154-8/FIGURES/5. khalidi-idrissi, A., Madinzi, A., Anouzla, A., Pala, A., Mouhir, L., Kadmi, Y., Souabi, S., 2023. Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. Int. J. Environ. Sci. Technol. 20, 11719–11740. https://doi.org/10.1007/S13762-023-04867-Z, 2023 2010. Khulbe, K.C., Matsuura, T., 2018. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci. https://doi.org/10.1007/s13201-018-0661- 6. Kitalika, A.J., Machunda, R.L., Komakech, H.C., Njau, K.N., 2018. Fluoride variations in rivers on the slopes of mount meru in Tanzania. J. Chem. 2018 https://doi.org/ 10.1155/2018/7140902. Kong, L., Tian, Y., Pang, Z., Huang, X., Li, M., Li, N., Zhang, J., Zuo, W., Li, J., 2020. Needle-like Mg-La bimetal oxide nanocomposites derived from periclase and lanthanum for cost-effective phosphate and fluoride removal: characterization, performance and mechanism. Chem. Eng. J. 382, 122963 https://doi.org/10.1016/ J.CEJ.2019.122963. Kumar, R., Sinha, R., Sharma, P.K., Ivy, N., Kumar, P., Kant, N., Jha, A., Jha, P.K., Gupta, P.K., Sharma, P., Singh, R.K., Singh, R.P., Ghosh, A., Vara Prasad, P.V., 2021. Bioaccumulation of fluoride in plants and its microbially assisted remediation: a review of biological processes and technological performance. Processes 9, 1–24. https://doi.org/10.3390/pr9122154. Kumar, V., Talreja, N., Deva, D., Sankararamakrishnan, N., Sharma, A., Verma, N., 2011. Development of bi-metal doped micro- and nano multi-functional polymeric adsorbents for the removal of fluoride and arsenic(V) from wastewater. Desalination 282. https://doi.org/10.1016/j.desal.2011.05.013. Kumari, S., V, A., Sengupta, S., 2021. Adsorptive mitigation of fluoride ions using aluminosilicate adsorbents: a state-of-the-art review. Environ. Challenges 5, 100329. https://doi.org/10.1016/J.ENVC.2021.100329. Kumari, U., Behera, S.K., Meikap, B.C., 2019. A novel acid modified alumina adsorbent with enhanced defluoridation property: kinetics, isotherm study and applicability on industrial wastewater. J. Hazard Mater. 365, 868–882. https://doi.org/10.1016/J. JHAZMAT.2018.11.064. Kumari, U., Behera, S.K., Siddiqi, H., Meikap, B.C., 2020. Facile method to synthesize efficient adsorbent from alumina by nitric acid activation: batch scale defluoridation, kinetics, isotherm studies and implementation on industrial wastewater treatment. J. Hazard Mater. 381, 120917 https://doi.org/10.1016/J. JHAZMAT.2019.120917. Kundu, N., Panigrahi, M.K., Tripathy, S., Munshi, S., Powell, M.A., Hart, B.R., 2001. Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh District of Orissa, India. Environ. Geol. 41, 451–460. https://doi.org/10.1007/ s002540100414. Kusrini, E., Sofyan, N., Suwartha, N., Yesya, G., Priadi, C.R., 2015. Chitosanpraseodymium complex for adsorption of fluoride ions from water. J. Rare Earths 33, 1104–1113. https://doi.org/10.1016/S1002-0721(14)60533-0. Laonapakul, T., Suthi, T., Otsuka, Y., Mutoh, Y., Chaikool, P., Chindaprasirt, P., 2022. Fluoride adsorption enhancement of Calcined-Kaolin/Hydroxyapatite composite. Arab. J. Chem. 15, 104220 https://doi.org/10.1016/j.arabjc.2022.104220. Lavrenko, V.A., Podchernyaeva, I.A., Shchur, D.V., Zolotarenko, An D., Zolotarenko, Al D., 2018. Features of physical and chemical adsorption during interaction of polycrystalline and nanocrystalline materials with gases. Powder Metall. Met. Ceram. 56 https://doi.org/10.1007/s11106-018-9922-z. Laxmankumar, D., Satyanarayana, E., Dhakate, R., Saxena, P.R., 2019. Hydrogeochemical characteristics with respect to fluoride contamination in groundwater of Maheshwarm mandal, RR district, Telangana state, India. Groundw. Sustain. Dev. 8, 474–483. https://doi.org/10.1016/J.GSD.2019.01.008. Lee, J.I., Kang, J.K., Hong, S.H., Lee, C.G., Jeong, S., Park, S.J., 2021. Thermally treated Mytilus coruscus shells for fluoride removal and their adsorption mechanism. Chemosphere 263, 128328. https://doi.org/10.1016/J. CHEMOSPHERE.2020.128328. Li, C., Chen, N., Zhao, Y., Li, R., Feng, C., 2016a. Polypyrrole-grafted peanut shell biological carbon as a potential sorbent for fluoride removal: sorption capability and mechanism. Chemosphere 163, 81–89. https://doi.org/10.1016/J. CHEMOSPHERE.2016.08.016. Li, F., Jin, J., Shen, Z., Ji, H., Yang, M., Yin, Y., 2020a. Removal and recovery of phosphate and fluoride from water with reusable mesoporous Fe3O4@mSiO2@ mLDH composites as sorbents. J. Hazard Mater. 388 https://doi.org/10.1016/j. jhazmat.2019.121734. Li, T., Xie, D., He, C., Xu, X., Huang, B., Nie, R., Liu, S., Duan, Z., Liu, W., 2016b. Simultaneous adsorption of fluoride and hexavalent chromium by synthetic mesoporous alumina: performance and interaction mechanism. RSC Adv. 6, 48610–48619. https://doi.org/10.1039/C6RA04604E. Li, W., Zhang, T., Lv, L., Chen, Y., Tang, W., Tang, S., 2021. Room-temperature synthesis of MIL-100(Fe) and its adsorption performance for fluoride removal from water. Colloids Surfaces A Physicochem. Eng. Asp. 624, 126791 https://doi.org/10.1016/j. colsurfa.2021.126791. Li, X., Wu, X., Liu, S., Li, Y., Fan, J., Lv, K., 2020b. Effects of fluorine on photocatalysis. Chin. J. Catal. 41, 1451–1467. https://doi.org/10.1016/S1872-2067(20)63594-X. Li, Y., Zhang, L., Liao, M., Huang, C., Gao, J., 2023. Removal of fluoride from aqueous solution using shrimp shell residue as a biosorbent after astaxanthin recovery. Molecules. https://doi.org/10.3390/molecules28093897. Liang, P., An, R., Li, R., Wang, D., 2018. Comparison of La3 + and mixed rare earthsloaded magnetic chitosan beads for fluoride adsorption. Int. J. Biol. Macromol. 111, 255–263. https://doi.org/10.1016/J.IJBIOMAC.2017.12.151. Liu, D., Li, Y., Liu, C., Li, B., 2023. Porous Lanthanum-Zirconium phosphate with superior adsorption capability of fluorine for water treatment. J. Colloid Interface Sci. 636 https://doi.org/10.1016/j.jcis.2023.01.062. Liu, D., Lin, M., Chen, W., Wang, J., Guo, X., Li, X., Li, L., Si, F., 2022a. Chemosphere Enhancing catalytic ozonation activity of MCM-41 via one-step incorporating fluorine and iron : the interfacial reaction induced by hydrophobic sites and Lewis acid sites. Chemosphere 292, 133544. https://doi.org/10.1016/j. chemosphere.2022.133544. Liu, J., Zhao, C., Zhang, Z., Liao, J., Liu, Y., Cao, X., Yang, J., Yang, Y., Liu, N., 2016. Fluorine effects on U(VI) sorption by hydroxyapatite. Chem. Eng. J. 288, 505–515. https://doi.org/10.1016/J.CEJ.2015.12.045. Liu, M., Zang, Z., Zhang, S., Ouyang, G., Han, R., 2021. Enhanced fluoride adsorption from aqueous solution by zirconium (IV)-impregnated magnetic chitosan graphene oxide. Int. J. Biol. Macromol. 182, 1759–1768. https://doi.org/10.1016/j. ijbiomac.2021.05.116 Liu, R., Gong, W., Lan, H., Yang, T., Liu, H., Qu, J., 2012. Simultaneous removal of arsenate and fluoride by iron and aluminum binary oxide: competitive adsorption effects. Sep. Purif. Technol. 92, 100–105. https://doi.org/10.1016/J. SEPPUR.2012.03.020. Liu, Z., Zheng, S., Zhang, D., 2022b. Al-impregnated granular activated carbon for removal of fluoride from aqueous solution: batch and fixed-bed column study. Water. https://doi.org/10.3390/w14213554. Lv, X., Xu, Z., Li, J., Chen, J., Liu, Q., 2016. Investigation of fluorine adsorption on nitrogen doped MgAl 2 O 4 surface by first-principles. Appl. Surf. Sci. 376 https:// doi.org/10.1016/j.apsusc.2016.03.108. Lyu, Y., Zhong, F., Tang, Z., He, Y., Han, X., 2022. Bioaccumulation and trophic transfer of organic ultraviolet absorbents in the food web of a freshwater lake: implications for risk estimation. Environ. Pollut. 294, 118612 https://doi.org/10.1016/J. ENVPOL.2021.118612. Ma, W., Lv, T., Song, X., Cheng, Z., Duan, S., Xin, G., Liu, F., Pan, D., 2014. Characteristics of selective fluoride adsorption by biocarbon-Mg/Al layered double hydroxides composites from protein solutions: kinetics and equilibrium isotherms study. J. Hazard Mater. 268, 166–176. https://doi.org/10.1016/J. JHAZMAT.2014.01.013. Madhukar, M., Murthy, B.M.S., Udayashankara, T.H., 2014. A review on conventional and alternative methods for defluoridation of water. J. Water Pollut. Purif. Res. 1, 1–12. Makete, N., Rizzu, M., Seddaiu, G., Gohole, L., Otinga, A., 2022. Fluoride toxicity in cropping systems: mitigation, adaptation strategies and related mechanisms. A review. Sci. Total Environ. 833, 155129 https://doi.org/10.1016/j. scitotenv.2022.155129 Manni, A., El, Abdelilah, Amrani, I. El, Hassani, E., El, Abdeslam, Sadik, C., 2019. Valorization of coffee waste with Moroccan clay to produce a porous red ceramics (class BIII). Boletín la Soc. Espanola ˜ Cer´ amica y Vidr 1–9. https://doi.org/10.1016/j. bsecv.2019.03.001. Mannzhi, M.P., Edokpayi, J.N., 2023. Fluoride sorption using Al and Mg modified Dicerocaryum eriocarpum leaves mucilage. Environ. Technol. Innov. 30, 103075. Medellín-Castillo, N.A., Cruz-Briano, S.A., Leyva-Ramos, R., Moreno-Pirajan, ´ J.C., Torres-Dosal, A., Giraldo-Guti´errez, L., Labrada-Delgado, G.J., P´erez, R.O., Rodriguez-Estupinan, ˜ J.P., Reyes Lopez, S.Y., Berber Mendoza, M.S., 2020. Use of bone char prepared from an invasive species, pleco fish (Pterygoplichthys spp.), to remove fluoride and Cadmium(II) in water. J. Environ. Manag. 256, 109956 https:// doi.org/10.1016/J.JENVMAN.2019.109956. Mobarak, M., Mohamed, E.A., Selim, A.Q., Sellaoui, L., Lamine, A. Ben, Erto, A., BonillaPetriciolet, A., Seliem, M.K., 2019. Surfactant–modified serpentine for fluoride and Cr(VI) adsorption in single and binary systems: experimental studies and theoretical modeling. Chem. Eng. J. 369, 333–343. https://doi.org/10.1016/J. CEJ.2019.03.086. Mohamed, A., Nasser, W.S., Kamel, B.M., Hashem, T., 2019. Photodegradation of phenol using composite nanofibers under visible light irradiation. Eur. Polym. J. 113, 192–196. https://doi.org/10.1016/J.EURPOLYMJ.2019.01.062. Mohamed, A., Sanchez, E.P.V., Bogdanova, E., Bergfeldt, B., Mahmood, A., Ostvald, R.V., Hashem, T., 2021. Efficient fluoride removal from aqueous solution using zirconiumbased composite nanofiber membranes. Membranes. https://doi.org/10.3390/ membranes11020147. Mohan, S., Singh, D.K., Kumar, V., Hasan, S.H., 2017. Effective removal of Fluoride ions by rGO/ZrO2 nanocomposite from aqueous solution: fixed bed column adsorption modelling and its adsorption mechanism. J. Fluor. Chem. 194 https://doi.org/ 10.1016/j.jfluchem.2016.12.014. Mondal, D., Gupta, S., Reddy, D.V., Dutta, G., 2017. Fluoride enrichment in an alluvial aquifer with its subsequent effect on human health in Birbhum district, West Bengal, India. Chemosphere 168, 817–824. https://doi.org/10.1016/J. CHEMOSPHERE.2016.10.130. Mukhopadhyay, D., Priya, P., Chattopadhyay, A., 2016. Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: role of Nrf2/Keap1. Environ. Toxicol. Pharmacol. 40, 352–359. https://doi.org/10.1016/j. etap.2015.07.003. Mullick, A., Neogi, S., 2019. Ultrasound assisted synthesis of Mg-Mn-Zr impregnated activated carbon for effective fluoride adsorption from water. Ultrason. Sonochem. 50, 126–137. https://doi.org/10.1016/j.ultsonch.2018.09.010. Mullick, A., Neogi, S., 2018. Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption. Ultrason. Sonochem. 45, 65–77. https://doi.org/10.1016/J. ULTSONCH.2018.03.002. Muthu Prabhu, S., Meenakshi, S., 2016. Defluoridation of water using dicarboxylic acids mediated chitosan-polyaniline/zirconium biopolymeric complex. Int. J. Biol. Macromol. 85, 16–22. https://doi.org/10.1016/J.IJBIOMAC.2015.12.022. Nabbou, N., Belhachemi, M., Boumelik, M., Merzougui, T., Lahcene, D., Harek, Y., Zorpas, A.A., Jeguirim, M., 2019. Removal of fluoride from groundwater using natural clay (kaolinite): optimization of adsorption conditions. Compt. Rendus Chem. 22 https://doi.org/10.1016/j.crci.2018.09.010. Nehra, S., Dhillon, A., Kumar, D., 2020. Freeze–dried synthesized bifunctional biopolymer nanocomposite for efficient fluoride removal and antibacterial activity. J. Environ. Sci. 94, 52–63. Neuhauss, S.C.F., Rico, E.P., Gesemann, M., 2010. Nomenclature of glutamate transporters in zebrafish and other vertebrates. Brain Res. Bull. 83, 297. https://doi. org/10.1016/j.brainresbull.2010.09.010. Obijole, O.A., Mugera, G.W., Mudzielwana, R., Ndungu, P.G., Samie, A., Babatunde, A., 2021. Hydrothermally treated aluminosilicate clay (HTAC) for remediation of fluoride and pathogens from water: adsorbent characterization and adsorption modelling. Water Resour. Ind. 25, 100144 https://doi.org/10.1016/J. WRI.2021.100144. Okibe, F.G., Ekanem, E.J., Paul, E.D., Shallangwa, G.A., Ekwumemgbo, P.A., Sallau, M.S., Abanka, O.C., 2010. Fluoride content of soil and vegetables from irrigation farms on the bank of river Galma, Zaria, Nigeria. Aust. J. Basic Appl. Sci. 4, 779–784. Onipe, T., Edokpayi, J.N., Odiyo, J.O., 2020. A review on the potential sources and health implications of fluoride in groundwater of Sub-Saharan Africa. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 55, 1078–1093. https://doi. org/10.1080/10934529.2020.1770516 Orimolade, B.O., Zwane, B.N., Koiki, B.A., Rivallin, M., Bechelany, M., Mabuba, N., Lesage, G., Cretin, M., Arotiba, O.A., 2020. Coupling cathodic electro-fenton with anodic photo-electrochemical oxidation: a feasibility study on the mineralization of paracetamol. J. Environ. Chem. Eng. 8, 104394 https://doi.org/10.1016/j. jece.2020.104394. Oryema, B., Jurua, E., Madiba, I.G., Ahmad, I., Aisida, S.O., Ezema, F.I., Maaza, M., Li, X. X., Wu, X., Liu, S., Li, Y., Fan, J., Lv, K., Xin, L., Yuxin, W., Pan, L., Jingming, G., Guosong, L., Liu, D., Lin, M., Chen, W., Wang, J., Guo, X., Li, X.X., Li, L., Maurya, A., Sharma, D., Partap, M., Kumar, R., Bhargava, B., 2022. Microbially-assisted phytoremediation toward air pollutants: current trends and future directions. Environ. Technol. Innov. 292, 103140 https://doi.org/10.1016/j. chemosphere.2022.133544. Pettenati, M., Perrin, J., Pauwels, H., Ahmed, S., 2013. Simulating fluoride evolution in groundwater using a reactive multicomponent transient transport model: application to a crystalline aquifer of Southern India. Appl. Geochem. 29, 102–116. https://doi. org/10.1016/j.apgeochem.2012.11.001. Pillai, P., Dharaskar, S., Shah, M., Sultania, R., 2020. Determination of fluoride removal using silica nano adsorbent modified by rice husk from water. Groundw. Sustain. Dev. 11, 100423 https://doi.org/10.1016/J.GSD.2020.100423. Podgorski, J., Berg, M., 2022. Global analysis and prediction of fluoride in groundwater. Nat. Commun. 13, 1–9. https://doi.org/10.1038/s41467-022-31940-x. Raghav, S., Kumar, D., 2019. Fabrication of aluminium and iron impregnated pectin biopolymeric material for effective utilization of fluoride adsorption studies. Groundw. Sustain. Dev. 9, 100233 https://doi.org/10.1016/J.GSD.2019.100233 Ramos-Vargas, S., Alfaro-Cuevas-Villanueva, R., Huirache-Acuna, ˜ R., Cort´esMartínez, R., 2018. Removal of fluoride and arsenate from aqueous solutions by aluminum-modified guava seeds. Appl. Sci. https://doi.org/10.3390/app8101807. Rathore, V.K., Dohare, D.K., Mondal, P., 2016. Competitive adsorption between arsenic and fluoride from binary mixture on chemically treated laterite. J. Environ. Chem. Eng. 4, 2417–2430. https://doi.org/10.1016/J.JECE.2016.04.017. Rathore, V.K., Mondal, P., 2017. Competitive adsorption of arsenic and fluoride onto economically prepared aluminum oxide/hydroxide nanoparticles: multicomponent isotherms and spent adsorbent management. Ind. Eng. Chem. Res. 56, 8081–8094. https://doi.org/10.1021/ACS.IECR.7B01139/ASSET/IMAGES/LARGE/IE-2017- 01139Q_0010.JPEG. Rico, E.P., de Oliveira, D.L., Rosemberg, D.B., Mussulini, B.H., Bonan, C.D., Dias, R.D., Wofchuk, S., Souza, D.O., Bogo, M.R., 2010. Expression and functional analysis of Na +-dependent glutamate transporters from zebrafish brain. Brain Res. Bull. 81, 517–523. https://doi.org/10.1016/j.brainresbull.2009.11.011. Rico, E.P., Rosemberg, D.B., Seibt, K.J., Capiotti, K.M., Da Silva, R.S., Bonan, C.D., 2011. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol. Teratol. 33, 608–617. https://doi.org/10.1016/j. ntt.2011.07.007. Rizzu, M., Tanda, A., Canu, L., Masawe, K., Mtei, K., Deroma, M.A., Roggero, P.P., Seddaiu, G., 2020. Fluoride uptake and translocation in food crops grown in fluoride-rich soils. J. Sci. Food Agric. 100, 5498–5509. https://doi.org/10.1002/ jsfa.10601. Rizzu, M., Tanda, A., Cappai, C., Roggero, P.P., Seddaiu, G., 2021. Impacts of soil and water fluoride contamination on the safety and productivity of food and feed crops: a systematic review. Sci. Total Environ. 787, 147650 https://doi.org/10.1016/j. scitotenv.2021.147650. Saleh, T.A., 2022. Adsorption technology and surface science. In: Interface Science and Technology. https://doi.org/10.1016/B978-0-12-849876-7.00006-3. Sarkar, C., Basu, J.K., Samanta, A.N., 2019. Experimental and kinetic study of fluoride adsorption by Ni and Zn modified LD slag based geopolymer. Chem. Eng. Res. Des. 142, 165–175. https://doi.org/10.1016/J.CHERD.2018.12.006. Sarwar, A., Wang, J., Khan, M.S., Farooq, U., Riaz, N., Nazir, A., Mahmood, Q., Hashem, A., Al-Arjani, A.-B.F., Alqarawi, A.A., Abd_Allah, E.F., 2021. Iron oxide (Fe3O4)-supported SiO2 magnetic nanocomposites for efficient adsorption of fluoride from drinking water: synthesis, characterization, and adsorption isotherm analysis. Water. https://doi.org/10.3390/w13111514. Scheverin, V.N., Horst, M.F., Lassalle, V.L., 2022. Results in Engineering Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption. Results Eng 16, 100648. https://doi.org/10.1016/j.rineng.2022.100648. Sengupta, P., Saha, S., Banerjee, S., Dey, A., Sarkar, P., 2020. Removal of fluoride ion from drinking water by a new Fe(OH)3/nano CaO impregnated chitosan composite adsorbent. Polym. Technol. Mater. 59 https://doi.org/10.1080/ 25740881.2020.1725567. S¸ enol, Z.M., Elma, E., El Messaoudi, N., Mehmeti, V., 2023a. Performance of cross-linked chitosan-zeolite composite adsorbent for removal of Pb2+ ions from aqueous solutions: experimental and Monte Carlo simulations studies. J. Mol. Liq. 391, 123310 https://doi.org/10.1016/J.MOLLIQ.2023.123310. S¸ enol, Z.M., Messaoudi, N. El, Fernine, Y., Keskin, Z.S., 2023b. Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste (almond shell): experimental and DFT modeling studies. Biomass Convers. Biorefinery 1–14. https:// doi.org/10.1007/S13399-023-03781-1. Sepehr, M.N., Kazemian, H., Ghahramani, E., Amrane, A., Sivasankar, V., Zarrabi, M., 2014. Defluoridation of water via Light Weight Expanded Clay Aggregate (LECA): adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modeling. J. Taiwan Inst. Chem. Eng. 45, 1821–1834. Sewwandi, B.V.N., Kumarasinghe, A.R., Wu, Z., Bandara, P., Jayarathne, L., Bandara, A., Wijekoon, H., Xing, C., Weerasooriya, R., 2023. Size-tunable graphitized carbon spheres for water defluoridation. Colloids Surfaces A Physicochem. Eng. Asp. 670, 131582. Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot., Le 1–26. https://doi.org/10.1155/2012/217037, 2012. Sharma, P., Sen, K., Thakur, P., Chauhan, M., Chauhan, K., 2019. Spherically shaped pectin-g-poly(amidoxime)-Fe complex: a promising innovative pathway to tailor a new material in high amidoxime functionalization for fluoride adsorption. Int. J. Biol. Macromol. 140, 78–90. https://doi.org/10.1016/j.ijbiomac.2019.08.098. Shimelis, B., Zewge, F., Chandravanshi, B.S., 2006. Removal of excess fluoride from water by aluminum hydroxide. Bull. Chem. Soc. Ethiop. 20, 17–34. https://doi.org/ 10.4314/BCSE.V20I1.21140 Silva, J.A., 2023. Wastewater treatment and reuse for sustainable water resources management: a systematic literature review. Sustain. Times 15, 10940. https://doi. org/10.3390/SU151410940/S1. Singh, B.J., Chakraborty, A., Sehgal, R., 2023. A systematic review of industrial wastewater management: evaluating challenges and enablers. J. Environ. Manag. 348, 119230 https://doi.org/10.1016/J.JENVMAN.2023.119230. Singh, J., Singh, P., Singh, A., 2016. Fluoride ions vs removal technologies: a study. Arab. J. Chem. 9, 815–824. https://doi.org/10.1016/J.ARABJC.2014.06.005. Singh, R., Khatri, P., Srivastava, N., Jain, S., Brahmachari, V., Mukhopadhyay, A., Mazumder, S., 2017. Fluoride exposure abates pro-inflammatory response and induces in vivo apoptosis rendering zebrafish (Danio rerio) susceptible to bacterial infections. Fish Shellfish Immunol. 63, 314–321. https://doi.org/10.1016/j. fsi.2017.02.022. Smedley, P.L., Nicolli, H.B., Macdonald, D.M.J., Barros, A.J., Tullio, J.O., 2002. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl. Geochem. 17, 259–284. https://doi.org/10.1016/ S0883-2927(01)00082-8. Solanki, Y.S., Agarwal, M., Maheshwari, K., Gupta, S., Shukla, P., Gupta, A.B., 2021. Removal of fluoride from water by using a coagulant (inorganic polymeric coagulant). Environ. Sci. Pollut. Res. 28, 3897–3905. https://doi.org/10.1007/ S11356-020-09579-2/METRICS. Song, J., Yang, W., Han, X., Jiang, S., Zhang, C., Pan, W., Jian, S., Hu, J., 2023. Performance of rod-shaped Ce metal–organic frameworks for defluoridation. Molecules 28, 3492. https://doi.org/10.3390/molecules28083492. Sternitzke, V., Kaegi, R., Audinot, J.N., Lewin, E., Hering, J.G., Johnson, C.A., 2012. Uptake of fluoride from aqueous solution on nano-sized hydroxyapatite: examination of a fluoridated surface layer. Environ. Sci. Technol. 46, 802–809. https://doi.org/10.1021/ES202750T/SUPPL_FILE/ES202750T_SI_001.PDF Tan, T.L., Krusnamurthy, P.A., Nakajima, H., Rashid, S.A., 2020. Adsorptive, kinetics and regeneration studies of fluoride removal from water using zirconium-based metal organic frameworks. RSC Adv. 10, 18740–18752. https://doi.org/10.1039/ D0RA01268H. Taneja, L., Kochar, C., Kumar Yadav, P., Swarupa Tripathy, S., 2022. Adsorption: a preferred technique for fluoride removal from water. Mater. Today Proc. 71, 215–219. https://doi.org/10.1016/J.MATPR.2022.08.449. Telkapalliwar, N.G., Shivankar, V.M., 2019. Data of characterization and adsorption of fluoride from aqueous solution by using modified Azadirachta indica bark. Data Brief 26, 104509. https://doi.org/10.1016/j.dib.2019.104509. Tong, L., Liu, X., Liu, Y., Zhou, K., Zhang, S., Jia, Q., Lu, W., Huang, Y., Ni, G., 2023. Accumulation of high concentration fluoride in the Ulungur Lake water through weathering of fluoride containing rocks in Xinjiang, China. Environ. Pollut. 323, 121300 https://doi.org/10.1016/J.ENVPOL.2023.121300. Tripathy, S., Panigrahi, M.K., Kundu, N., 2005. Geochemistry of soil around a fluoride contaminated area in Nayagarh District, Orissa, India: factor analytical appraisal. Environ. Geochem. Health 27, 205–216. https://doi.org/10.1007/s10653-004- 0157-1. Turki, T., Hamdouni, A., Enesca, A., 2023. Fluoride adsorption from aqueous solution by modified zeolite—kinetic and isotherm studies. Mol. 2023 28, 4076. https://doi.org/ 10.3390/MOLECULES28104076. Page 4076 28. Velazquez-Jimenez, L.H., Vences-Alvarez, E., Flores-Arciniega, J.L., Flores-Zuniga, ˜ H., Rangel-Mendez, J.R., 2015. Water defluoridation with special emphasis on adsorbents-containing metal oxides and/or hydroxides: a review. Sep. Purif. Technol. 150, 292–307. https://doi.org/10.1016/J.SEPPUR.2015.07.006 Vences-Alvarez, E., Velazquez-Jimenez, L.H., Chazaro-Ruiz, L.F., Diaz-Flores, P.E., Rangel-Mendez, J.R., 2015. Fluoride removal in water by a hybrid adsorbent lanthanum–carbon. J. Colloid Interface Sci. 455, 194–202. https://doi.org/10.1016/ J.JCIS.2015.05.048. Vilakati, B.R., Sivasankar, V., Nxumalo, E.N., Mamba, B.B., Omine, K., Msagati, T.A.M., 2019. Fluoride removal studies using virgin and Ti (IV)-modified Musa paradisiaca (plantain pseudo-stem) carbons. Environ. Sci. Pollut. Res. 26, 11565–11578. https:// doi.org/10.1007/s11356-018-2691-x. Vinati, A., Mahanty, B., Behera, S.K., 2015. Clay and clay minerals for fluoride removal from water: a state-of-the-art review. Appl. Clay Sci. 114, 340–348. https://doi.org/ 10.1016/J.CLAY.2015.06.013. Wang, A., Zhou, K., Liu, X., Liu, F., Zhang, C., Chen, Q., 2017a. Granular tri-metal oxide adsorbent for fluoride uptake: adsorption kinetic and equilibrium studies. J. Colloid Interface Sci. 505, 947–955. https://doi.org/10.1016/j.jcis.2017.06.074. Wang, D., Luo, L., Chen, Y., Chen, S., Qiu, X., Liu, M., 2023a. Fluoride removal from aqueous solution using Ce-modified red mud as adsorbent. Mater. Today Sustain. 24, 100502. Wang, F., Chen, Y., Dong, Y., Zhang, H., Yun, R., Liu, Z., 2023b. Removal of fluoride from geothermal water by waste-synthesized Al (OH) 3-HAP@ ZMS composite adsorbent: sorption capability and mechanism. Water Air Soil Pollut. 234, 411. Wang, H., Feng, Q., Liu, K., Li, Z., Tang, X., Li, G., 2017b. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process. J. Environ. Manag. 196, 72–79. https://doi.org/ 10.1016/J.JENVMAN.2017.03.015. Wang, J., Kang, D., Yu, X., Ge, M., Chen, Y., 2015. Synthesis and characterization of Mg–Fe–La trimetal composite as an adsorbent for fluoride removal. Chem. Eng. J. 264, 506–513. https://doi.org/10.1016/J.CEJ.2014.11.130 Wang, J., Wu, L., Li, J., Tang, D., Zhang, G., 2018. Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: adsorption kinetics and mechanism. J. Alloys Compd. 753 https://doi.org/10.1016/j.jallcom.2018.04.177. Wang, J., Xu, W., Chen, L., Jia, Y., Wang, L., Huang, X.J., Liu, J., 2013. Excellent fluoride removal performance by CeO2–ZrO2 nanocages in water environment. Chem. Eng. J. 231, 198–205. https://doi.org/10.1016/J.CEJ.2013.07.022. Wang, M., Ye, H., Zheng, X., Chen, S., Xing, H., Tao, X., Dang, Z., Lu, G., 2023c. Adsorption behaviors and mechanisms of simultaneous cadmium and fluoride removal on waste bovine bone from aqueous solution. J. Environ. Chem. Eng. 11, 109035 https://doi.org/10.1016/J.JECE.2022.109035. Wang, R., Wang, D., Peng, W., Zhang, J., Liu, J., Wang, Y., Wang, X., 2022. Removal of F− from water by magnetic floriform magnesium zirconium hydrotalcite-like material doped with Fe2O3 and ZrO2. Desalination 544. https://doi.org/10.1016/j. desal.2022.116142. Wang, X., Wang, J., Li, W., Zhang, J., 2023d. Sustainable removal of fluorine ions using ZrO2-MgO@C composite. Sep. Purif. Technol. 310 https://doi.org/10.1016/j. seppur.2022.122933. Wang, X., Zhu, H., Sun, T., Liu, Y., Han, T., Lu, J., Dai, H., Zhai, L., 2019. Synthesis and study of an efficient metal-organic framework adsorbent (MIL-96 (Al)) for fluoride removal from water. J. Nanomater. 2019. Wang, Z., Gu, X., Zhang, Y., Zhang, X., Ngo, H.H., Liu, Y., Jiang, W., Tan, X., Wang, X., Zhang, J., 2021. Activated nano-Al2O3 loaded on polyurethane foam as a potential carrier for fluorine removal. J. Water Process Eng. 44 https://doi.org/10.1016/j. jwpe.2021.102444. Warren, C., Burgess, W.G., Garcia, M.G., 2005. Hydrochemical associations and depth profiles of arsenic and fluoride in Quaternary loess aquifers of northern Argentina. Mineral. Mag. 69, 877–886. https://doi.org/10.1180/0026461056950295. Weerasooriyagedara, M., Ashiq, A., Rajapaksha, A.U., Wanigathunge, R.P., Agarwal, T., Magana-Arachchi, D., Vithanage, M., 2020. Phytoremediation of fluoride from the environmental matrices: a review on its application strategies. Groundw. Sustain. Dev. 10, 100349 https://doi.org/10.1016/J.GSD.2020.100349 Wimalasiri, A.K.D.V.K., Fernando, M.S., Williams, G.R., Dissanayake, D.P., de Silva, K.M. N., de Silva, R.M., 2021. Microwave assisted accelerated fluoride adsorption by porous nanohydroxyapatite. Mater. Chem. Phys. 257, 123712 https://doi.org/ 10.1016/j.matchemphys.2020.123712. Yang, W., Li, C., Tian, S., Liu, L., Liao, Q., 2020. Influence of synthesis variables of a solgel process on the properties of mesoporous alumina and their fluoride adsorption. Mater. Chem. Phys. 242, 122499 https://doi.org/10.1016/j. matchemphys.2019.122499. Yang, W., Shi, F., Jiang, W., Chen, Y., Zhang, K., Jian, S., Jiang, S., Zhang, C., Hu, J., 2022a. Outstanding fluoride removal from aqueous solution by a La-based adsorbent. RSC Adv. 12, 30522–30528. https://doi.org/10.1039/D2RA06284D. Yang, W., Tian, S., Tang, Q., Chai, L., Wang, H., 2017. Fungus hyphae-supported alumina: an efficient and reclaimable adsorbent for fluoride removal from water. J. Colloid Interface Sci. 496, 496–504. Yang, Y., Li, X., Gu, Y., Lin, H., Jie, B., Zhang, Q., Zhang, X., 2022b. Adsorption property of fluoride in water by metal organic framework: optimization of the process by response surface methodology technique. Surface. Interfac. 28, 101649 https://doi. org/10.1016/j.surfin.2021.101649. Yapo, N.S., Aw, S., Briton, B.G.H., Drogui, P., Yao, K.B., Adouby, K., 2022. Removal of fluoride in groundwater by adsorption using hydroxyapatite modified Corbula trigona shell powder. Chem. Eng. J. Adv. 12, 100386 https://doi.org/10.1016/j. ceja.2022.100386. Ye, C., Yan, B., Ji, X., Liao, B., Gong, R., Pei, X., Liu, G., 2019. Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: experimental and modeling. Ecotoxicol. Environ. Saf. 180, 366–373. https://doi. org/10.1016/j.ecoenv.2019.04.086. Ye, Y., Hu, Y., Hussain, Z., Li, X., Li, D., Kang, J., 2016. Simultaneous adsorptive removal of fluoride and phosphate by magnesia–pullulan composite from aqueous solution. RSC Adv. 6, 35966–35976. https://doi.org/10.1039/C6RA07175A. Ye, Y., Wei, Y., Gu, Y., Kang, D., Jiang, W., Kang, J., 2020. Simultaneous removal of fluoride and phosphate in a continuous fixed-bed column filled with magnesiapullulan composite. J. Alloys Compd. 838, 155528 https://doi.org/10.1016/J. JALLCOM.2020.155528. Yu, Y., Zhou, Z., Ding, Z., Zuo, M., Cheng, J., Jing, C., 2019. Simultaneous arsenic and fluoride removal using {201}TiO2–ZrO2: fabrication, characterization, and mechanism. J. Hazard Mater. 377, 267–273. https://doi.org/10.1016/J. JHAZMAT.2019.05.060. Yu, Z., Xu, C., Yuan, K., Gan, X., Feng, C., Wang, X., Zhu, L., Zhang, G., Xu, D., 2018. Characterization and adsorption mechanism of ZrO2 mesoporous fibers for healthhazardous fluoride removal. J. Hazard Mater. 346, 82–92. https://doi.org/10.1016/ J.JHAZMAT.2017.12.024. Zelentsov, V., Datsko, T., 2013. Thermodynamics of fluorine adsorption onto modified trepel. Termotehnica. Zelentsov, V.I., Datsko, T.Y., Dvornikova, E.E., 2008. Fluorine adsorption by aluminum oxihydrates subjected to thermal treatment. Surf. Eng. Appl. Electrochem. 44 https://doi.org/10.3103/S1068375508010134. Zeng, Z., Li, Q., Yan, J., Huang, L., Arulmani, S.R.B., Zhang, H., Xie, S., Sio, W., 2023. The model and mechanism of adsorptive technologies for wastewater containing fluoride: a review. Chemosphere 340, 139808. https://doi.org/10.1016/J. CHEMOSPHERE.2023.139808. Zhang, D., Gao, K., Zhang, X., Wang, M., 2022. Removal of fluorine from RECl3 in solution by adsorption, ion exchange and precipitation. Minerals 12. https://doi. org/10.3390/min12010031. Zhang, J., Brutus, T.E., Cheng, J., Meng, X., 2017. Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect. J. Environ. Sci. 57, 190–195. https://doi.org/ 10.1016/J.JES.2017.03.015. Zhang, K., Wu, S., Wang, X., He, J., Sun, B., Jia, Y., Luo, T., Meng, F., Jin, Z., Lin, D., Shen, W., Kong, L., Liu, J., 2015. Wide pH range for fluoride removal from water by MHS-MgO/MgCO3 adsorbent: kinetic, thermodynamic and mechanism studies. J. Colloid Interface Sci. 446, 194–202. https://doi.org/10.1016/J.JCIS.2015.01.049. Zhang, X., Qi, Y., Chen, Z., Song, N., Li, X., Ren, D., Zhang, S., 2021a. Evaluation of fluoride and cadmium adsorption modification of corn stalk by aluminum trichloride. Appl. Surf. Sci. 543, 148727 https://doi.org/10.1016/J. APSUSC.2020.148727 Zhang, Y., Huang, K., 2019. Defluoridation behavior of layered Fe-Mg-Zr hydroxides and its continuous purification of groundwater. Colloids Surfaces A Physicochem. Eng. Asp. 578, 123640 https://doi.org/10.1016/J.COLSURFA.2019.123640. Zhang, Y.X., Jia, Y., 2016. Fluoride adsorption onto amorphous aluminum hydroxide: roles of the surface acetate anions. J. Colloid Interface Sci. 483, 295–306. https:// doi.org/10.1016/J.JCIS.2016.08.054. Zhang, Z., Wang, L., Zhou, B., Wang, S., Fan, L., Hu, S., Wu, Y., 2021b. Adsorption performance and mechanism of synthetic Schwertmannite to remove lowconcentration fluorine in water. Bull. Environ. Contam. Toxicol. 107 https://doi. org/10.1007/s00128-021-03147-1. Zhao, H., Lyu, Y., Hu, J., Li, M., Chen, H., Jiang, Y., Tang, M., Wu, Y., Sun, W., 2023. Reveal the major factors controlling quinolone adsorption on mesoporous carbon: batch experiment, DFT calculation, MD simulation, and machine learning modeling. Chem. Eng. J. 463, 142486 https://doi.org/10.1016/j.cej.2023.142486. Zhao, M., Wang, Q., Krua, L.S.N., Yi, R., Zou, R., Li, X., Huang, P., 2023. Application progress of new adsorption materials for removing fluorine from water. Water (Switzerland). https://doi.org/10.3390/w15040646. Zhou, Z., Yu, Y., Ding, Z., Zuo, M., Jing, C., 2019. Competitive adsorption of arsenic and fluoride on {2 0 1} TiO2. Appl. Surf. Sci. 466, 425–432. https://doi.org/10.1016/J. APSUSC.2018.10.052. Zhu, F., Guo, Z., Hu, X., 2020. Fluoride removal efficiencies and mechanism of schwertmannite from KMnO4/MnO2–Fe(II) processes. J. Hazard Mater. 397, 122789 https://doi.org/10.1016/J.JHAZMAT.2020.122789. Zhu, J., Lin, X., Wu, P., Zhou, Q., Luo, X., 2015. Fluoride removal from aqueous solution by Al(III)–Zr(IV) binary oxide adsorbent. Appl. Surf. Sci. 357, 91–100. https://doi. org/10.1016/J.APSUSC.2015.09.012. Zuo, H., Chen, L., Kong, M., Yang, Y., Lü, P., Qiu, L., Wang, Q., Ma, S., Chen, K., 2018. The toxic effect of sodium fluoride on Spodoptera frugiperda 9 cells and differential protein analysis following NaF treatment of cells. Environ. Pollut. 236, 313–323. https://doi.org/10.1016/J.ENVPOL.2018.01.054. |
dc.relation.citationendpage.spa.fl_str_mv |
24 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
252 |
dc.rights.eng.fl_str_mv |
© 2024 Elsevier Inc. All rights reserved. |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2024 Elsevier Inc. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
24 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Academic Press Inc. |
dc.publisher.place.spa.fl_str_mv |
United States |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0013935124007618?pes=vor |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/ac61817b-2a58-4049-8e4c-b24453bbc373/download https://repositorio.cuc.edu.co/bitstreams/bb2c4147-ff9a-4776-8e90-d5be5054ea8e/download https://repositorio.cuc.edu.co/bitstreams/1a8b4ca3-cf03-42bf-b9f2-ef12fd8b9c4a/download https://repositorio.cuc.edu.co/bitstreams/f7bf034d-ffcd-4a7d-94d1-944bd2131803/download |
bitstream.checksum.fl_str_mv |
952f5b0bc08536cb70d81fab234b82d6 73a5432e0b76442b22b026844140d683 44e8b5f95329f32f2010acb7e7a2db32 c3ee686a533050269a79e0b8e530c7a7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760808211775488 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2024 Elsevier Inc. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfNoureddine, EL MESSAOUDIDison S.P., FrancoGubernat, Sylwiageorgin, jordanaŞenol, Zeynep MineCiğeroğlu, ZeynepAllouss, DaliaEl Hajam, Maryam2024-09-23T20:40:01Z2025-07-012024-09-23T20:40:01Z2024-07-01Noureddine El Messaoudi, Dison Stracke Pfingsten Franco, Sylwia Gubernat, Jordana Georgin, Zeynep Mine Şenol, Zeynep Ciğeroğlu, Dalia Allouss, Maryam El Hajam, Advances and future perspectives of water defluoridation by adsorption technology: A review, Environmental Research, Volume 252, Part 1, 2024, 118857, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2024.118857.0013-9351https://hdl.handle.net/11323/1336010.1016/j.envres.2024.1188571096-0953Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Fluoride contamination in water sources poses a significant challenge to human health and the environment. In recent years, adsorption technology has emerged as a promising approach for water defluoridation due to its efficiency and cost-effectiveness. This review article comprehensively explores the advances in water defluoridation through adsorption processes. Various adsorbents, including natural and synthetic materials, have been investigated for their efficacy in removing fluoride ions from water. The mechanisms underlying adsorption interactions are elucidated, shedding light on the factors influencing defluoridation efficiency. Moreover, the review outlines the current state of technology, highlighting successful case studies and field applications. Future perspectives in the field of water defluoridation by adsorption are discussed, emphasizing the need for sustainable and scalable solutions. The integration of novel materials, process optimization, and the development of hybrid technologies are proposed as pathways to address existing challenges and enhance the overall efficacy of water defluoridation. This comprehensive assessment of the advances and future directions in adsorption-based water defluoridation provides valuable insights for researchers, policymakers, and practitioners working towards ensuring safe and accessible drinking water for all.24 páginasapplication/pdfengAcademic Press Inc.United Stateshttps://www.sciencedirect.com/science/article/pii/S0013935124007618?pes=vorAdvances and future perspectives of water defluoridation by adsorption technology: a reviewArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Environmental ResearchAcosta-Herrera et al., 2021 A.A. Acosta-Herrera, V. Hernández-Montoya, F. Castillo-Borja, M.A. Pérez-Cruz, M.A. Montes-Morán, F.J. Cervantes Competitive adsorption of pollutants from anodizing wastewaters to promote water reuse J. Environ. Manag., 293 (2021), Article 112877, 10.1016/J.JENVMAN.2021.112877Adamu et al., 2023 D.B. Adamu, E. Zereffa, T.A. Segne, M.H. Razali, B.R. Lemu Synthesis of iron-substituted hydroxyapatite nanomaterials by co-precipitation method for defluoridation Mater. Res. Express, 10 (2023), Article 45006Adu-Boahene et al., 2023 F. Adu-Boahene, P. Boakye, F.O. Agyemang, J. Kanjua, S. Oduro-Kwarteng Understanding fluoride adsorption from groundwater by alumina modified with alum using PHREEQC surface complexation model Sci. Rep. (2023), pp. 1-19, 10.1038/s41598-023-38564-1 2023 131 13Agostini et al., 2018 J.F. Agostini, H.C.Z.D. Toé, K.M. Vieira, S.L. Baldin, N.L.F. Costa, C.U. Cruz, L. Longo, M.M. Machado, T.R. da Silveira, P.F. Schuck, E.P. Rico Cholinergic system and oxidative stress changes in the brain of a zebrafish model Chronically exposed to ethanol Neurotox. Res., 33 (2018), pp. 749-758, 10.1007/s12640-017-9816-8Ahamad et al., 2018 K.U. Ahamad, R. Singh, I. Baruah, H. Choudhury, M.R. Sharma Equilibrium and kinetics modeling of fluoride adsorption onto activated alumina, alum and brick powder Groundw. Sustain. Dev., 7 (2018), pp. 452-458, 10.1016/J.GSD.2018.06.005Ahmad et al., 2022 S. Ahmad, R. Singh, T. Arfin, K. Neeti Fluoride contamination, consequences and removal techniques in water: a review Environ. Sci. Adv, 1 (2022), pp. 620-661, 10.1039/D1VA00039JAhmadijokani et al., 2021 F. Ahmadijokani, H. Molavi, M. Rezakazemi, T.M. Aminabhavi, M. Arjmand Simultaneous detection and removal of fluoride from water using smart metal-organic framework-based adsorbents Coord. Chem. Rev. (2021), 10.1016/j.ccr.2021.214037Al-Asheh et al., 2021 S. Al-Asheh, M. Bagheri, A. Aidan Membrane bioreactor for wastewater treatment: a review Case Stud. Chem. Environ. Eng., 4 (2021), Article 100109, 10.1016/J.CSCEE.2021.100109Alagumuthu and Rajan, 2010 G. Alagumuthu, M. Rajan Equilibrium and kinetics of adsorption of fluoride onto zirconium impregnated cashew nut shell carbon Chem. Eng. J., 158 (2010), pp. 451-457, 10.1016/J.CEJ.2010.01.017Amrutha et al., 2023 Amrutha, G. Jeppu, C.R. Girish, B. Prabhu, K. Mayer Multi-component adsorption isotherms: review and modeling studies Environ. Process., 10 (2023), pp. 1-52, 10.1007/S40710-023-00631-0/FIGURES/2Aoun et al., 2018 A. Aoun, F. Darwiche, S. Al Hayek, J. Doumit The fluoride debate: the pros and cons of fluoridation Prev. Nutr. Food Sci., 23 (2018), p. 171, 10.3746/PNF.2018.23.3.171Araga et al., 2017 R. Araga, S. Soni, C.S. Sharma Fluoride adsorption from aqueous solution using activated carbon obtained from KOH-treated jamun (Syzygium cumini) seed J. Environ. Chem. Eng., 5 (2017), pp. 5608-5616, 10.1016/J.JECE.2017.10.023Arslan et al., 2024 D.Ş. Arslan, H. Ertap, Z.M. Şenol, N. El Messaoudi, V. Mehmeti Preparation of polyacrylamide titanium dioxide hybrid nanocomposite by direct polymerization and its applicability in removing crystal violet from aqueous solution J. Polym. Environ., 32 (2024), pp. 573-587, 10.1007/S10924-023-03004-8Ayalew, 2023 A.A. Ayalew Comparative adsorptive performance of adsorbents developed from kaolin clay and limestone for de-fluoridation of groundwater South Afr. J. Chem. Eng., 44 (2023), pp. 1-13, 10.1016/J.SAJCE.2022.11.002Ayaz et al., 2022 I. Ayaz, M. Rizwan, J.L. Ullman, H. Haroon, A. Qayyum, N. Ahmed, B.H. Elesawy, A.E. Askary, A.F. Gharib, K.A. Ismail Lignocellulosic based biochar adsorbents for the removal of fluoride and arsenic from aqueous solution: isotherm and kinetic modeling Polymers (2022), 10.3390/polym14040715Bansal et al., 2023 P. Bansal, D. Mishra, A. Vijayakumar, S. Chatterjee Aluminium terephthalate (Al-BDC) based metal organic framework decorated carboxymethylated filter cloth for defluoridation application J. Environ. Chem. Eng., 110233 (2023)Baunthiyal and Ranghar, 2014 M. Baunthiyal, S. Ranghar Physiological and biochemical responses of plants under fluoride stress: an overview Fluoride, 47 (2014), pp. 287-293Bera et al., 2023 B. Bera, S.S. Chowdhury, V.R. Sonawane, S. De High capacity aluminium substituted hydroxyapatite incorporated granular wood charcoal (Al-HApC) for fluoride removal from aqueous medium: batch and column study Chem. Eng. J., 466 (2023), Article 143264Bhattacharya et al., 2017 P. Bhattacharya, A.C. Samal, S. Banerjee, J. Pyne, S.C. Santra Assessment of potential health risk of fluoride consumption through rice, pulses, and vegetables in addition to consumption of fluoride-contaminated drinking water of West Bengal, India Environ. Sci. Pollut. Res., 24 (2017), pp. 20300-20314, 10.1007/s11356-017-9649-2Bhaumik and Mondal, 2016 R. Bhaumik, N.K. Mondal Optimizing adsorption of fluoride from water by modified banana peel dust using response surface modelling approach Appl. Water Sci., 6 (2016), pp. 115-135, 10.1007/S13201-014-0211-9/FIGURES/14Bilici Baskan and Biyikli, 2021 M. Bilici Baskan, A.R. Biyikli The adsorption of fluoride from aqueous solutions by Fe, Mn, and Fe/Mn modified natural clinoptilolite and optimization using response surface methodology Water Environ. Res., 93 (2021), pp. 620-635, 10.1002/WER.1464Borgohain et al., 2020 X. Borgohain, A. Boruah, G.K. Sarma, M.H. Rashid Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water J. Mol. Liq., 305 (2020), Article 112799, 10.1016/j.molliq.2020.112799Brahman et al., 2014 K.D. Brahman, T.G. Kazi, J.A. Baig, H.I. Afridi, A. Khan, S.S. Arain, M.B. Arain Fluoride and arsenic exposure through water and grain crops in nagarparkar, Pakistan Chemosphere, 100 (2014), pp. 182-189, 10.1016/j.chemosphere.2013.11.035Bustingorri et al., 2015 C. Bustingorri, K. Balestrasse, R.S. Lavado Efecto de altas concentraciones de arsénico y flúor en el suelo sobre plantas de soja Phyton, 84 (2015), pp. 407-416Cai et al., 2012 P. Cai, H. Zheng, C. Wang, H. Ma, J. Hu, Y. Pu, P. Liang Competitive adsorption characteristics of fluoride and phosphate on calcined Mg–Al–CO3 layered double hydroxides J. Hazard Mater., 213–214 (2012), pp. 100-108, 10.1016/J.JHAZMAT.2012.01.069Camarena-Rangel et al., 2015 N. Camarena-Rangel, A.N. Rojas Velázquez, M. del S. Santos-Díaz Fluoride bioaccumulation by hydroponic cultures of camellia (Camellia japonica spp.) and sugar cane (Saccharum officinarum spp.) Chemosphere, 136 (2015), pp. 56-62, 10.1016/j.chemosphere.2015.03.071Cao et al., 2003 J. Cao, Y. Zhao, J. Liu, R. Xirao, S. Danzeng, D. Daji, Y. Yan Brick tea fluoride as a main source of adult fluorosis Food Chem. Toxicol., 41 (2003), pp. 535-542, 10.1016/S0278-6915(02)00285-5Cao, Y., Kamel, M., Mohammadifard, K., Heshmati, J., A, M., Poor Heravi, M.R., Ghaffar Ebadi, A., 2021. Probing and comparison of graphene, boron nitride and boron carbide nanosheets for Flutamide adsorption: a DFT computational study. J. Mol. Liq. 343, 117487 https://doi.org/10.1016/j.molliq.2021.117487.Castro, T.F.D., Paiva, I.M., Carvalho, A.F.S., Assis, I.L., Palmieri, M.J., Andrade-Vieira, L. F., Marcussi, S., Solis-Murgas, L.D., 2018. Genotoxicity of spent pot liner as determined with the zebrafish (Danio rerio) experimental model. Environ. Sci. Pollut. Res. 25, 11527–11535. https://doi.org/10.1007/s11356-018-1404-9.Chae, G.T., Yun, S.T., Mayer, B., Kim, K.H., Kim, S.Y., Kwon, J.S., Kim, K., Koh, Y.K., 2007. Fluorine geochemistry in bedrock groundwater of South Korea. Sci. Total Environ. 385, 272–283. https://doi.org/10.1016/j.scitotenv.2007.06.038.Chen, C.-L., Shih, Y.-J., Su, J.F., Chen, K.-L., Huang, C.-P., 2022. Mesoporous zirconium pyrophosphate for the adsorption of fluoride from dilute aqueous solutions. Chem. Eng. J. 427, 132034 https://doi.org/10.1016/j.cej.2021.132034.Chen, W., Tang, H., Li, H., Zhao, Y., Wang, X., Chen, J., Chen, Z., Zhu, Y., Yang, W., 2023a. Efficient defluoridation of water by utilizing nanosized Ce-Fe bimetal oxyhydroxides encapsulated inside porous polystyrene anion exchanger. Chem. Eng. J. 461, 141820.Chen, Y., Chen, Q., Kasomo, R.M., Jin, Y., Yang, P., Zheng, H., Weng, X., Li, H., Song, S., 2023b. Adsorption of fluoride from aqueous solutions using graphene oxide composite materials at a neutral pH. J. Mol. Liq. 377, 121467 https://doi.org/ 10.1016/j.molliq.2023.121467.Chigondo, M., Paumo, H.K., Bhaumik, M., Pillay, K., Maity, A., 2018. Rapid high adsorption performance of hydrous cerium-magnesium oxides for removal of fluoride from water. J. Mol. Liq. 265, 496–509. https://doi.org/10.1016/J. MOLLIQ.2018.06.015.Chioca, L.R., Raupp, I.M., Da Cunha, C., Losso, E.M., Andreatini, R., 2008. Subchronic fluoride intake induces impairment in habituation and active avoidance tasks in rats. Eur. J. Pharmacol. 579, 196–201. https://doi.org/10.1016/j.ejphar.2007.10.019.Chirumari, K., Reddy, P.K., 2007. Dose-dependent effects of fluoride on neurochemical milieu in the hippocampus and neocortex of rat brain. Fluoride 40, 101–110.Choi, M.Y., Kang, J.K., Lee, C.G., Park, S.J., 2022. Feasibility of fluoride removal using calcined Mactra veneriformis shells: adsorption mechanism and optimization study using RSM and ANN. Chem. Eng. Res. Des. 188, 1042–1053. https://doi.org/ 10.1016/j.cherd.2022.10.031.Choong, C.E., Wong, K.T., Jang, S.B., Nah, I.W., Choi, J., Ibrahim, S., Yoon, Y., Jang, M., 2020. Fluoride removal by palm shell waste based powdered activated carbon vs. functionalized carbon with magnesium silicate: implications for their application in water treatment. Chemosphere 239, 124765. https://doi.org/10.1016/J. CHEMOSPHERE.2019.124765.Choudhary, M., Kumar, R., Neogi, S., 2020. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J. Hazard Mater. 392, 122441 https://doi.org/10.1016/j. jhazmat.2020.122441.Cigero ˘ glu, ˘ Z., El Messaoudi, N., S¸ enol, Z.M., Bas¸kan, G., Georgin, J., Gubernat, S., 2024. Clay-based nanomaterials and their adsorptive removal efficiency for dyes and antibiotics: a review. Mater. Today Sustain. 26, 100735 https://doi.org/10.1016/J. MTSUST.2024.100735.Cigero ˘ glu, ˘ Z., Kazan-Kaya, E.S., El Messaoudi, N., Fernine, Y., Am´erico-Pinheiro, J.H.P., Jada, A., 2023. Remediation of tetracycline from aqueous solution through adsorption on g-C3N4-ZnO-BaTiO3 nanocomposite: optimization, modeling, and theoretical calculation. J. Mol. Liq. 369, 120866 https://doi.org/10.1016/J. MOLLIQ.2022.120866.Costa, L.R. de C., Jurado-Davila, I.V., Oliveira, J.T. De, Nunes, K.G.P., Estumano, D.C., Oliveira, R.A. de, Carissimi, E., F´eris, L.A., 2024. Exploring key parameters in adsorption for effective fluoride removal: a comprehensive review and engineering implications. Appl. Sci. 2024 14. https://doi.org/10.3390/APP14052161, 2161 14, 2161.da Silva, A.F.V., da Silva, J., Vicente, R., Ambrosi, A., Zin, G., Di Luccio, M., de Oliveira, J.V., 2023. Recent advances in surface modification using polydopamine for the development of photocatalytic membranes for oily wastewater treatment. J. Water Process Eng. 53, 103743 https://doi.org/10.1016/j.jwpe.2023.103743.Damtie, M.M., Woo, Y.C., Kim, B., Hailemariam, R.H., Park, K.D., Shon, H.K., Park, C., Choi, J.S., 2019. Removal of fluoride in membrane-based water and wastewater treatment technologies: performance review. J. Environ. Manag. 251, 109524 https://doi.org/10.1016/J.JENVMAN.2019.109524.Das, L., Das, P., Bhowal, A., 2023. Synthesis and application of alginate-nanocellulose composite beads for defluoridation process in a batch and fluidized bed reactor. J. Environ. Manag. 344, 118569.Daverey, A., Pandey, D., Verma, P., Verma, S., Shah, V., Dutta, K., Arunachalam, K., 2019. Recent advances in energy efficient biological treatment of municipal wastewater. Bioresour. Technol. Rep. 7, 100252 https://doi.org/10.1016/J. BITEB.2019.100252.Dehghani, M.H., Karri, R.R., Lima, E.C., Mahvi, A.H., Nazmara, S., Ghaedi, A.M., Fazlzadeh, M., Gholami, S., 2020. Regression and mathematical modeling of fluoride ion adsorption from contaminated water using a magnetic versatile biomaterial & chelating agent: insight on production & experimental approaches, mechanism and effects of potential interferers. J. Mol. Liq. 315, 113653 https://doi.org/10.1016/j. molliq.2020.113653.Dehmani, Y., Franco, D.S.P., Georgin, J., Lamhasni, T., Brahmi, Y., Oukhrib, R., Mustapha, B., Moussout, H., Ouallal, H., Sadik, A., 2023. Comparison of Phenol Adsorption Property and Mechanism onto Different Moroccan Clays.Dewi, R., Shamsuddin, N., Bakar, M.S.A., Santos, J.H., Bilad, M.R., Lim, L.H., 2021. Progress in emerging contaminants removal by adsorption/membrane filtrationbased technologies: a review. Indones. J. Sci. Technol. 6, 577–618.Dhillon, A., Kumar, D., 2015. Development of a nanoporous adsorbent for the removal of health-hazardous fluoride ions from aqueous systems. J. Mater. Chem. A 3, 4215–4228. https://doi.org/10.1039/C4TA06147K.Dhillon, A., Sapna, Choudhary, B.L., Kumar, D., Prasad, S., 2018. Excellent disinfection and fluoride removal using bifunctional nanocomposite. Chem. Eng. J. 337, 193–200. https://doi.org/10.1016/J.CEJ.2017.12.030.Dhillon, A., Soni, S.K., Kumar, D., 2017. Enhanced fluoride removal performance by Ce–Zn binary metal oxide: adsorption characteristics and mechanism. J. Fluor. Chem. 199, 67–76. https://doi.org/10.1016/J.JFLUCHEM.2017.05.002.Dolejˇs, D., Baker, D.R., 2007. Liquidus equilibria in the system K2O-Na2 O-A12O3-SiO2- F2O-1 -H2O to 100 MPa: I. Silicate-fluoride liquid immiscibility in anhydrous systems. J. Petrol. 48, 785–806. https://doi.org/10.1093/petrology/egm001.Dondossola, E.R., Pacheco, S.D., Visentin, S.C., Mendes, N.V., Baldin, S.L., Bernardo, H. T., Scussel, R., Rico, E.P., 2022. Prolonged fluoride exposure alters neurotransmission and oxidative stress in the zebrafish brain. Neurotoxicology 89, 92–98. https://doi.org/10.1016/j.neuro.2022.01.008.EL Kaim Billah, R., Zaghloul, A., Ahsaine, H.A., BaQais, A., Khadoudi, I., El Messaoudi, N., Agunaou, M., Soufiane, A., Jugade, R., 2022. Methyl orange adsorption studies on glutaraldehyde cross-linking chitosan/fluorapatite-based natural phosphate composite. Int. J. Environ. Anal. Chem. https://doi.org/10.1080/ 03067319.2022.2130690.El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Fernine, Y., Bouich, A., Lacherai, A., Jada, A., 2022a. Modification of low-cost adsorbent prepared from agricultural solid waste for the adsorption and desorption of cationic dye. Emergent Mater 5, 1679–1688. https://doi.org/10.1007/S42247-022-00390-Y.El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Lacherai, A., Chegini, Z.G., Bouich, A., 2022b. Removal of Congo red from aqueous solution in single and binary mixture systems using Argan nutshell wood. Pigment Resin Technol. 51, 477–488. https://doi.org/10.1108/PRT-04-2021-0045.El Messaoudi, N., Cigero ˘ glu, ˘ Z., S¸ enol, Z.M., Bouich, A., Kazan-Kaya, E.S., Noureen, L., Am´erico-Pinheiro, J.H.P., 2024a. Green synthesis of nanoparticles for remediation organic pollutants in wastewater by adsorption. Adv. Chem. Pollution, Environ. Manag. Prot. 10, 305–345. https://doi.org/10.1016/BS.APMP.2023.06.016.El Messaoudi, N., Cigero ˘ glu, ˘ Z., S¸ enol, Z.M., El Hajam, M., Noureen, L., 2023a. A comparative review of the adsorption and photocatalytic degradation of tetracycline in aquatic environment by g-C3N4-based materials. J. Water Process Eng. 55, 104150 https://doi.org/10.1016/J.JWPE.2023.104150.El Messaoudi, N., Cigero ˘ glu, ˘ Z., S¸ enol, Z.M., Kazan-Kaya, E.S., Fernine, Y., Gubernat, S., Lopicic, Z., 2024b. Green synthesis of CuFe2O4 nanoparticles from bioresource extracts and their applications in different areas: a review. Biomass Convers. Biorefinery 2024, 1–22. https://doi.org/10.1007/S13399-023-05264-9.El Messaoudi, N., El Khomri, M., Chegini, Z.G., Bouich, A., Dbik, A., Bentahar, S., Labjar, N., Iqbal, M., Jada, A., Lacherai, A., 2022a. Dye removal from aqueous solution using nanocomposite synthesized from oxalic acid-modified agricultural solid waste and ZnFe2O4 nanoparticles. Nanotechnol. Environ. Eng. 7, 797–811. https://doi.org/10.1007/S41204-021-00173-6.El Messaoudi, N., El Khomri, M., Chlif, N., Chegini, Z.G., Dbik, A., Bentahar, S., Lacherai, A., 2021. Desorption of Congo red from dye-loaded Phoenix dactylifera date stones and Ziziphus lotus jujube shells. Groundw Sustain Dev 12, 100552. https://doi.org/10.1016/j.gsd.2021.100552.El Messaoudi, N., El Khomri, M., Dbik, A., Bentahar, S., Lacherai, A., 2016. Selective and competitive removal of dyes from binary and ternary systems in aqueous solutions by pretreated jujube shell (Zizyphus lotus). J. Dispersion Sci. Technol. 38, 1168–1174. https://doi.org/10.1080/01932691.2016.1228070.El Messaoudi, N., El Mouden, A., Fernine, Y., El Khomri, M., Bouich, A., Faska, N., Cigero ˘ glu, ˘ Z., Am´erico-Pinheiro, J.H.P., Jada, A., Lacherai, A., 2023b. Green synthesis of Ag2O nanoparticles using Punica granatum leaf extract for sulfamethoxazole antibiotic adsorption: characterization, experimental study, modeling, and DFT calculation. Environ. Sci. Pollut. Res. 30, 81352–81369. https:// doi.org/10.1007/S11356-022-21554-7El Messaoudi, N., Mouden, A. El, Khomri, M. El, Bouich, A., Fernine, Y., Cigero ˘ glu, ˘ Z., Am´erico-Pinheiro, J.H.P., Labjar, N., Jada, A., Sillanpa¨¨ a, M., Lacherai, A., 2022b. Experimental study and theoretical statistical modeling of acid blue 25 remediation using activated carbon from Citrus sinensis leaf. Fluid Phase Equil. 563, 113585 https://doi.org/10.1016/J.FLUID.2022.113585.El Mouden, A., El Guerraf, A., El Messaoudi, N., Haounati, R., Ait El Fakir, A., Lacherai, A., 2022. Date stone functionalized with 3-aminopropyltriethoxysilane as a potential biosorbent for heavy metal ions removal from aqueous solution. Chem. Africa 5, 745–759. https://doi.org/10.1007/S42250-022-00350-3.El Mouden, A., El Messaoudi, N., El Guerraf, A., Bouich, A., Mehmeti, V., Lacherai, A., Jada, A., Pinˆe Am´erico-Pinheiro, J.H., 2023. Removal of cadmium and lead ions from aqueous solutions by novel dolomite-quartz@Fe3O4 nanocomposite fabricated as nanoadsorbent. Environ. Res. 225, 115606 https://doi.org/10.1016/J. ENVRES.2023.115606.Fako, V.E., Furgeson, D.Y., 2009. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv. Drug Deliv. Rev. 61, 478–486. https://doi. org/10.1016/j.addr.2009.03.008.Fan, J., Chen, K., Xu, J., Abm, K., Chen, Y., Chen, L., Yan, X., 2022. Physiological effects induced by aluminium and fluoride stress in tall fescue (Festuca arundinacea Schreb). Ecotoxicol. Environ. Saf. 231, 113192 https://doi.org/10.1016/J. ECOENV.2022.113192.Fiyadh, S.S., Alardhi, S.M., Al Omar, M., Aljumaily, M.M., Al Saadi, M.A., Fayaed, S.S., Ahmed, S.N., Salman, A.D., Abdalsalm, A.H., Jabbar, N.M., El-Shafi, A., 2023. A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique. Heliyon 9, e15455. https://doi.org/10.1016/J.HELIYON.2023.E15455.Fluoridation, 2015. U.S. Public health service recommendation for fluoride concentration in drinking water for the prevention of dental caries. Publ. Health Rep. 130, 318. https://doi.org/10.1177/003335491513000408. U.S.D. of H. and H.S.F.P. on C.W.Franco, Dison S.P., Georgin, J., Lima, E.C., Silva, L.F.O., 2022a. Journal of Water Process Engineering Advances made in removing paraquat herbicide by adsorption technology : a review. J. Water Process Eng. 49, 102988 https://doi.org/10.1016/j. jwpe.2022.102988.Franco, Dison S.P., Georgin, J., Netto, M.S., da Boit Martinello, K., Silva, L.F.O., 2022b. Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model. J. Mol. Liq. 356, 119021 https://doi.org/10.1016/j.molliq.2022.119021.Gao, M., Wang, W., Yang, H., Ye, B.C., 2019. Hydrothermal synthesis of hierarchical hollow hydroxyapatite microspheres with excellent fluoride adsorption property. Microporous Mesoporous Mater. 289 https://doi.org/10.1016/j. micromeso.2019.109620.Gao, Y., Li, M., Ru, Y., Fu, J., 2021. Fluoride removal from water by using micron zirconia/zeolite molecular sieve: characterization and mechanism. Groundw. Sustain. Dev. 13, 100567 https://doi.org/10.1016/J.GSD.2021.100567.Georgin, J., Franco, D.S.P., Da Boit Martinello, K., Lima, E.C., Silva, L.F.O., 2022. A review of the toxicology presence and removal of ketoprofen through adsorption technology. J. Environ. Chem. Eng. 10, 107798 https://doi.org/10.1016/j. jece.2022.107798.Georgin, J., Franco, D.S.P., Manzar, M.S., Meili, L., El Messaoudi, N., 2024. A critical and comprehensive review of the current status of 17β-estradiol hormone remediation through adsorption technology. Environ. Sci. Pollut. Res. 2024, 1–34. https://doi. org/10.1007/S11356-024-32876-Z.Georgin, J., Stracke, D., Franco, P., Sher, F., 2023. A review of the antibiotic ofloxacin : current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology. Chem. Eng. Res. Des. 193, 99–120. https://doi. org/10.1016/j.cherd.2023.03.025.Gonzalez-Aguiñaga, ˜ E., P´erez-Tavares, J.A., Patakfalvi, R., Szabo, ´ T., Ill´es, E., P´erez Ladron ´ de Guevara, H., Cardoso-Avila, P.E., Castaneda-Contreras, ˜ J., Saavedra Arroyo, Q.E., 2022. Amino acid complexes of zirconium in a carbon composite for the efficient removal of fluoride ions from water. Int. J. Environ. Res. Publ. Health. https://doi.org/10.3390/ijerph19063640.Grzegorzek, M., Majewska-Nowak, K., Ahmed, A.E., 2020. Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes. Sci. Total Environ. 722, 137681 https://doi.org/10.1016/J. SCITOTENV.2020.137681.Gubernat, S., Masłon, ´ A., Czarnota, J., Koszelnik, P., 2022. Phosphorus removal from wastewater using marl and travertine and their thermal modifications. Desalination Water Treat. 275, 35–46. https://doi.org/10.5004/dwt.2022.28529.Gubernat, S., Czarnota, J., Masłon, ´ A., Koszelnik, P., 2023a. Physicochemical properties of marl and travertine and their thermally modified forms in the perspective of phosphorus removal from wastewater. J. Ecol. Eng. 24.Gubernat, S., Czarnota, J., Masłon, ´ A., Koszelnik, P., Pękala, A., Skwarczynska-Wojsa, ´ A., 2023b. Efficiency of phosphorus removal and recovery from wastewater using marl and travertine and their thermally treated forms. J. Water Process Eng. 53, 103642 https://doi.org/10.1016/j.jwpe.2023.103642Gubernat, S., Masłon, ´ A., Czarnota, J., Koszelnik, P., 2020. Reactive materials in the removal of phosphorus compounds from wastewater-A review. Materials 13, 3377. https://doi.org/10.3390/ma13153377Guth, S., Hüser, S., Roth, A., Degen, G., Diel, P., Edlund, K., Eisenbrand, G., Engel, K.H., Epe, B., Grune, T., Heinz, V., Henle, T., Humpf, H.U., Jager, ¨ H., Joost, H.G., Kulling, S.E., Lampen, A., Mally, A., Marchan, R., Marko, D., Mühle, E., Nitsche, M. A., Rohrdanz, ¨ E., Stadler, R., van Thriel, C., Vieths, S., Vogel, R.F., Wascher, E., Watzl, C., Nothlings, ¨ U., Hengstler, J.G., 2020. Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Archives of Toxicology. Springer, Berlin Heidelberg. https://doi.org/10.1007/s00204-020-02725-2.Halder, S., Maiti, P., Karmakar, S., Roy, M.B., Roy, P.K., 2023. Enhanced fluoride removal from groundwater using red and white kaolinite lithomarge to develop a low cost eco-friendly defluoridation unit in rural areas of Shilabati river basin, West Bengal. J. Water Process Eng. 53, 103698.He, J., Yang, Y., Wu, Z., Xie, C., Zhang, K., Kong, L., Liu, J., 2020. Review of fluoride removal from water environment by adsorption. J. Environ. Chem. Eng. 8, 104516 https://doi.org/10.1016/J.JECE.2020.104516He, L., Tu, C., He, S., Long, J., Sun, Ya, Sun, Yan, Lin, C., 2021. Fluorine enrichment of vegetables and soil around an abandoned aluminium plant and its risk to human health. Environ. Geochem. Health 43, 1137–1154. https://doi.org/10.1007/s10653- 020-00568-5.He, S., Ji, J., Huang, H., Xiao, B., Yi, Y., Yang, J., 2019. Experimental study on removal of high concentration fluoride wastewater by ultra-magnetic separator and adsorption method. Environ. Eng. 37, 20–23.Hirscher, M., Yartys, V.A., Baricco, M., Bellosta von Colbe, J., Blanchard, D., Bowman, R. C., Broom, D.P., Buckley, C.E., Chang, F., Chen, P., Cho, Y.W., Crivello, J.C., Cuevas, F., David, W.I.F., de Jongh, P.E., Denys, R.V., Dornheim, M., Felderhoff, M., Filinchuk, Y., Froudakis, G.E., Grant, D.M., Gray, E.M.A., Hauback, B.C., He, T., Humphries, T.D., Jensen, T.R., Kim, S., Kojima, Y., Latroche, M., Li, H.W., Lototskyy, M.V., Makepeace, J.W., Møller, K.T., Naheed, L., Ngene, P., Nor´eus, D., Nygård, M.M., Orimo, S. ichi, Paskevicius, M., Pasquini, L., Ravnsbæk, D.B., Veronica Sofianos, M., Udovic, T.J., Vegge, T., Walker, G.S., Webb, C.J., Weidenthaler, C., Zlotea, C., 2020. Materials for hydrogen-based energy storage – past, recent progress and future outlook. J. Alloys Compd. 827, 153548 https://doi. org/10.1016/J.JALLCOM.2019.153548.Hongtao, L., Shuxia, L., Hua, Z., Yanling, Q., Daqiang, Y., Jianfu, Z., Zhiliang, Z., 2018. Comparative study on synchronous adsorption of arsenate and fluoride in aqueous solution onto MgAlFe-LDHs with different intercalating anions. RSC Adv. 8, 33301–33313. https://doi.org/10.1039/C8RA05968C.Hu, C.Y., Lo, S.L., Kuan, W.H., Lee, Y.D., 2005. Removal of fluoride from semiconductor wastewater by electrocoagulation–flotation. Water Res. 39, 895–901. https://doi. org/10.1016/J.WATRES.2004.11.034Hu, J., Song, J., Han, X., Wen, Q., Yang, W., Pan, W., Jian, S., Jiang, S., 2023. Fabrication of Ce-La-MOFs for defluoridation in aquatic systems: a kinetics, thermodynamics and mechanisms study. Sep. Purif. Technol. 314, 123562.Hu, Q., Zhang, Z., 2019. Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: a theoretical analysis. J. Mol. Liq. 277, 646–648. https:// doi.org/10.1016/J.MOLLIQ.2019.01.005.Huang, H., Liu, J., Zhang, P., Zhang, D., Gao, F., 2017. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem. Eng. J. 307, 696–706. https://doi. org/10.1016/J.CEJ.2016.08.134Huang, J., Liu, T., Zhang, Y., Hu, P., 2023a. Reinforced adsorption mechanism of fluorine ions by calcium-depleted hydroxyapatite and application in the raffinate from the vanadium industry. Chem. Eng. J. 452 https://doi.org/10.1016/j.cej.2022.139379Huang, S., Zhang, X., Wang, L., Li, D., Zhang, C., Yang, L., He, Q., Gao, B., 2023b. Enhanced water defluoridation using ion channel modified hydroxyapatite: experimental, mechanisms and DFT calculation. Appl. Surf. Sci. 615, 156351.Huang, Y., Wang, X., Xu, Y., Feng, S., Liu, J., Wang, H., 2021. Amino-functionalized porous PDVB with high adsorption and regeneration performance for fluoride removal from water. Green Chem. Eng. 2, 224–232. https://doi.org/10.1016/j. gce.2020.11.011.Ibrahim, M., Siddique, A., Verma, L., Singh, J., Koduru, J.R., 2019. Adsorptive removal of fluoride from aqueous solution by biogenic iron permeated activated carbon derived from sweet lime waste. Acta Chim. Slov. 66 https://doi.org/10.17344/ acsi.2018.4717.Iriel, A., Bruneel, S.P., Schenone, N., Cirelli, A.F., 2018. The removal of fluoride from aqueous solution by a lateritic soil adsorption: kinetic and equilibrium studies. Ecotoxicol. Environ. Saf. 149, 166–172. https://doi.org/10.1016/J. ECOENV.2017.11.016.Irshad, Z., Bibi, I., Ghafoor, A., Majid, F., Kamal, S., Ezzine, S., Elqahtani, Z.M., Alwadai, N., El Messaoudi, N., Iqbal, M., 2022. Ni doped SrFe12O19 nanoparticles synthesized via micro-emulsion route and photocatalytic activity evaluation for the degradation of crystal violet under visible light irradiation. Results Phys. 42, 106006 https://doi.org/10.1016/J.RINP.2022.106006.Izuagie, A.A., Gitari, W.M., Gumbo, J.R., 2016. Synthesis and performance evaluation of Al/Fe oxide coated diatomaceous earth in groundwater defluoridation: towards fluorosis mitigation. J. Environ. Sci. Heal. Part A 51, 810–824. https://doi.org/ 10.1080/10934529.2016.1181445.Izuora, K., Twombly, J.G., Whitford, G.M., Demertzis, J., Pacifici, R., Whyte, M.P., 2011. Skeletal fluorosis from brewed tea. J. Clin. Endocrinol. Metab. 96, 2318–2324. https://doi.org/10.1210/jc.2010-2891.Jeyaseelan, A., Katubi, K.M.M., Alsaiari, N.S., Naushad, M., Viswanathan, N., 2021. Design and fabrication of sulfonic acid functionalized graphene oxide for enriched fluoride adsorption. Diam. Relat. Mater. 117, 108446 https://doi.org/10.1016/j. diamond.2021.108446.Jeyaseelan, A., Viswanathan, N., Govindasamy, M., Alsaiari, N.S., Katubi, K.M., 2023a. Fabricated design of hydrotalcite embedded lanthanum organic frameworks for defluoridation of water. Environ. Prog. Sustain. Energy, e14132.Jeyaseelan, A., Viswanathan, N., Kumar, I.A., Ansar, S., 2023b. Effective defluoridation using lanthanum-organic frameworks encapsulated hydrotalcite based bio-hybrid beads. J. Solid State Chem. 124301.Jeyaseelan, A., Viswanathan, N., Kumar, I.A., Naushad, M., 2023c. Design of hydrotalcite and biopolymers entrapped tunable cerium organic cubic hybrid material for superior fluoride adsorption. Colloids Surf. B Biointerfaces 224, 113190. https://doi. org/10.1016/j.colsurfb.2023.113190.Jeyaseelan, A., Viswanathan, N., Kumar, I.A., Naushad, M., 2023d. Construction of magnetic particles sprayed hydroxyapatite based bio-ceramic beads for selective fluoride removal. J. Mol. Liq. 383, 122125.Jha, S.K., Nayak, A.K., Sharma, Y.K., 2008. Response of spinach (Spinacea oleracea) to the added fluoride in an alkaline soil. Food Chem. Toxicol. 46, 2968–2971. https:// doi.org/10.1016/j.fct.2008.05.024.Jia, Y., Zhu, B.S., Zhang, K.S., Jin, Z., Sun, B., Luo, T., Yu, X.Y., Kong, L.T., Liu, J.H., 2015. Porous 2-line ferrihydrite/bayerite composites (LFBC): fluoride removal performance and mechanism. Chem. Eng. J. 268, 325–336. https://doi.org/ 10.1016/J.CEJ.2015.01.080.Jian, S., Chen, Y., Shi, F., Liu, Y., Jiang, W., Hu, J., Han, X., Jiang, S., Yang, W., 2022a. Template-free synthesis of magnetic La-Mn-Fe tri-metal oxide nanofibers for efficient fluoride remediation: kinetics, isotherms, thermodynamics and reusability. Polymers 14. https://doi.org/10.3390/polym14245417.Jian, S., Cheng, Y., Ma, X., Guo, H., Hu, J., Zhang, K., Jiang, S., Yang, W., Duan, G., 2022b. Excellent fluoride removal performance by electrospun La–Mn bimetal oxide nanofibers. New J. Chem. 46, 490–497. https://doi.org/10.1039/D1NJ04976C.Jiang, Y., 2020. Study on Treatment of Fluoride-Containing Beneficiatic on Wastewater by Chemical Precipitation and Adsorption Composite Technology. Southwest University of Science and Technology, Mianyang, China. https://doi.org/10.33750/ ijhi.v4i1.102.Jiao, W., Chen, W., Chang, A.C., Page, A.L., 2012. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environ. Pollut. 168, 44–53. https://doi.org/10.1016/j.envpol.2012.03.052.Jin, Z., Jia, Y., Zhang, K.S., Kong, L.T., Sun, B., Shen, W., Meng, F.L., Liu, J.H., 2016. Effective removal of fluoride by porous MgO nanoplates and its adsorption mechanism. J. Alloys Compd. 675, 292–300. https://doi.org/10.1016/J. JALLCOM.2016.03.118Kahu, S., Shekhawat, A., Saravanan, D., Jugade, R., 2017. Stannic chloride impregnated chitosan for defluoridation of water. Int. J. Biol. Macromol. 104, 1528–1538. https://doi.org/10.1016/J.IJBIOMAC.2017.02.101.Kahya, N., Erim, F.B., 2023. Removal of fluoride ions from water by ceriumcarboxymethyl cellulose beads doped with CeO2 nanoparticles. Int. J. Biol. Macromol. 242, 124595.Kang, D., Yu, X., Ge, M., Lin, M., Yang, X., Jing, Y., 2018. Insights into adsorption mechanism for fluoride on cactus-like amorphous alumina oxide microspheres. Chem. Eng. J. 345, 252–259. https://doi.org/10.1016/J.CEJ.2018.03.174.Kazi, T.G., Brahman, K.D., Baig, J.A., Afridi, H.I., 2019. Bioaccumulation of arsenic and fluoride in vegetables from growing media: health risk assessment among different age groups. Environ. Geochem. Health 41, 1223–1234. https://doi.org/10.1007/ s10653-018-0207-8Kern, M.L., Vieiro, A.P., Machado, G., 2008. The fluoride in the groundwater of Guarani Aquifer System: the origin associated with black shales of Parana ´ Basin. Environ. Geol. 55, 1219–1233. https://doi.org/10.1007/s00254-007-1067-1.Kesari, K.K., Soni, R., Jamal, Q.M.S., Tripathi, P., Lal, J.A., Jha, N.K., Siddiqui, M.H., Kumar, P., Tripathi, V., Ruokolainen, J., 2021. Wastewater treatment and reuse: a review of its applications and health implications. Water Air Soil Pollut. 232, 1–28. https://doi.org/10.1007/S11270-021-05154-8/FIGURES/5.khalidi-idrissi, A., Madinzi, A., Anouzla, A., Pala, A., Mouhir, L., Kadmi, Y., Souabi, S., 2023. Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. Int. J. Environ. Sci. Technol. 20, 11719–11740. https://doi.org/10.1007/S13762-023-04867-Z, 2023 2010.Khulbe, K.C., Matsuura, T., 2018. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci. https://doi.org/10.1007/s13201-018-0661- 6.Kitalika, A.J., Machunda, R.L., Komakech, H.C., Njau, K.N., 2018. Fluoride variations in rivers on the slopes of mount meru in Tanzania. J. Chem. 2018 https://doi.org/ 10.1155/2018/7140902.Kong, L., Tian, Y., Pang, Z., Huang, X., Li, M., Li, N., Zhang, J., Zuo, W., Li, J., 2020. Needle-like Mg-La bimetal oxide nanocomposites derived from periclase and lanthanum for cost-effective phosphate and fluoride removal: characterization, performance and mechanism. Chem. Eng. J. 382, 122963 https://doi.org/10.1016/ J.CEJ.2019.122963.Kumar, R., Sinha, R., Sharma, P.K., Ivy, N., Kumar, P., Kant, N., Jha, A., Jha, P.K., Gupta, P.K., Sharma, P., Singh, R.K., Singh, R.P., Ghosh, A., Vara Prasad, P.V., 2021. Bioaccumulation of fluoride in plants and its microbially assisted remediation: a review of biological processes and technological performance. Processes 9, 1–24. https://doi.org/10.3390/pr9122154.Kumar, V., Talreja, N., Deva, D., Sankararamakrishnan, N., Sharma, A., Verma, N., 2011. Development of bi-metal doped micro- and nano multi-functional polymeric adsorbents for the removal of fluoride and arsenic(V) from wastewater. Desalination 282. https://doi.org/10.1016/j.desal.2011.05.013.Kumari, S., V, A., Sengupta, S., 2021. Adsorptive mitigation of fluoride ions using aluminosilicate adsorbents: a state-of-the-art review. Environ. Challenges 5, 100329. https://doi.org/10.1016/J.ENVC.2021.100329.Kumari, U., Behera, S.K., Meikap, B.C., 2019. A novel acid modified alumina adsorbent with enhanced defluoridation property: kinetics, isotherm study and applicability on industrial wastewater. J. Hazard Mater. 365, 868–882. https://doi.org/10.1016/J. JHAZMAT.2018.11.064.Kumari, U., Behera, S.K., Siddiqi, H., Meikap, B.C., 2020. Facile method to synthesize efficient adsorbent from alumina by nitric acid activation: batch scale defluoridation, kinetics, isotherm studies and implementation on industrial wastewater treatment. J. Hazard Mater. 381, 120917 https://doi.org/10.1016/J. JHAZMAT.2019.120917.Kundu, N., Panigrahi, M.K., Tripathy, S., Munshi, S., Powell, M.A., Hart, B.R., 2001. Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh District of Orissa, India. Environ. Geol. 41, 451–460. https://doi.org/10.1007/ s002540100414.Kusrini, E., Sofyan, N., Suwartha, N., Yesya, G., Priadi, C.R., 2015. Chitosanpraseodymium complex for adsorption of fluoride ions from water. J. Rare Earths 33, 1104–1113. https://doi.org/10.1016/S1002-0721(14)60533-0.Laonapakul, T., Suthi, T., Otsuka, Y., Mutoh, Y., Chaikool, P., Chindaprasirt, P., 2022. Fluoride adsorption enhancement of Calcined-Kaolin/Hydroxyapatite composite. Arab. J. Chem. 15, 104220 https://doi.org/10.1016/j.arabjc.2022.104220.Lavrenko, V.A., Podchernyaeva, I.A., Shchur, D.V., Zolotarenko, An D., Zolotarenko, Al D., 2018. Features of physical and chemical adsorption during interaction of polycrystalline and nanocrystalline materials with gases. Powder Metall. Met. Ceram. 56 https://doi.org/10.1007/s11106-018-9922-z.Laxmankumar, D., Satyanarayana, E., Dhakate, R., Saxena, P.R., 2019. Hydrogeochemical characteristics with respect to fluoride contamination in groundwater of Maheshwarm mandal, RR district, Telangana state, India. Groundw. Sustain. Dev. 8, 474–483. https://doi.org/10.1016/J.GSD.2019.01.008.Lee, J.I., Kang, J.K., Hong, S.H., Lee, C.G., Jeong, S., Park, S.J., 2021. Thermally treated Mytilus coruscus shells for fluoride removal and their adsorption mechanism. Chemosphere 263, 128328. https://doi.org/10.1016/J. CHEMOSPHERE.2020.128328.Li, C., Chen, N., Zhao, Y., Li, R., Feng, C., 2016a. Polypyrrole-grafted peanut shell biological carbon as a potential sorbent for fluoride removal: sorption capability and mechanism. Chemosphere 163, 81–89. https://doi.org/10.1016/J. CHEMOSPHERE.2016.08.016.Li, F., Jin, J., Shen, Z., Ji, H., Yang, M., Yin, Y., 2020a. Removal and recovery of phosphate and fluoride from water with reusable mesoporous Fe3O4@mSiO2@ mLDH composites as sorbents. J. Hazard Mater. 388 https://doi.org/10.1016/j. jhazmat.2019.121734.Li, T., Xie, D., He, C., Xu, X., Huang, B., Nie, R., Liu, S., Duan, Z., Liu, W., 2016b. Simultaneous adsorption of fluoride and hexavalent chromium by synthetic mesoporous alumina: performance and interaction mechanism. RSC Adv. 6, 48610–48619. https://doi.org/10.1039/C6RA04604E.Li, W., Zhang, T., Lv, L., Chen, Y., Tang, W., Tang, S., 2021. Room-temperature synthesis of MIL-100(Fe) and its adsorption performance for fluoride removal from water. Colloids Surfaces A Physicochem. Eng. Asp. 624, 126791 https://doi.org/10.1016/j. colsurfa.2021.126791.Li, X., Wu, X., Liu, S., Li, Y., Fan, J., Lv, K., 2020b. Effects of fluorine on photocatalysis. Chin. J. Catal. 41, 1451–1467. https://doi.org/10.1016/S1872-2067(20)63594-X.Li, Y., Zhang, L., Liao, M., Huang, C., Gao, J., 2023. Removal of fluoride from aqueous solution using shrimp shell residue as a biosorbent after astaxanthin recovery. Molecules. https://doi.org/10.3390/molecules28093897.Liang, P., An, R., Li, R., Wang, D., 2018. Comparison of La3 + and mixed rare earthsloaded magnetic chitosan beads for fluoride adsorption. Int. J. Biol. Macromol. 111, 255–263. https://doi.org/10.1016/J.IJBIOMAC.2017.12.151.Liu, D., Li, Y., Liu, C., Li, B., 2023. Porous Lanthanum-Zirconium phosphate with superior adsorption capability of fluorine for water treatment. J. Colloid Interface Sci. 636 https://doi.org/10.1016/j.jcis.2023.01.062.Liu, D., Lin, M., Chen, W., Wang, J., Guo, X., Li, X., Li, L., Si, F., 2022a. Chemosphere Enhancing catalytic ozonation activity of MCM-41 via one-step incorporating fluorine and iron : the interfacial reaction induced by hydrophobic sites and Lewis acid sites. Chemosphere 292, 133544. https://doi.org/10.1016/j. chemosphere.2022.133544.Liu, J., Zhao, C., Zhang, Z., Liao, J., Liu, Y., Cao, X., Yang, J., Yang, Y., Liu, N., 2016. Fluorine effects on U(VI) sorption by hydroxyapatite. Chem. Eng. J. 288, 505–515. https://doi.org/10.1016/J.CEJ.2015.12.045.Liu, M., Zang, Z., Zhang, S., Ouyang, G., Han, R., 2021. Enhanced fluoride adsorption from aqueous solution by zirconium (IV)-impregnated magnetic chitosan graphene oxide. Int. J. Biol. Macromol. 182, 1759–1768. https://doi.org/10.1016/j. ijbiomac.2021.05.116Liu, R., Gong, W., Lan, H., Yang, T., Liu, H., Qu, J., 2012. Simultaneous removal of arsenate and fluoride by iron and aluminum binary oxide: competitive adsorption effects. Sep. Purif. Technol. 92, 100–105. https://doi.org/10.1016/J. SEPPUR.2012.03.020.Liu, Z., Zheng, S., Zhang, D., 2022b. Al-impregnated granular activated carbon for removal of fluoride from aqueous solution: batch and fixed-bed column study. Water. https://doi.org/10.3390/w14213554.Lv, X., Xu, Z., Li, J., Chen, J., Liu, Q., 2016. Investigation of fluorine adsorption on nitrogen doped MgAl 2 O 4 surface by first-principles. Appl. Surf. Sci. 376 https:// doi.org/10.1016/j.apsusc.2016.03.108.Lyu, Y., Zhong, F., Tang, Z., He, Y., Han, X., 2022. Bioaccumulation and trophic transfer of organic ultraviolet absorbents in the food web of a freshwater lake: implications for risk estimation. Environ. Pollut. 294, 118612 https://doi.org/10.1016/J. ENVPOL.2021.118612.Ma, W., Lv, T., Song, X., Cheng, Z., Duan, S., Xin, G., Liu, F., Pan, D., 2014. Characteristics of selective fluoride adsorption by biocarbon-Mg/Al layered double hydroxides composites from protein solutions: kinetics and equilibrium isotherms study. J. Hazard Mater. 268, 166–176. https://doi.org/10.1016/J. JHAZMAT.2014.01.013.Madhukar, M., Murthy, B.M.S., Udayashankara, T.H., 2014. A review on conventional and alternative methods for defluoridation of water. J. Water Pollut. Purif. Res. 1, 1–12.Makete, N., Rizzu, M., Seddaiu, G., Gohole, L., Otinga, A., 2022. Fluoride toxicity in cropping systems: mitigation, adaptation strategies and related mechanisms. A review. Sci. Total Environ. 833, 155129 https://doi.org/10.1016/j. scitotenv.2022.155129Manni, A., El, Abdelilah, Amrani, I. El, Hassani, E., El, Abdeslam, Sadik, C., 2019. Valorization of coffee waste with Moroccan clay to produce a porous red ceramics (class BIII). Boletín la Soc. Espanola ˜ Cer´ amica y Vidr 1–9. https://doi.org/10.1016/j. bsecv.2019.03.001.Mannzhi, M.P., Edokpayi, J.N., 2023. Fluoride sorption using Al and Mg modified Dicerocaryum eriocarpum leaves mucilage. Environ. Technol. Innov. 30, 103075.Medellín-Castillo, N.A., Cruz-Briano, S.A., Leyva-Ramos, R., Moreno-Pirajan, ´ J.C., Torres-Dosal, A., Giraldo-Guti´errez, L., Labrada-Delgado, G.J., P´erez, R.O., Rodriguez-Estupinan, ˜ J.P., Reyes Lopez, S.Y., Berber Mendoza, M.S., 2020. Use of bone char prepared from an invasive species, pleco fish (Pterygoplichthys spp.), to remove fluoride and Cadmium(II) in water. J. Environ. Manag. 256, 109956 https:// doi.org/10.1016/J.JENVMAN.2019.109956.Mobarak, M., Mohamed, E.A., Selim, A.Q., Sellaoui, L., Lamine, A. Ben, Erto, A., BonillaPetriciolet, A., Seliem, M.K., 2019. Surfactant–modified serpentine for fluoride and Cr(VI) adsorption in single and binary systems: experimental studies and theoretical modeling. Chem. Eng. J. 369, 333–343. https://doi.org/10.1016/J. CEJ.2019.03.086.Mohamed, A., Nasser, W.S., Kamel, B.M., Hashem, T., 2019. Photodegradation of phenol using composite nanofibers under visible light irradiation. Eur. Polym. J. 113, 192–196. https://doi.org/10.1016/J.EURPOLYMJ.2019.01.062.Mohamed, A., Sanchez, E.P.V., Bogdanova, E., Bergfeldt, B., Mahmood, A., Ostvald, R.V., Hashem, T., 2021. Efficient fluoride removal from aqueous solution using zirconiumbased composite nanofiber membranes. Membranes. https://doi.org/10.3390/ membranes11020147.Mohan, S., Singh, D.K., Kumar, V., Hasan, S.H., 2017. Effective removal of Fluoride ions by rGO/ZrO2 nanocomposite from aqueous solution: fixed bed column adsorption modelling and its adsorption mechanism. J. Fluor. Chem. 194 https://doi.org/ 10.1016/j.jfluchem.2016.12.014.Mondal, D., Gupta, S., Reddy, D.V., Dutta, G., 2017. Fluoride enrichment in an alluvial aquifer with its subsequent effect on human health in Birbhum district, West Bengal, India. Chemosphere 168, 817–824. https://doi.org/10.1016/J. CHEMOSPHERE.2016.10.130.Mukhopadhyay, D., Priya, P., Chattopadhyay, A., 2016. Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: role of Nrf2/Keap1. Environ. Toxicol. Pharmacol. 40, 352–359. https://doi.org/10.1016/j. etap.2015.07.003.Mullick, A., Neogi, S., 2019. Ultrasound assisted synthesis of Mg-Mn-Zr impregnated activated carbon for effective fluoride adsorption from water. Ultrason. Sonochem. 50, 126–137. https://doi.org/10.1016/j.ultsonch.2018.09.010.Mullick, A., Neogi, S., 2018. Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption. Ultrason. Sonochem. 45, 65–77. https://doi.org/10.1016/J. ULTSONCH.2018.03.002.Muthu Prabhu, S., Meenakshi, S., 2016. Defluoridation of water using dicarboxylic acids mediated chitosan-polyaniline/zirconium biopolymeric complex. Int. J. Biol. Macromol. 85, 16–22. https://doi.org/10.1016/J.IJBIOMAC.2015.12.022.Nabbou, N., Belhachemi, M., Boumelik, M., Merzougui, T., Lahcene, D., Harek, Y., Zorpas, A.A., Jeguirim, M., 2019. Removal of fluoride from groundwater using natural clay (kaolinite): optimization of adsorption conditions. Compt. Rendus Chem. 22 https://doi.org/10.1016/j.crci.2018.09.010.Nehra, S., Dhillon, A., Kumar, D., 2020. Freeze–dried synthesized bifunctional biopolymer nanocomposite for efficient fluoride removal and antibacterial activity. J. Environ. Sci. 94, 52–63.Neuhauss, S.C.F., Rico, E.P., Gesemann, M., 2010. Nomenclature of glutamate transporters in zebrafish and other vertebrates. Brain Res. Bull. 83, 297. https://doi. org/10.1016/j.brainresbull.2010.09.010.Obijole, O.A., Mugera, G.W., Mudzielwana, R., Ndungu, P.G., Samie, A., Babatunde, A., 2021. Hydrothermally treated aluminosilicate clay (HTAC) for remediation of fluoride and pathogens from water: adsorbent characterization and adsorption modelling. Water Resour. Ind. 25, 100144 https://doi.org/10.1016/J. WRI.2021.100144.Okibe, F.G., Ekanem, E.J., Paul, E.D., Shallangwa, G.A., Ekwumemgbo, P.A., Sallau, M.S., Abanka, O.C., 2010. Fluoride content of soil and vegetables from irrigation farms on the bank of river Galma, Zaria, Nigeria. Aust. J. Basic Appl. Sci. 4, 779–784.Onipe, T., Edokpayi, J.N., Odiyo, J.O., 2020. A review on the potential sources and health implications of fluoride in groundwater of Sub-Saharan Africa. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 55, 1078–1093. https://doi. org/10.1080/10934529.2020.1770516Orimolade, B.O., Zwane, B.N., Koiki, B.A., Rivallin, M., Bechelany, M., Mabuba, N., Lesage, G., Cretin, M., Arotiba, O.A., 2020. Coupling cathodic electro-fenton with anodic photo-electrochemical oxidation: a feasibility study on the mineralization of paracetamol. J. Environ. Chem. Eng. 8, 104394 https://doi.org/10.1016/j. jece.2020.104394.Oryema, B., Jurua, E., Madiba, I.G., Ahmad, I., Aisida, S.O., Ezema, F.I., Maaza, M., Li, X. X., Wu, X., Liu, S., Li, Y., Fan, J., Lv, K., Xin, L., Yuxin, W., Pan, L., Jingming, G., Guosong, L., Liu, D., Lin, M., Chen, W., Wang, J., Guo, X., Li, X.X., Li, L., Maurya, A., Sharma, D., Partap, M., Kumar, R., Bhargava, B., 2022. Microbially-assisted phytoremediation toward air pollutants: current trends and future directions. Environ. Technol. Innov. 292, 103140 https://doi.org/10.1016/j. chemosphere.2022.133544.Pettenati, M., Perrin, J., Pauwels, H., Ahmed, S., 2013. Simulating fluoride evolution in groundwater using a reactive multicomponent transient transport model: application to a crystalline aquifer of Southern India. Appl. Geochem. 29, 102–116. https://doi. org/10.1016/j.apgeochem.2012.11.001.Pillai, P., Dharaskar, S., Shah, M., Sultania, R., 2020. Determination of fluoride removal using silica nano adsorbent modified by rice husk from water. Groundw. Sustain. Dev. 11, 100423 https://doi.org/10.1016/J.GSD.2020.100423.Podgorski, J., Berg, M., 2022. Global analysis and prediction of fluoride in groundwater. Nat. Commun. 13, 1–9. https://doi.org/10.1038/s41467-022-31940-x.Raghav, S., Kumar, D., 2019. Fabrication of aluminium and iron impregnated pectin biopolymeric material for effective utilization of fluoride adsorption studies. Groundw. Sustain. Dev. 9, 100233 https://doi.org/10.1016/J.GSD.2019.100233Ramos-Vargas, S., Alfaro-Cuevas-Villanueva, R., Huirache-Acuna, ˜ R., Cort´esMartínez, R., 2018. Removal of fluoride and arsenate from aqueous solutions by aluminum-modified guava seeds. Appl. Sci. https://doi.org/10.3390/app8101807.Rathore, V.K., Dohare, D.K., Mondal, P., 2016. Competitive adsorption between arsenic and fluoride from binary mixture on chemically treated laterite. J. Environ. Chem. Eng. 4, 2417–2430. https://doi.org/10.1016/J.JECE.2016.04.017.Rathore, V.K., Mondal, P., 2017. Competitive adsorption of arsenic and fluoride onto economically prepared aluminum oxide/hydroxide nanoparticles: multicomponent isotherms and spent adsorbent management. Ind. Eng. Chem. Res. 56, 8081–8094. https://doi.org/10.1021/ACS.IECR.7B01139/ASSET/IMAGES/LARGE/IE-2017- 01139Q_0010.JPEG.Rico, E.P., de Oliveira, D.L., Rosemberg, D.B., Mussulini, B.H., Bonan, C.D., Dias, R.D., Wofchuk, S., Souza, D.O., Bogo, M.R., 2010. Expression and functional analysis of Na +-dependent glutamate transporters from zebrafish brain. Brain Res. Bull. 81, 517–523. https://doi.org/10.1016/j.brainresbull.2009.11.011.Rico, E.P., Rosemberg, D.B., Seibt, K.J., Capiotti, K.M., Da Silva, R.S., Bonan, C.D., 2011. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol. Teratol. 33, 608–617. https://doi.org/10.1016/j. ntt.2011.07.007.Rizzu, M., Tanda, A., Canu, L., Masawe, K., Mtei, K., Deroma, M.A., Roggero, P.P., Seddaiu, G., 2020. Fluoride uptake and translocation in food crops grown in fluoride-rich soils. J. Sci. Food Agric. 100, 5498–5509. https://doi.org/10.1002/ jsfa.10601.Rizzu, M., Tanda, A., Cappai, C., Roggero, P.P., Seddaiu, G., 2021. Impacts of soil and water fluoride contamination on the safety and productivity of food and feed crops: a systematic review. Sci. Total Environ. 787, 147650 https://doi.org/10.1016/j. scitotenv.2021.147650.Saleh, T.A., 2022. Adsorption technology and surface science. In: Interface Science and Technology. https://doi.org/10.1016/B978-0-12-849876-7.00006-3.Sarkar, C., Basu, J.K., Samanta, A.N., 2019. Experimental and kinetic study of fluoride adsorption by Ni and Zn modified LD slag based geopolymer. Chem. Eng. Res. Des. 142, 165–175. https://doi.org/10.1016/J.CHERD.2018.12.006.Sarwar, A., Wang, J., Khan, M.S., Farooq, U., Riaz, N., Nazir, A., Mahmood, Q., Hashem, A., Al-Arjani, A.-B.F., Alqarawi, A.A., Abd_Allah, E.F., 2021. Iron oxide (Fe3O4)-supported SiO2 magnetic nanocomposites for efficient adsorption of fluoride from drinking water: synthesis, characterization, and adsorption isotherm analysis. Water. https://doi.org/10.3390/w13111514.Scheverin, V.N., Horst, M.F., Lassalle, V.L., 2022. Results in Engineering Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption. Results Eng 16, 100648. https://doi.org/10.1016/j.rineng.2022.100648.Sengupta, P., Saha, S., Banerjee, S., Dey, A., Sarkar, P., 2020. Removal of fluoride ion from drinking water by a new Fe(OH)3/nano CaO impregnated chitosan composite adsorbent. Polym. Technol. Mater. 59 https://doi.org/10.1080/ 25740881.2020.1725567.S¸ enol, Z.M., Elma, E., El Messaoudi, N., Mehmeti, V., 2023a. Performance of cross-linked chitosan-zeolite composite adsorbent for removal of Pb2+ ions from aqueous solutions: experimental and Monte Carlo simulations studies. J. Mol. Liq. 391, 123310 https://doi.org/10.1016/J.MOLLIQ.2023.123310.S¸ enol, Z.M., Messaoudi, N. El, Fernine, Y., Keskin, Z.S., 2023b. Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste (almond shell): experimental and DFT modeling studies. Biomass Convers. Biorefinery 1–14. https:// doi.org/10.1007/S13399-023-03781-1.Sepehr, M.N., Kazemian, H., Ghahramani, E., Amrane, A., Sivasankar, V., Zarrabi, M., 2014. Defluoridation of water via Light Weight Expanded Clay Aggregate (LECA): adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modeling. J. Taiwan Inst. Chem. Eng. 45, 1821–1834.Sewwandi, B.V.N., Kumarasinghe, A.R., Wu, Z., Bandara, P., Jayarathne, L., Bandara, A., Wijekoon, H., Xing, C., Weerasooriya, R., 2023. Size-tunable graphitized carbon spheres for water defluoridation. Colloids Surfaces A Physicochem. Eng. Asp. 670, 131582.Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot., Le 1–26. https://doi.org/10.1155/2012/217037, 2012.Sharma, P., Sen, K., Thakur, P., Chauhan, M., Chauhan, K., 2019. Spherically shaped pectin-g-poly(amidoxime)-Fe complex: a promising innovative pathway to tailor a new material in high amidoxime functionalization for fluoride adsorption. Int. J. Biol. Macromol. 140, 78–90. https://doi.org/10.1016/j.ijbiomac.2019.08.098.Shimelis, B., Zewge, F., Chandravanshi, B.S., 2006. Removal of excess fluoride from water by aluminum hydroxide. Bull. Chem. Soc. Ethiop. 20, 17–34. https://doi.org/ 10.4314/BCSE.V20I1.21140Silva, J.A., 2023. Wastewater treatment and reuse for sustainable water resources management: a systematic literature review. Sustain. Times 15, 10940. https://doi. org/10.3390/SU151410940/S1.Singh, B.J., Chakraborty, A., Sehgal, R., 2023. A systematic review of industrial wastewater management: evaluating challenges and enablers. J. Environ. Manag. 348, 119230 https://doi.org/10.1016/J.JENVMAN.2023.119230.Singh, J., Singh, P., Singh, A., 2016. Fluoride ions vs removal technologies: a study. Arab. J. Chem. 9, 815–824. https://doi.org/10.1016/J.ARABJC.2014.06.005.Singh, R., Khatri, P., Srivastava, N., Jain, S., Brahmachari, V., Mukhopadhyay, A., Mazumder, S., 2017. Fluoride exposure abates pro-inflammatory response and induces in vivo apoptosis rendering zebrafish (Danio rerio) susceptible to bacterial infections. Fish Shellfish Immunol. 63, 314–321. https://doi.org/10.1016/j. fsi.2017.02.022.Smedley, P.L., Nicolli, H.B., Macdonald, D.M.J., Barros, A.J., Tullio, J.O., 2002. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl. Geochem. 17, 259–284. https://doi.org/10.1016/ S0883-2927(01)00082-8.Solanki, Y.S., Agarwal, M., Maheshwari, K., Gupta, S., Shukla, P., Gupta, A.B., 2021. Removal of fluoride from water by using a coagulant (inorganic polymeric coagulant). Environ. Sci. Pollut. Res. 28, 3897–3905. https://doi.org/10.1007/ S11356-020-09579-2/METRICS.Song, J., Yang, W., Han, X., Jiang, S., Zhang, C., Pan, W., Jian, S., Hu, J., 2023. Performance of rod-shaped Ce metal–organic frameworks for defluoridation. Molecules 28, 3492. https://doi.org/10.3390/molecules28083492.Sternitzke, V., Kaegi, R., Audinot, J.N., Lewin, E., Hering, J.G., Johnson, C.A., 2012. Uptake of fluoride from aqueous solution on nano-sized hydroxyapatite: examination of a fluoridated surface layer. Environ. Sci. Technol. 46, 802–809. https://doi.org/10.1021/ES202750T/SUPPL_FILE/ES202750T_SI_001.PDFTan, T.L., Krusnamurthy, P.A., Nakajima, H., Rashid, S.A., 2020. Adsorptive, kinetics and regeneration studies of fluoride removal from water using zirconium-based metal organic frameworks. RSC Adv. 10, 18740–18752. https://doi.org/10.1039/ D0RA01268H.Taneja, L., Kochar, C., Kumar Yadav, P., Swarupa Tripathy, S., 2022. Adsorption: a preferred technique for fluoride removal from water. Mater. Today Proc. 71, 215–219. https://doi.org/10.1016/J.MATPR.2022.08.449.Telkapalliwar, N.G., Shivankar, V.M., 2019. Data of characterization and adsorption of fluoride from aqueous solution by using modified Azadirachta indica bark. Data Brief 26, 104509. https://doi.org/10.1016/j.dib.2019.104509.Tong, L., Liu, X., Liu, Y., Zhou, K., Zhang, S., Jia, Q., Lu, W., Huang, Y., Ni, G., 2023. Accumulation of high concentration fluoride in the Ulungur Lake water through weathering of fluoride containing rocks in Xinjiang, China. Environ. Pollut. 323, 121300 https://doi.org/10.1016/J.ENVPOL.2023.121300.Tripathy, S., Panigrahi, M.K., Kundu, N., 2005. Geochemistry of soil around a fluoride contaminated area in Nayagarh District, Orissa, India: factor analytical appraisal. Environ. Geochem. Health 27, 205–216. https://doi.org/10.1007/s10653-004- 0157-1.Turki, T., Hamdouni, A., Enesca, A., 2023. Fluoride adsorption from aqueous solution by modified zeolite—kinetic and isotherm studies. Mol. 2023 28, 4076. https://doi.org/ 10.3390/MOLECULES28104076. Page 4076 28.Velazquez-Jimenez, L.H., Vences-Alvarez, E., Flores-Arciniega, J.L., Flores-Zuniga, ˜ H., Rangel-Mendez, J.R., 2015. Water defluoridation with special emphasis on adsorbents-containing metal oxides and/or hydroxides: a review. Sep. Purif. Technol. 150, 292–307. https://doi.org/10.1016/J.SEPPUR.2015.07.006Vences-Alvarez, E., Velazquez-Jimenez, L.H., Chazaro-Ruiz, L.F., Diaz-Flores, P.E., Rangel-Mendez, J.R., 2015. Fluoride removal in water by a hybrid adsorbent lanthanum–carbon. J. Colloid Interface Sci. 455, 194–202. https://doi.org/10.1016/ J.JCIS.2015.05.048.Vilakati, B.R., Sivasankar, V., Nxumalo, E.N., Mamba, B.B., Omine, K., Msagati, T.A.M., 2019. Fluoride removal studies using virgin and Ti (IV)-modified Musa paradisiaca (plantain pseudo-stem) carbons. Environ. Sci. Pollut. Res. 26, 11565–11578. https:// doi.org/10.1007/s11356-018-2691-x.Vinati, A., Mahanty, B., Behera, S.K., 2015. Clay and clay minerals for fluoride removal from water: a state-of-the-art review. Appl. Clay Sci. 114, 340–348. https://doi.org/ 10.1016/J.CLAY.2015.06.013.Wang, A., Zhou, K., Liu, X., Liu, F., Zhang, C., Chen, Q., 2017a. Granular tri-metal oxide adsorbent for fluoride uptake: adsorption kinetic and equilibrium studies. J. Colloid Interface Sci. 505, 947–955. https://doi.org/10.1016/j.jcis.2017.06.074.Wang, D., Luo, L., Chen, Y., Chen, S., Qiu, X., Liu, M., 2023a. Fluoride removal from aqueous solution using Ce-modified red mud as adsorbent. Mater. Today Sustain. 24, 100502.Wang, F., Chen, Y., Dong, Y., Zhang, H., Yun, R., Liu, Z., 2023b. Removal of fluoride from geothermal water by waste-synthesized Al (OH) 3-HAP@ ZMS composite adsorbent: sorption capability and mechanism. Water Air Soil Pollut. 234, 411.Wang, H., Feng, Q., Liu, K., Li, Z., Tang, X., Li, G., 2017b. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process. J. Environ. Manag. 196, 72–79. https://doi.org/ 10.1016/J.JENVMAN.2017.03.015.Wang, J., Kang, D., Yu, X., Ge, M., Chen, Y., 2015. Synthesis and characterization of Mg–Fe–La trimetal composite as an adsorbent for fluoride removal. Chem. Eng. J. 264, 506–513. https://doi.org/10.1016/J.CEJ.2014.11.130Wang, J., Wu, L., Li, J., Tang, D., Zhang, G., 2018. Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: adsorption kinetics and mechanism. J. Alloys Compd. 753 https://doi.org/10.1016/j.jallcom.2018.04.177.Wang, J., Xu, W., Chen, L., Jia, Y., Wang, L., Huang, X.J., Liu, J., 2013. Excellent fluoride removal performance by CeO2–ZrO2 nanocages in water environment. Chem. Eng. J. 231, 198–205. https://doi.org/10.1016/J.CEJ.2013.07.022.Wang, M., Ye, H., Zheng, X., Chen, S., Xing, H., Tao, X., Dang, Z., Lu, G., 2023c. Adsorption behaviors and mechanisms of simultaneous cadmium and fluoride removal on waste bovine bone from aqueous solution. J. Environ. Chem. Eng. 11, 109035 https://doi.org/10.1016/J.JECE.2022.109035.Wang, R., Wang, D., Peng, W., Zhang, J., Liu, J., Wang, Y., Wang, X., 2022. Removal of F− from water by magnetic floriform magnesium zirconium hydrotalcite-like material doped with Fe2O3 and ZrO2. Desalination 544. https://doi.org/10.1016/j. desal.2022.116142.Wang, X., Wang, J., Li, W., Zhang, J., 2023d. Sustainable removal of fluorine ions using ZrO2-MgO@C composite. Sep. Purif. Technol. 310 https://doi.org/10.1016/j. seppur.2022.122933.Wang, X., Zhu, H., Sun, T., Liu, Y., Han, T., Lu, J., Dai, H., Zhai, L., 2019. Synthesis and study of an efficient metal-organic framework adsorbent (MIL-96 (Al)) for fluoride removal from water. J. Nanomater. 2019.Wang, Z., Gu, X., Zhang, Y., Zhang, X., Ngo, H.H., Liu, Y., Jiang, W., Tan, X., Wang, X., Zhang, J., 2021. Activated nano-Al2O3 loaded on polyurethane foam as a potential carrier for fluorine removal. J. Water Process Eng. 44 https://doi.org/10.1016/j. jwpe.2021.102444.Warren, C., Burgess, W.G., Garcia, M.G., 2005. Hydrochemical associations and depth profiles of arsenic and fluoride in Quaternary loess aquifers of northern Argentina. Mineral. Mag. 69, 877–886. https://doi.org/10.1180/0026461056950295.Weerasooriyagedara, M., Ashiq, A., Rajapaksha, A.U., Wanigathunge, R.P., Agarwal, T., Magana-Arachchi, D., Vithanage, M., 2020. Phytoremediation of fluoride from the environmental matrices: a review on its application strategies. Groundw. Sustain. Dev. 10, 100349 https://doi.org/10.1016/J.GSD.2020.100349Wimalasiri, A.K.D.V.K., Fernando, M.S., Williams, G.R., Dissanayake, D.P., de Silva, K.M. N., de Silva, R.M., 2021. Microwave assisted accelerated fluoride adsorption by porous nanohydroxyapatite. Mater. Chem. Phys. 257, 123712 https://doi.org/ 10.1016/j.matchemphys.2020.123712.Yang, W., Li, C., Tian, S., Liu, L., Liao, Q., 2020. Influence of synthesis variables of a solgel process on the properties of mesoporous alumina and their fluoride adsorption. Mater. Chem. Phys. 242, 122499 https://doi.org/10.1016/j. matchemphys.2019.122499.Yang, W., Shi, F., Jiang, W., Chen, Y., Zhang, K., Jian, S., Jiang, S., Zhang, C., Hu, J., 2022a. Outstanding fluoride removal from aqueous solution by a La-based adsorbent. RSC Adv. 12, 30522–30528. https://doi.org/10.1039/D2RA06284D.Yang, W., Tian, S., Tang, Q., Chai, L., Wang, H., 2017. Fungus hyphae-supported alumina: an efficient and reclaimable adsorbent for fluoride removal from water. J. Colloid Interface Sci. 496, 496–504.Yang, Y., Li, X., Gu, Y., Lin, H., Jie, B., Zhang, Q., Zhang, X., 2022b. Adsorption property of fluoride in water by metal organic framework: optimization of the process by response surface methodology technique. Surface. Interfac. 28, 101649 https://doi. org/10.1016/j.surfin.2021.101649.Yapo, N.S., Aw, S., Briton, B.G.H., Drogui, P., Yao, K.B., Adouby, K., 2022. Removal of fluoride in groundwater by adsorption using hydroxyapatite modified Corbula trigona shell powder. Chem. Eng. J. Adv. 12, 100386 https://doi.org/10.1016/j. ceja.2022.100386.Ye, C., Yan, B., Ji, X., Liao, B., Gong, R., Pei, X., Liu, G., 2019. Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: experimental and modeling. Ecotoxicol. Environ. Saf. 180, 366–373. https://doi. org/10.1016/j.ecoenv.2019.04.086.Ye, Y., Hu, Y., Hussain, Z., Li, X., Li, D., Kang, J., 2016. Simultaneous adsorptive removal of fluoride and phosphate by magnesia–pullulan composite from aqueous solution. RSC Adv. 6, 35966–35976. https://doi.org/10.1039/C6RA07175A.Ye, Y., Wei, Y., Gu, Y., Kang, D., Jiang, W., Kang, J., 2020. Simultaneous removal of fluoride and phosphate in a continuous fixed-bed column filled with magnesiapullulan composite. J. Alloys Compd. 838, 155528 https://doi.org/10.1016/J. JALLCOM.2020.155528.Yu, Y., Zhou, Z., Ding, Z., Zuo, M., Cheng, J., Jing, C., 2019. Simultaneous arsenic and fluoride removal using {201}TiO2–ZrO2: fabrication, characterization, and mechanism. J. Hazard Mater. 377, 267–273. https://doi.org/10.1016/J. JHAZMAT.2019.05.060.Yu, Z., Xu, C., Yuan, K., Gan, X., Feng, C., Wang, X., Zhu, L., Zhang, G., Xu, D., 2018. Characterization and adsorption mechanism of ZrO2 mesoporous fibers for healthhazardous fluoride removal. J. Hazard Mater. 346, 82–92. https://doi.org/10.1016/ J.JHAZMAT.2017.12.024.Zelentsov, V., Datsko, T., 2013. Thermodynamics of fluorine adsorption onto modified trepel. Termotehnica.Zelentsov, V.I., Datsko, T.Y., Dvornikova, E.E., 2008. Fluorine adsorption by aluminum oxihydrates subjected to thermal treatment. Surf. Eng. Appl. Electrochem. 44 https://doi.org/10.3103/S1068375508010134.Zeng, Z., Li, Q., Yan, J., Huang, L., Arulmani, S.R.B., Zhang, H., Xie, S., Sio, W., 2023. The model and mechanism of adsorptive technologies for wastewater containing fluoride: a review. Chemosphere 340, 139808. https://doi.org/10.1016/J. CHEMOSPHERE.2023.139808.Zhang, D., Gao, K., Zhang, X., Wang, M., 2022. Removal of fluorine from RECl3 in solution by adsorption, ion exchange and precipitation. Minerals 12. https://doi. org/10.3390/min12010031.Zhang, J., Brutus, T.E., Cheng, J., Meng, X., 2017. Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect. J. Environ. Sci. 57, 190–195. https://doi.org/ 10.1016/J.JES.2017.03.015.Zhang, K., Wu, S., Wang, X., He, J., Sun, B., Jia, Y., Luo, T., Meng, F., Jin, Z., Lin, D., Shen, W., Kong, L., Liu, J., 2015. Wide pH range for fluoride removal from water by MHS-MgO/MgCO3 adsorbent: kinetic, thermodynamic and mechanism studies. J. Colloid Interface Sci. 446, 194–202. https://doi.org/10.1016/J.JCIS.2015.01.049.Zhang, X., Qi, Y., Chen, Z., Song, N., Li, X., Ren, D., Zhang, S., 2021a. Evaluation of fluoride and cadmium adsorption modification of corn stalk by aluminum trichloride. Appl. Surf. Sci. 543, 148727 https://doi.org/10.1016/J. APSUSC.2020.148727Zhang, Y., Huang, K., 2019. Defluoridation behavior of layered Fe-Mg-Zr hydroxides and its continuous purification of groundwater. Colloids Surfaces A Physicochem. Eng. Asp. 578, 123640 https://doi.org/10.1016/J.COLSURFA.2019.123640.Zhang, Y.X., Jia, Y., 2016. Fluoride adsorption onto amorphous aluminum hydroxide: roles of the surface acetate anions. J. Colloid Interface Sci. 483, 295–306. https:// doi.org/10.1016/J.JCIS.2016.08.054.Zhang, Z., Wang, L., Zhou, B., Wang, S., Fan, L., Hu, S., Wu, Y., 2021b. Adsorption performance and mechanism of synthetic Schwertmannite to remove lowconcentration fluorine in water. Bull. Environ. Contam. Toxicol. 107 https://doi. org/10.1007/s00128-021-03147-1.Zhao, H., Lyu, Y., Hu, J., Li, M., Chen, H., Jiang, Y., Tang, M., Wu, Y., Sun, W., 2023. Reveal the major factors controlling quinolone adsorption on mesoporous carbon: batch experiment, DFT calculation, MD simulation, and machine learning modeling. Chem. Eng. J. 463, 142486 https://doi.org/10.1016/j.cej.2023.142486.Zhao, M., Wang, Q., Krua, L.S.N., Yi, R., Zou, R., Li, X., Huang, P., 2023. Application progress of new adsorption materials for removing fluorine from water. Water (Switzerland). https://doi.org/10.3390/w15040646.Zhou, Z., Yu, Y., Ding, Z., Zuo, M., Jing, C., 2019. Competitive adsorption of arsenic and fluoride on {2 0 1} TiO2. Appl. Surf. Sci. 466, 425–432. https://doi.org/10.1016/J. APSUSC.2018.10.052.Zhu, F., Guo, Z., Hu, X., 2020. Fluoride removal efficiencies and mechanism of schwertmannite from KMnO4/MnO2–Fe(II) processes. J. Hazard Mater. 397, 122789 https://doi.org/10.1016/J.JHAZMAT.2020.122789.Zhu, J., Lin, X., Wu, P., Zhou, Q., Luo, X., 2015. Fluoride removal from aqueous solution by Al(III)–Zr(IV) binary oxide adsorbent. Appl. Surf. Sci. 357, 91–100. https://doi. org/10.1016/J.APSUSC.2015.09.012.Zuo, H., Chen, L., Kong, M., Yang, Y., Lü, P., Qiu, L., Wang, Q., Ma, S., Chen, K., 2018. The toxic effect of sodium fluoride on Spodoptera frugiperda 9 cells and differential protein analysis following NaF treatment of cells. Environ. Pollut. 236, 313–323. https://doi.org/10.1016/J.ENVPOL.2018.01.054.241252Adsorption technologyAdvancesFluorideFuture perspectivesWater defluoridationFluorideWater defluoridationAdsorption technologyAdvancesFuture perspectivesORIGINALAdvances and future perspectives of water defluoridation by adsorption technology.pdfAdvances and future perspectives of water defluoridation by adsorption technology.pdfapplication/pdf10719098https://repositorio.cuc.edu.co/bitstreams/ac61817b-2a58-4049-8e4c-b24453bbc373/download952f5b0bc08536cb70d81fab234b82d6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/bb2c4147-ff9a-4776-8e90-d5be5054ea8e/download73a5432e0b76442b22b026844140d683MD52TEXTAdvances and future perspectives of water defluoridation by adsorption technology.pdf.txtAdvances and future perspectives of water defluoridation by adsorption technology.pdf.txtExtracted texttext/plain100604https://repositorio.cuc.edu.co/bitstreams/1a8b4ca3-cf03-42bf-b9f2-ef12fd8b9c4a/download44e8b5f95329f32f2010acb7e7a2db32MD53THUMBNAILAdvances and future perspectives of water defluoridation by adsorption technology.pdf.jpgAdvances and future perspectives of water defluoridation by adsorption technology.pdf.jpgGenerated Thumbnailimage/jpeg13716https://repositorio.cuc.edu.co/bitstreams/f7bf034d-ffcd-4a7d-94d1-944bd2131803/downloadc3ee686a533050269a79e0b8e530c7a7MD5411323/13360oai:repositorio.cuc.edu.co:11323/133602024-09-24 03:01:29.062https://creativecommons.org/licenses/by-nc-nd/4.0/© 2024 Elsevier Inc. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |