Human machine interface (HMI) based on a multi-agent system in a water purification plant

The applications of multi-agent systems (MAS) are growing increasingly in the industrial field due to the advantages inherent to their characteristics and properties, the use of distributed automation architectures, which have satisfactorily solved control problems that its complexity and dynamic be...

Full description

Autores:
Mendoza Merchán, Eduardo Vicente
Andramuño, Joselyne
Núñez Alvarez, José Ricardo
Córdova Rivadeneira, Luis
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8969
Acceso en línea:
https://hdl.handle.net/11323/8969
https://repositorio.cuc.edu.co/
Palabra clave:
Multi-agent systems
Automation systems
Human-Machine Interface
intelligent agent
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_c5c888eb716de78a4700d3e6d6c8e8bf
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8969
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Human machine interface (HMI) based on a multi-agent system in a water purification plant
title Human machine interface (HMI) based on a multi-agent system in a water purification plant
spellingShingle Human machine interface (HMI) based on a multi-agent system in a water purification plant
Multi-agent systems
Automation systems
Human-Machine Interface
intelligent agent
title_short Human machine interface (HMI) based on a multi-agent system in a water purification plant
title_full Human machine interface (HMI) based on a multi-agent system in a water purification plant
title_fullStr Human machine interface (HMI) based on a multi-agent system in a water purification plant
title_full_unstemmed Human machine interface (HMI) based on a multi-agent system in a water purification plant
title_sort Human machine interface (HMI) based on a multi-agent system in a water purification plant
dc.creator.fl_str_mv Mendoza Merchán, Eduardo Vicente
Andramuño, Joselyne
Núñez Alvarez, José Ricardo
Córdova Rivadeneira, Luis
dc.contributor.author.spa.fl_str_mv Mendoza Merchán, Eduardo Vicente
Andramuño, Joselyne
Núñez Alvarez, José Ricardo
Córdova Rivadeneira, Luis
dc.subject.spa.fl_str_mv Multi-agent systems
Automation systems
Human-Machine Interface
intelligent agent
topic Multi-agent systems
Automation systems
Human-Machine Interface
intelligent agent
description The applications of multi-agent systems (MAS) are growing increasingly in the industrial field due to the advantages inherent to their characteristics and properties, the use of distributed automation architectures, which have satisfactorily solved control problems that its complexity and dynamic behavior have not been properly resolved with other approaches under these conditions, intelligent agents must meet the requirements of current automation systems, such as autonomy, flexibility, reconfiguration, in concurrent and collaborative systems, which traditionally do not have been designed to satisfy these characteristics. In the present work, a distributed architecture is proposed for the design of an intelligent agent in a Human-Machine Interface (HMI) for the supervision of the filtering stage of a water purification plant, characterized by the ability to collaborate with the other agents that make up the entire plant. For the projection and design of the system, the Unified Modeling Language (UML) and Petri nets (PN) are used for the simulation and validation of the system, and the implementation of the agent from macros in C language, starting from a methodology of multi-agent design that is applied in this document. The implementation of the intelligent agent in an HMI associated with multi-agent architecture, which allowed to evaluate its behavior through the analysis of the properties of the PN and experimental tests, demonstrating the correct operation of the device, response times and its dynamic behavior based on of the functional requirements of the water purification plant and comparisons with similar works.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-01-11T21:25:01Z
dc.date.available.none.fl_str_mv 2022-01-11T21:25:01Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1742-6588
1742-6596
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8969
dc.identifier.doi.spa.fl_str_mv doi:10.1088/1742-6596/2090/1/012122
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1742-6588
1742-6596
doi:10.1088/1742-6596/2090/1/012122
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8969
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Vilanova, R., Santín, I., & Pedret, C. 2017. Control en estaciones depuradoras de aguas residuales: Estado actual y perspectivas Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 14, no 4, pp. 329-345.
[2] Calderón Córdova, C. et al., 2018. Monitoring and automation of the water pumping and storage process applied to a water treatment plant. 13th Iberian Conference on Information Systems and Technologies (CISTI), 2018, pp. 1-6, doi: 10.23919/CISTI.2018.8399292.
[3] Campos, C. A. V., & Bravo, E. C., 2013. Técnicas de inteligencia computacional aplicadas a modelos de estimación de coagulante en el proceso de potabilización de agua. Revista Facultad de Ingeniería Universidad de Antioquia, vol. 69, pp. 205-215.
[4] Nuñez, J. R., et al., 2019. Tools for the Implementation of a SCADA System in a Desalination Process. IEEE Latin America Transactions, vol. 17, no. 11, pp. 1858-1864, DOI: 10.1109/TLA.2019.8986424
[5] Mendoza, E., Andramuño, J., Núñez, J., & Benítez, I. 2021. Deliberative architecture for smart sensors in the filtering operation of a water purification plant. J. Phys.: Conf. Ser., vol. 1730, no. 1, p. 012088. doi: 10.1088/1742-6596/1730/1/012088.
[6] Valdez, J., Pandolfi, D., & Villagra, A. 2018. Red de sensores inteligentes para adquisición de datos de una planta de desalinización de agua. Informes Científicos Técnicos-UNPA, vol. 10, no. 2, pp. 83-95.
[7] Quezada-Quezada, J. C. et al., 2014. Diseño e implementación de un sistema de control y monitoreo basado en HMI-PLC para un pozo de agua potable. Ingeniería, investigación y tecnología, vol. 15, no. 1, pp. 41-50.
[8] Mendoza, E. et al., 2020. Network of multi-hop wireless sensors for low cost and extended area home automation systems. Revista Iberoamericana de Automática e Informática Industrial, vol 17, no. 4, pp. 412-423. https://doi.org/10.4995/riai.2020.12301
[9] Nuñez-Alvarez, J. R., Benítez-Pina, I., & Llosas-Albuerne, Y. 2020. Communications in Flexible Supervisor for Laboratory Research in Renewable Energy. IOP Conf. Series: Materials Science and Engineering, vol. 844, pp. 012016 doi:10.1088/1757-899X/844/1/012016
[10] Aguilar, J., Bolivar, A. R., Hidrobo, F., & Cerrada, M. 2012. Sistemas MultiAgentes y sus Aplicaciones en Automatizacion Industrial. 2 nd Edition. Universidad de los Andes, Mérida, Venezuela.
[12] Wang, Z., & Wang, J. 2020. A Practical Distributed Finite-Time Control Scheme for Power System Transient Stability. IEEE Transactions on Power Systems, vol. 35, no. 5, pp. 3320-3331, doi: 10.1109/TPWRS.2019.2904729
[13] Sun, Q., Yu, W., Kochurov, N., Hao, Q., & Hu, F. 2013. A multi-agent-based intelligent sensor and actuator network design forsmart house and home automation. Journal of Sensor and Actuator Networks, vol. 2, no. 3, pp. 557-588.
[14] Leitão, P., Rodrigues, N., Turrin, C., & Pagani, A. 2015. Multiagent system integrating process and quality control in a factory producing laundry washing machines. IEEE Transactions on Industrial Informatics, vol. 11, no. 4, pp. 879-886.
[15] Andramuño, J. et al., 2021. Intelligent distributed module for local control of lighting and electrical outlets in a home. J. Phys.: Conf. Ser., vol.1730, pp. 012001. doi:10.1088/1742- 6596/1730/1/012001
[16] Mekuria, et al. 2021. Smart home reasoning systems: a systematic literature review. J Ambient Intell Human Comput, vol. 12, pp. 4485–4502. https://doi.org/10.1007/s12652-019-01572-z
[17] Joyanes, L., & Zahonero, I. 2014. Programación en C, C++, JAVA y UML. Editorial Mc Graw Hill. 2 nd Edition. México.
[18] Meziani, L., Bouabana-Tebibel, T., & Bouzar-Benlabiod, L. 2018. From petri nets to UML model: A new transformation approach. IEEE International Conference on Information Reuse and Integration (IRI), pp. 503-510. doi: 10.1109/IRI.2018.00080
[19] David, R., & Alla, H. 2010. Discrete, continuous, and hybrid Petri nets, Editorial Springer, 2nd Edition.
[20] Micolini, O., Ventre, L. O. & Ludemann, M. Methodology for design and development of Embedded and Reactive Systems Based on Petri Nets. IEEE Biennial Congress of Argentina (ARGENCON), 2018, pp. 1-7. doi: 10.1109/ARGENCON.2018.8646137
[21] Benitez-Pina, I. F., Lamar-Carbonell, S., da Silva, R. M., Eigi-Miyagi, P., & Silva, J. R. 2017.
[22] Pressman, R. 2010. Ingeniería del Software Un Enfoque Práctico. Editorial Mc Graw Hill. 7th Edition. University of Connecticut, USA.
[23] Nuñez Alvarez, J. R., Zamora, Y. P., Pina, I. B., & Angarita, E. N. 2021. Demilitarized network to secure the data stored in industrial networks. International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1, pp. 611.
[24] Hernández, M. P., Mcfarlane, D., Parlikad, A. K., Herrera M., & Jain, A. K. 2021. Relaxing Platform Dependencies in Agent-Based Control Systems. IEEE Access, vol. 9, pp. 30511-30527, doi: 10.1109/ACCESS.2021.3059273.
[25] Chao, Z., Weidong, Z., Yong, W., Danli, W., Hangbing, Z., & Xiaoya, D. 2019. Can Manufacturing Service Value Co-Creation Improve Business Performance in the Internet Era? IEEE Access, vol. 7, pp. 120360-120374, 2019, doi: 10.1109/ACCESS.2019.2937879.
[26] Kang, H., Li, J., Zhang, L., Feng, T., Yin Q., & Liu, Y. 2020. Agent-Based Decentralized Grid Model. IEEE Access, vol. 8, pp. 102595-102606, doi: 10.1109/ACCESS.2020.2999490.
[27] Bazyd\lo, G., Wojnakowski, M., & Wiśniewski, R. 2018. The use of UML and Petri net for graphic specification of the reconfigurable logic controllers. AIP Conference Proceedings, vol. 2040, no. 1, pp. 080004. https://doi.org/10.1063/1.5079138
[28] Yang, Y., Ke, W., Yang J., & Li, X. 2019. Integrating UML With Service Refinement for Requirements Modeling and Analysis. IEEE Access, vol. 7, pp. 11599-11612, doi:
[29] Vani, M., Kumari, M. C., Priya, M. H., & Harika, N. 2015. An effective language for object oriented design-uml (unified modeling language). International Research Journal of Engineering and Technology (IRJET), vol. 2, no. 5, pp. 1212-1218.
[30] Booch, G. 2005. The unified modeling language user guide. Editorial Pearson Education India, 2nd Edition.
[31] Aparna, V. K. 2018. Exploration of Compact Sequence Diagram Using Hyperlink. Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), 2018, pp. 1-4, doi: 10.1109/ICCUBEA.2018.8697567
[32] Silva, M. 2002. Las Redes de Petri: en la Automática y la Informática. Editorial AC Madrid. 1st Edition. España.
[33] Depke, R., Heckel, R., & Küster, J. M. 2001. Roles in agent-oriented modeling. International Journal of Software engineering and Knowledge engineering, vol. 11, no. 3, pp. 281-302, 2001.
[34] Nuñez, J. et al., 2020. Design of a Fuzzy Controller for a Hybrid Generation System. IOP Conference Series Materials Science and Engineering, vol. 844, pp. 012017. doi: 10.1088/1757- 899X/844/1/012017
[35] Liu, S., Zeng, R., He, X. 2011. PIPE + - A modeling tool for high level Petri nets. Conference:
[36] Dingle, N. J., Knottenbelt, W. J., & Suto, T. 2009. PIPE2: A Tool for the Performance Evaluation of Generalised Stochastic Petri Nets (PDF format). ACM SIGMETRICS Performance Evaluation Review, vol. 36, no. 4, pp. 34-39.
[37] Bonet, P., Llado, C. M., Puijaner, R., & Knottenbelt, W. J. 2007. PIPE v2.5: A Petri Net Tool for Performance Modelling. 23rd Latin American Conference on Informatics (CLEI 2007), San Jose, Costa Rica, October 2007
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Journal of Physics: Conference Series
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.researchgate.net/publication/356757521_Human_machine_interface_HMI_based_on_a_multi-agent_system_in_a_water_purification_plant
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a2b18973-4ea5-4169-91df-b13d95037b22/download
https://repositorio.cuc.edu.co/bitstreams/a7e2a847-3904-44bd-bf03-8113c1189dc9/download
https://repositorio.cuc.edu.co/bitstreams/9a208788-5251-4a89-aec6-a60c5509fae3/download
https://repositorio.cuc.edu.co/bitstreams/97ef1899-1802-4715-92da-cb07e3ac5db5/download
https://repositorio.cuc.edu.co/bitstreams/0abbcc57-1f03-4ab5-9468-cd2c953c5f3a/download
bitstream.checksum.fl_str_mv 900bc1fe8698747c0a8af73fb6b6aa03
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
28cc0b0bb811218418704d86c341931e
874085ea6060dd50d836f8db7f825ae9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760771440312320
spelling Mendoza Merchán, Eduardo VicenteAndramuño, JoselyneNúñez Alvarez, José RicardoCórdova Rivadeneira, Luis2022-01-11T21:25:01Z2022-01-11T21:25:01Z20211742-65881742-6596https://hdl.handle.net/11323/8969doi:10.1088/1742-6596/2090/1/012122Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The applications of multi-agent systems (MAS) are growing increasingly in the industrial field due to the advantages inherent to their characteristics and properties, the use of distributed automation architectures, which have satisfactorily solved control problems that its complexity and dynamic behavior have not been properly resolved with other approaches under these conditions, intelligent agents must meet the requirements of current automation systems, such as autonomy, flexibility, reconfiguration, in concurrent and collaborative systems, which traditionally do not have been designed to satisfy these characteristics. In the present work, a distributed architecture is proposed for the design of an intelligent agent in a Human-Machine Interface (HMI) for the supervision of the filtering stage of a water purification plant, characterized by the ability to collaborate with the other agents that make up the entire plant. For the projection and design of the system, the Unified Modeling Language (UML) and Petri nets (PN) are used for the simulation and validation of the system, and the implementation of the agent from macros in C language, starting from a methodology of multi-agent design that is applied in this document. The implementation of the intelligent agent in an HMI associated with multi-agent architecture, which allowed to evaluate its behavior through the analysis of the properties of the PN and experimental tests, demonstrating the correct operation of the device, response times and its dynamic behavior based on of the functional requirements of the water purification plant and comparisons with similar works.Mendoza Merchán, Eduardo Vicente-will be generated-orcid-0000-0002-4586-9207-600Andramuño, Joselyne-will be generated-orcid-0000-0002-6797-661X-600Núñez Alvarez, José Ricardo-will be generated-orcid-0000-0002-6607-7305-600Córdova Rivadeneira, Luisapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Serieshttps://www.researchgate.net/publication/356757521_Human_machine_interface_HMI_based_on_a_multi-agent_system_in_a_water_purification_plantMulti-agent systemsAutomation systemsHuman-Machine Interfaceintelligent agentHuman machine interface (HMI) based on a multi-agent system in a water purification plantArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Vilanova, R., Santín, I., & Pedret, C. 2017. Control en estaciones depuradoras de aguas residuales: Estado actual y perspectivas Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 14, no 4, pp. 329-345.[2] Calderón Córdova, C. et al., 2018. Monitoring and automation of the water pumping and storage process applied to a water treatment plant. 13th Iberian Conference on Information Systems and Technologies (CISTI), 2018, pp. 1-6, doi: 10.23919/CISTI.2018.8399292.[3] Campos, C. A. V., & Bravo, E. C., 2013. Técnicas de inteligencia computacional aplicadas a modelos de estimación de coagulante en el proceso de potabilización de agua. Revista Facultad de Ingeniería Universidad de Antioquia, vol. 69, pp. 205-215.[4] Nuñez, J. R., et al., 2019. Tools for the Implementation of a SCADA System in a Desalination Process. IEEE Latin America Transactions, vol. 17, no. 11, pp. 1858-1864, DOI: 10.1109/TLA.2019.8986424[5] Mendoza, E., Andramuño, J., Núñez, J., & Benítez, I. 2021. Deliberative architecture for smart sensors in the filtering operation of a water purification plant. J. Phys.: Conf. Ser., vol. 1730, no. 1, p. 012088. doi: 10.1088/1742-6596/1730/1/012088.[6] Valdez, J., Pandolfi, D., & Villagra, A. 2018. Red de sensores inteligentes para adquisición de datos de una planta de desalinización de agua. Informes Científicos Técnicos-UNPA, vol. 10, no. 2, pp. 83-95.[7] Quezada-Quezada, J. C. et al., 2014. Diseño e implementación de un sistema de control y monitoreo basado en HMI-PLC para un pozo de agua potable. Ingeniería, investigación y tecnología, vol. 15, no. 1, pp. 41-50.[8] Mendoza, E. et al., 2020. Network of multi-hop wireless sensors for low cost and extended area home automation systems. Revista Iberoamericana de Automática e Informática Industrial, vol 17, no. 4, pp. 412-423. https://doi.org/10.4995/riai.2020.12301[9] Nuñez-Alvarez, J. R., Benítez-Pina, I., & Llosas-Albuerne, Y. 2020. Communications in Flexible Supervisor for Laboratory Research in Renewable Energy. IOP Conf. Series: Materials Science and Engineering, vol. 844, pp. 012016 doi:10.1088/1757-899X/844/1/012016[10] Aguilar, J., Bolivar, A. R., Hidrobo, F., & Cerrada, M. 2012. Sistemas MultiAgentes y sus Aplicaciones en Automatizacion Industrial. 2 nd Edition. Universidad de los Andes, Mérida, Venezuela.[12] Wang, Z., & Wang, J. 2020. A Practical Distributed Finite-Time Control Scheme for Power System Transient Stability. IEEE Transactions on Power Systems, vol. 35, no. 5, pp. 3320-3331, doi: 10.1109/TPWRS.2019.2904729[13] Sun, Q., Yu, W., Kochurov, N., Hao, Q., & Hu, F. 2013. A multi-agent-based intelligent sensor and actuator network design forsmart house and home automation. Journal of Sensor and Actuator Networks, vol. 2, no. 3, pp. 557-588.[14] Leitão, P., Rodrigues, N., Turrin, C., & Pagani, A. 2015. Multiagent system integrating process and quality control in a factory producing laundry washing machines. IEEE Transactions on Industrial Informatics, vol. 11, no. 4, pp. 879-886.[15] Andramuño, J. et al., 2021. Intelligent distributed module for local control of lighting and electrical outlets in a home. J. Phys.: Conf. Ser., vol.1730, pp. 012001. doi:10.1088/1742- 6596/1730/1/012001[16] Mekuria, et al. 2021. Smart home reasoning systems: a systematic literature review. J Ambient Intell Human Comput, vol. 12, pp. 4485–4502. https://doi.org/10.1007/s12652-019-01572-z[17] Joyanes, L., & Zahonero, I. 2014. Programación en C, C++, JAVA y UML. Editorial Mc Graw Hill. 2 nd Edition. México.[18] Meziani, L., Bouabana-Tebibel, T., & Bouzar-Benlabiod, L. 2018. From petri nets to UML model: A new transformation approach. IEEE International Conference on Information Reuse and Integration (IRI), pp. 503-510. doi: 10.1109/IRI.2018.00080[19] David, R., & Alla, H. 2010. Discrete, continuous, and hybrid Petri nets, Editorial Springer, 2nd Edition.[20] Micolini, O., Ventre, L. O. & Ludemann, M. Methodology for design and development of Embedded and Reactive Systems Based on Petri Nets. IEEE Biennial Congress of Argentina (ARGENCON), 2018, pp. 1-7. doi: 10.1109/ARGENCON.2018.8646137[21] Benitez-Pina, I. F., Lamar-Carbonell, S., da Silva, R. M., Eigi-Miyagi, P., & Silva, J. R. 2017.[22] Pressman, R. 2010. Ingeniería del Software Un Enfoque Práctico. Editorial Mc Graw Hill. 7th Edition. University of Connecticut, USA.[23] Nuñez Alvarez, J. R., Zamora, Y. P., Pina, I. B., & Angarita, E. N. 2021. Demilitarized network to secure the data stored in industrial networks. International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1, pp. 611.[24] Hernández, M. P., Mcfarlane, D., Parlikad, A. K., Herrera M., & Jain, A. K. 2021. Relaxing Platform Dependencies in Agent-Based Control Systems. IEEE Access, vol. 9, pp. 30511-30527, doi: 10.1109/ACCESS.2021.3059273.[25] Chao, Z., Weidong, Z., Yong, W., Danli, W., Hangbing, Z., & Xiaoya, D. 2019. Can Manufacturing Service Value Co-Creation Improve Business Performance in the Internet Era? IEEE Access, vol. 7, pp. 120360-120374, 2019, doi: 10.1109/ACCESS.2019.2937879.[26] Kang, H., Li, J., Zhang, L., Feng, T., Yin Q., & Liu, Y. 2020. Agent-Based Decentralized Grid Model. IEEE Access, vol. 8, pp. 102595-102606, doi: 10.1109/ACCESS.2020.2999490.[27] Bazyd\lo, G., Wojnakowski, M., & Wiśniewski, R. 2018. The use of UML and Petri net for graphic specification of the reconfigurable logic controllers. AIP Conference Proceedings, vol. 2040, no. 1, pp. 080004. https://doi.org/10.1063/1.5079138[28] Yang, Y., Ke, W., Yang J., & Li, X. 2019. Integrating UML With Service Refinement for Requirements Modeling and Analysis. IEEE Access, vol. 7, pp. 11599-11612, doi:[29] Vani, M., Kumari, M. C., Priya, M. H., & Harika, N. 2015. An effective language for object oriented design-uml (unified modeling language). International Research Journal of Engineering and Technology (IRJET), vol. 2, no. 5, pp. 1212-1218.[30] Booch, G. 2005. The unified modeling language user guide. Editorial Pearson Education India, 2nd Edition.[31] Aparna, V. K. 2018. Exploration of Compact Sequence Diagram Using Hyperlink. Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), 2018, pp. 1-4, doi: 10.1109/ICCUBEA.2018.8697567[32] Silva, M. 2002. Las Redes de Petri: en la Automática y la Informática. Editorial AC Madrid. 1st Edition. España.[33] Depke, R., Heckel, R., & Küster, J. M. 2001. Roles in agent-oriented modeling. International Journal of Software engineering and Knowledge engineering, vol. 11, no. 3, pp. 281-302, 2001.[34] Nuñez, J. et al., 2020. Design of a Fuzzy Controller for a Hybrid Generation System. IOP Conference Series Materials Science and Engineering, vol. 844, pp. 012017. doi: 10.1088/1757- 899X/844/1/012017[35] Liu, S., Zeng, R., He, X. 2011. PIPE + - A modeling tool for high level Petri nets. Conference:[36] Dingle, N. J., Knottenbelt, W. J., & Suto, T. 2009. PIPE2: A Tool for the Performance Evaluation of Generalised Stochastic Petri Nets (PDF format). ACM SIGMETRICS Performance Evaluation Review, vol. 36, no. 4, pp. 34-39.[37] Bonet, P., Llado, C. M., Puijaner, R., & Knottenbelt, W. J. 2007. PIPE v2.5: A Petri Net Tool for Performance Modelling. 23rd Latin American Conference on Informatics (CLEI 2007), San Jose, Costa Rica, October 2007PublicationORIGINALHuman machine interface (HMI) based on a multi.pdfHuman machine interface (HMI) based on a multi.pdfapplication/pdf2009973https://repositorio.cuc.edu.co/bitstreams/a2b18973-4ea5-4169-91df-b13d95037b22/download900bc1fe8698747c0a8af73fb6b6aa03MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a7e2a847-3904-44bd-bf03-8113c1189dc9/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/9a208788-5251-4a89-aec6-a60c5509fae3/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILHuman machine interface (HMI) based on a multi.pdf.jpgHuman machine interface (HMI) based on a multi.pdf.jpgimage/jpeg36754https://repositorio.cuc.edu.co/bitstreams/97ef1899-1802-4715-92da-cb07e3ac5db5/download28cc0b0bb811218418704d86c341931eMD54TEXTHuman machine interface (HMI) based on a multi.pdf.txtHuman machine interface (HMI) based on a multi.pdf.txttext/plain30089https://repositorio.cuc.edu.co/bitstreams/0abbcc57-1f03-4ab5-9468-cd2c953c5f3a/download874085ea6060dd50d836f8db7f825ae9MD5511323/8969oai:repositorio.cuc.edu.co:11323/89692024-09-17 11:04:39.107http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==