Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons
Seasonal Respiratory Diseases (SRDs) usually produce a heightened number of Emergency Department (ED) attendances due to their rapid dissemination within the community and the ineffective prevention measures. Such a context requires effective management of the emergency care processes to provide in-...
- Autores:
-
Ortiz-Barrios, Miguel
Ishizaka c , Alessio
Barbati, Maria
Arias-Fonseca, Sebastián
Khan, Jehangir
Gul, Muhammet
Yücesan, Melih
Alfaro-Saíz, Juan-Jose
Pérez-Aguilar, Armando
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13994
- Acceso en línea:
- https://hdl.handle.net/11323/13994
https://repositorio.cuc.edu.co/
- Palabra clave:
- Discrete-Event simulation (DES)
Artificial intelligence (AI)
Random forest (RF)
Hospitalization departments (HDs)
Seasonal respiratory diseases (SRDs)
Bed waiting time
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_c55e6346d88ac8cd11ac05f2e4c1f804 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13994 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons |
title |
Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons |
spellingShingle |
Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons Discrete-Event simulation (DES) Artificial intelligence (AI) Random forest (RF) Hospitalization departments (HDs) Seasonal respiratory diseases (SRDs) Bed waiting time |
title_short |
Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons |
title_full |
Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons |
title_fullStr |
Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons |
title_full_unstemmed |
Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons |
title_sort |
Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons |
dc.creator.fl_str_mv |
Ortiz-Barrios, Miguel Ishizaka c , Alessio Barbati, Maria Arias-Fonseca, Sebastián Khan, Jehangir Gul, Muhammet Yücesan, Melih Alfaro-Saíz, Juan-Jose Pérez-Aguilar, Armando |
dc.contributor.author.none.fl_str_mv |
Ortiz-Barrios, Miguel Ishizaka c , Alessio Barbati, Maria Arias-Fonseca, Sebastián Khan, Jehangir Gul, Muhammet Yücesan, Melih Alfaro-Saíz, Juan-Jose Pérez-Aguilar, Armando |
dc.subject.proposal.eng.fl_str_mv |
Discrete-Event simulation (DES) Artificial intelligence (AI) Random forest (RF) Hospitalization departments (HDs) Seasonal respiratory diseases (SRDs) Bed waiting time |
topic |
Discrete-Event simulation (DES) Artificial intelligence (AI) Random forest (RF) Hospitalization departments (HDs) Seasonal respiratory diseases (SRDs) Bed waiting time |
description |
Seasonal Respiratory Diseases (SRDs) usually produce a heightened number of Emergency Department (ED) attendances due to their rapid dissemination within the community and the ineffective prevention measures. Such a context requires effective management of the emergency care processes to provide in-time diagnosis and treatment to infected patients. Nonetheless, EDs have evidenced severe operational deficiencies during these periods, thereby provoking extended bed waiting times in Hospitalization Departments (HDs). Therefore, this paper presents a hybrid approach merging Artificial Intelligence (AI) and Discrete-Event Simulation (DES) to shorten the bed waiting times in HDs considering patient records collated in the first emergency care stages. First, we implemented Random Forest (RF) to estimate the probability of respiratory worsening based on sociodemographic and clinical patient data. Second, we inserted these probabilities into a DES model mimicking the emergency care from the admission to the HD. We then pretested different HD configurations and strategies seeking to reduce the HD bed waiting time. A case study of a European hospital group was used to validate the suggested framework. The AI-DES model enabled decision-makers to identify an improvement proposal with hospitalization bed waiting time lessening, oscillating between 7.93 and 7.98 h. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-08 |
dc.date.accessioned.none.fl_str_mv |
2025-02-27T14:18:01Z |
dc.date.available.none.fl_str_mv |
2025-02-27T14:18:01Z |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Miguel Ortiz-Barrios, Alessio Ishizaka, Maria Barbati, Sebastián Arias-Fonseca, Jehangir Khan, Muhammet Gul, Melih Yücesan, Juan-Jose Alfaro-Saíz, Armando Pérez-Aguilar, Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons, Computers & Industrial Engineering, Volume 194, 2024, 110405, ISSN 0360-8352, https://doi.org/10.1016/j.cie.2024.110405. |
dc.identifier.issn.none.fl_str_mv |
0360-8352 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13994 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.cie.2024.110405 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Miguel Ortiz-Barrios, Alessio Ishizaka, Maria Barbati, Sebastián Arias-Fonseca, Jehangir Khan, Muhammet Gul, Melih Yücesan, Juan-Jose Alfaro-Saíz, Armando Pérez-Aguilar, Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons, Computers & Industrial Engineering, Volume 194, 2024, 110405, ISSN 0360-8352, https://doi.org/10.1016/j.cie.2024.110405. 0360-8352 10.1016/j.cie.2024.110405 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13994 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.none.fl_str_mv |
Computers & industrial engineering |
dc.relation.references.none.fl_str_mv |
Abideen, A., & Mohamad, F. (2021). Improving the performance of a Malaysian pharmaceutical warehouse supply chain by integrating value stream mapping and discrete event simulation. Journal of Modelling in Management, 16(1), 70–102. Aktar, S., Ahamad, M. M., Rashed-Al-Mahfuz, M., Azad, A. K. M., Uddin, S., Kamal, A. H. M., & Moni, M. A. (2021). Machine learning approach to predicting COVID-19 disease severity based on clinical blood test data: Statistical analysis and model development. JMIR medical informatics, 9(4), e25884. Albrecht, F., Kleine, O., & Abele, E. (2014). Planning and optimization of changeable production systems by applying an integrated system dynamic and discrete event simulation approach. Procedia CIRP, 17, 386–391. Albuquerque, P. C., Cajueiro, D. O., & Rossi, M. D. (2022). Machine learning models for forecasting power electricity consumption using a high dimensional dataset. Expert Systems with Applications, 187, Article 115917. Ali, O., Abdelbaki, W., Shrestha, A., Elbasi, E., Alryalat, M. A. A., & Dwivedi, Y. K. (2023). A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge, 8(1), Article 100333 Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., & Albekairy, A. M. (2023). Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC medical education, 23(1), 689. Antunes, B., et al. (2019). A Solution Framework Based on Process Mining, Optimization, and Discrete-Event Simulation to Improve Queue Performance in an Emergency Department. Vienna: Springer International Publishing Arias, J. C., Ramos, M. I., & Cubillas, J. J. (2023). Predicting emergency health care demands due to respiratory diseases. International Journal of Medical Informatics, 177, Article 105163. Arora, S., Taylor, J. W., & Mak, H. Y. (2023). Probabilistic forecasting of patient waiting times in an emergency department. Manufacturing & Service Operations Management, 25(4), 1489–1508. Atalan, A., S¸ ahin, H., & Atalan, Y. (2022). Integration of machine learning algorithms and discrete-event simulation for the cost of healthcare resources. Healthcare MDPI, 10(10), 1920. Austin, P. C., White, I. R., Lee, D. S., & van Buuren, S. (2021). Missing data in clinical research: A tutorial on multiple imputation. Canadian Journal of Cardiology, 37(9), 1322–1331. Basaglia, A., Spacone, E., Van de Lindt, J., & Kirsch, T. (2022). A discrete-event simulation model of hospital patient flow following major earthquakes. International Journal of Disaster Risk Reduction, 71, Article 102825. Becerra, M., Jerez, A., Aballay, B., Garc´es, H. O., & Fuentes, A. (2020). Forecasting emergency admissions due to respiratory diseases in high variability scenarios using time series: A case study in Chile. Science of the total environment, 706, Article 134978. Bhosekar, A., Eks¸ioglu, ˘ S., Is¸ık, T., & Allen, R. (2023). A discrete event simulation model for coordinating inventory management and material handling in hospitals. Annals of Operations Research, 320, 1–28. Bolourani, S., Brenner, M., Wang, P., McGinn, T., Hirsch, J. S., Barnaby, D., & Northwell COVID-19 Research Consortium. (2021). A machine learning prediction model of respiratory failure within 48 hours of patient admission for COVID-19: Model development and validation. Journal of medical Internet research, 23(2), e24246. Boyle, L. M., Marshall, A. H., & Mackay, M. (2022). A framework for developing generalisable discrete event simulation models of hospital emergency departments. European Journal of Operational Research, 302(1), 337–347. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. Casanova, R., Saldana, S., Chew, E. Y., Danis, R. P., Greven, C. M., & Ambrosius, W. T. (2014). Application of random forests methods to diabetic retinopathy classification analyses. PLOS one, 9(6), e98587 Ceglowski, R., Churilov, L., & Wasserthiel, J. (2016). Combining data mining and discrete event simulation for a value-added view of a hospital emergency department. Operational Research for Emergency Planning in Healthcare, 1, 119–138. Chan, K., Rabaev, M., & Pratama, H. (2022). Generation of synthetic manufacturing datasets for machine learning using discrete-event simulation. Production & Manufacturing Research, 10(1), 337–353. Chiu, H. Y. R., Hwang, C. K., Chen, S. Y., Shih, F. Y., Han, H. C., King, C. C., & Oyang, Y. J. (2022). Machine learning for emerging infectious disease field responses. Scientific Reports, 12(1), 328. De Fatima ´ Cobre, A., Stremel, D. P., Noleto, G. R., Fachi, M. M., Surek, M., Wiens, A., & Pontarolo, R. (2021). Diagnosis and prediction of COVID-19 severity: Can biochemical tests and machine learning be used as prognostic indicators? Computers in biology and medicine, 134, Article 104531. De Freitas, V. M., Chiloff, D. M., Bosso, G. G., Teixeira, J. O. P., Hernandes, I. C. D. G., Padilha, M. D. P., & Rangel, E. ´ B. (2022). A machine learning model for predicting hospitalization in patients with respiratory symptoms during the COVID-19 pandemic. Journal of Clinical Medicine, 11(15), 4574. Devapriya, P., Stromblad, ¨ C. T., Bailey, M. D., Frazier, S., Bulger, J., Kemberling, S. T., & Wood, K. E. (2015). StratBAM: A discrete-event simulation model to support strategic hospital bed capacity decisions. Journal of medical systems, 39, 1–13 Fava, G., Giovannelli, T., Messedaglia, M., & Roma, M. (2022). Effect of different patient peak arrivals on an emergency department via discrete event simulation: A case study. Simulation, 98(3), 161–181. Fernandez-Delgado, ´ M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? The journal of machine learning research, 15(1), 3133–3181. Ferrari, D., Milic, J., Tonelli, R., Ghinelli, F., Meschiari, M., Volpi, S., & Guaraldi, G. (2020). Machine learning in predicting respiratory failure in patients with COVID-19 pneumonia—challenges, strengths, and opportunities in a global health emergency. PLoS One, 15(11), e0239172. Gao, Y., Yin, X., He, Z., & Wang, X. (2023). A deep learning process anomaly detection approach with representative latent features for low discriminative and insufficient abnormal data. Computers & Industrial Engineering, 176, Article 108936. Gawlitza, J., Ziegelmayer, S., Wilkens, H., Jagoda, P., Raczeck, P., Buecker, A., & Stroeder, J. (2021). Beyond the d-dimer–Machine-learning assisted pre-test probability evaluation in patients with suspected pulmonary embolism and elevated d-dimers. Thrombosis Research, 205, 11–16. Gershon, A., Thiruchelvam, D., Moineddin, R., Zhao, X. Y., Hwee, J., & To, T. (2017). Forecasting hospitalization and emergency department visit rates for chronic obstructive pulmonary disease. A time-series analysis. Annals of the American Thoracic Society, 14(6), 867–873. Ghosh, D., & Cabrera, J. (2021). Enriched random forest for high dimensional genomic data. IEEE/ACM transactions on computational biology and bioinformatics, 19(5), 2817–2828. Gillespie, J., McClean, S., Garg, L., Barton, M., Scotney, B., & Fullerton, K. (2016). A multi-phase DES modelling framework for patient-centred care. Journal of the Operational Research Society, 67, 1239–1249. Goto, T., Camargo, C. A., Jr, Faridi, M. K., Yun, B. J., & Hasegawa, K. (2018). Machine learning approaches for predicting disposition of asthma and COPD exacerbations in the ED. The American Journal of Emergency Medicine, 36(9), 1650–1654. Greasley, A. (2005). Using system dynamics in a discrete-event simulation study of a manufacturing plant. International Journal of Operations & Production Management, 25 (6), 534–548. Greasley, A., & Edwards, J. (2021). Enhancing discrete-event simulation with big data analytics: A review. Journal of the Operational Research Society, 72(2), 247–267. Gul, M., & Celik, E. (2020). An exhaustive review and analysis on applications of statistical forecasting in hospital emergency departments. Health Systems, 9(4), 263–284. Gul, M., Celik, E., Gumus, A. T., & Guneri, A. F. (2016). Emergency department performance evaluation by an integrated simulation and interval type-2 fuzzy MCDM-based scenario analysis. European Journal of Industrial Engineering, 10(2), 196–223. Guo, Z., Wan, Y., & Ye, H. (2019). A data imputation method for multivariate time series based on generative adversarial network. Neurocomputing, 360, 185–197. Harper, A., & Mustafee, N. (2019). A hybrid modelling approach using forecasting and real-time simulation to prevent emergency department overcrowding. In 2019 Winter Simulation Conference (WSC) (pp. 1208–1219). IEEE. Holodinsky, J. K., Yu, A. Y., Kapral, M. K., & Austin, P. C. (2021). Using random forests to model 90-day hometime in people with stroke. BMC Medical Research Methodology, 21(1), 102. Hong, S., & Lynn, H. S. (2020). Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction. BMC Medical Research Methodology, 20, 1–12. Hosseini_Shokouh, S., Mohammadi, K., & Yaghoubi, M. (2022). Optimization of service process in emergency department using discrete event simulation and machine learning algorithm. Archives of Academic Emergency Medicine, 10(1) Hu, W., et al. (2023). Modeling Real-time operations of Metro-based urban underground logistics system network: A discrete event simulation approach. Tunnelling and Underground Space Technology, 132, Article 104896. Iwase, S., Nakada, T. A., Shimada, T., Oami, T., Shimazui, T., Takahashi, N., & Kawakami, E. (2022). Prediction algorithm for ICU mortality and length of stay using machine learning. Scientific reports, 12(1), 12912. Jackins, V., Vimal, S., Kaliappan, M., & Lee, M. Y. (2021). AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes. The Journal of Supercomputing, 77(5), 5198–5219. Jacobson, S., Hall, S., & Swisher, J. (2013). Discrete-event simulation of health care systems. In R. W. Hall (Ed.), Patient flow: Reducing delay in healthcare delivery (pp. 273–309). Boston: Springer. Kampa, A., Golda, G., & Paprocka, I. (2017). Discrete event simulation method as a tool for improvement of manufacturing systems. Computers, 6(1), 10 Kang, Z., Catal, C., & Tekinerdogan, B. (2020). Machine learning applications in production lines: A systematic literature review. Computers & Industrial Engineering, 149, Article 106773. Kang, J., Chen, T., Luo, H., Luo, Y., Du, G., & Jiming-Yang, M. (2021). Machine learning predictive model for severe COVID-19. Infection, Genetics and Evolution, 90, Article 104737. Kaur, P., Kumar, R., & Kumar, M. (2019). A healthcare monitoring system using random forest and internet of things (IoT). Multimedia Tools and Applications, 78, 19905–19916. Keskin, M., Çatay, B., & Laporte, G. (2021). A simulation-based heuristic for the electric vehicle routing problem with time windows and stochastic waiting times at recharging stations. Computers & Operations Research, 125, Article 105060. Kranz, M., Nitsch, V., & Mütze-Niewohner, ¨ S. (2023). Linking discrete-event simulation with artificial intelligence: A literature-based analysis of existing approaches in the context of manufacturing planning and control. Singapore: IEEE. Kumar, A. K., Ritam, M., Han, L., Guo, S., & Chandra, R. (2022). Deep learning for predicting respiratory rate from biosignals. Computers in Biology and Medicine, 144, Article 105338. Le, S., Pellegrini, E., Green-Saxena, A., Summers, C., Hoffman, J., Calvert, J., & Das, R. (2020). Supervised machine learning for the early prediction of acute respiratory distress syndrome (ARDS). Journal of Critical Care, 60, 96–102. Le Lay, J., Augusto, V., Alfonso-Lizarazo, E., Masmoudi, M., Gramont, B., Xie, X., & Celarier, T. (2023). COVID-19 bed management using a two-step process mining and discrete-event simulation approach. IEEE Transactions on Automation Science and Engineering Lin, J., Xing, B., Tang, H., Yang, L., Yuan, Y., Gu, Y., & Zhou, J. (2020). Hospitalization due to asthma exacerbation: A China Asthma Research Network (CARN) retrospective study in 29 provinces across mainland China. Allergy, Asthma & Immunology Research, 12(3), 485. Liu, Y., Shen, Y., & Wei, B. (2022). The clinical risk factors of adenovirus pneumonia in children based on the logistic regression model: correlation with lactate dehydrogenase. International Journal of Clinical Practice Loef, B., Wong, A., Janssen, N. A., Strak, M., Hoekstra, J., Picavet, H. S. J., & Herber, G. C. M. (2022). Using random forest to identify longitudinal predictors of health in a 30-year cohort study. Scientific Reports, 12(1), 10372. Lujan-Moreno, G. A., Howard, P. R., Rojas, O. G., & Montgomery, D. C. (2018). Design of experiments and response surface methodology to tune machine learning hyperparameters, with a random forest case-study. Expert Systems with Applications, 109, 195–205 Lyubchenko, A., Kopytov, E., Bogdanov, A., & Maystrenko, V. (2020). Discrete-event simulation of operation and maintenance of telecommunication equipment using AnyLogic-based multi-state models. Journal of Physics: Conference Series, 1441(1), Article 012046. Ma, F., Yu, L., Ye, L., Yao, D. D., & Zhuang, W. (2020). Length-of-stay prediction for pediatric patients with respiratory diseases using decision tree methods. IEEE Journal of Biomedical and Health Informatics, 24(9), 2651–2662. McClean, S., Barton, M., Garg, L., & Fullerton, K. (2011). A modeling framework that combines markov models and discrete-event simulation for stroke patient care. ACM Transactions on Modeling and Computer Simulation (TOMACS), 21(4), 1–26. Melman, G. J., Parlikad, A. K., & Cameron, E. A. B. (2021). Balancing scarce hospital resources during the COVID-19 pandemic using discrete-event simulation. Health Care Management Science, 24(2), 356–374. Morgareidge, D., Hui, C., & Jun, J. (2014). Performance-driven design with the support of digital tools: Applying discrete event simulation and space syntax on the design of the emergency department. Frontiers of Architectural Research, 3(3), 250–264. Nan, S. N., Wittayachamnankul, B., Wongtanasarasin, W., Tangsuwanaruk, T., Sutham, K., & Thinnukool, O. (2024). An effective methodology for scoring to assist emergency physicians in identifying overcrowding in an academic emergency department in Thailand. BMC Medical Informatics and Decision Making, 24(1), 83 Nas, S., & Koyuncu, M. (2019). Emergency department capacity planning: a recurrent neural network and simulation approach. Computational and Mathematical Methods in Medicine. Navares, R., Díaz, J., Linares, C., & Aznarte, J. L. (2018). Comparing ARIMA and computational intelligence methods to forecast daily hospital admissions due to circulatory and respiratory causes in Madrid. Stochastic Environmental Research and Risk Assessment, 32, 2849–2859. Navarro Romero, E. D. C., Gelves Alarcon, ´ O. ´ M., & García Corrales, N. (2020). Analisis ´ correlacional entre la economía, los índices sociodemogr´ aficos y las estadísticas de contagio por Covid-19, aplicando la metodología de Clustering en países de Am´erica. Inge Cuc, 17(1), 285–302. NHS England, (2023, November 14). Artificial intelligence to help boost NHS winter response and prevent avoidable admissions. https://www.england.nhs.uk/2023/11/ artificial-intelligence-to-help-boost-nhs-winter-response-and-prevent-avoidableadmissions/ Ning, L., Zhou, Y. L., Sun, H., Zhang, Y., Shen, C., Wang, Z., & Hong, J. (2023). Microbiome and metabolome features in inflammatory bowel disease via multiomics integration analyses across cohorts. Nature Communications, 14(1), 7135 Nunez-Perez, ˜ N., Ortíz-Barrios, M., McClean, S., Salas-Navarro, K., Jimenez-Delgado, G., & Castillo-Zea, A. (2017). Discrete-event simulation to reduce waiting time in accident and emergency departments: A case study in a district general clinic. In Ubiquitous Computing and Ambient Intelligence: 11th International Conference, UCAmI 2017, Philadelphia, PA, USA, November 7–10, 2017, Proceedings (pp. 352–363). Springer International Publishing. Ordu, M., Demir, E., Tofallis, C., & Gunal, M. M. (2023). A comprehensive and integrated hospital decision support system for efficient and effective healthcare services delivery using discrete event simulation. Healthcare Analytics, 4, Article 100248. Ordu, M., Demir, E., Tofallis, C., & Gunal, M. M. (2021). A novel healthcare resource allocation decision support tool: A forecasting-simulation-optimization approach. Journal of the Operational Research Society, 72(3), 485–500. Ortiz-Barrios, M., Arias-Fonseca, S., Ishizaka, A., Barbati, M., Avendano-Collante, ˜ B., & Navarro-Jim´enez, E. (2023). Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study. Journal of Business Research, 160, Article 113806. Ortíz-Barrios, M. A., Escorcia-Caballero, J. P., S´ anchez-S´ anchez, F., De Felice, F., & Petrillo, A. (2017). Efficiency analysis of integrated public hospital networks in outpatient internal medicine. Journal of Medical Systems, 41, 1–18. Ortiz-Barrios, M., & Alfaro-Saiz, J. J. (2020). An integrated approach for designing intime and economically sustainable emergency care networks: A case study in the public sector. PloS One, 15(6), e0234984. Ortiz-Barrios, M., Petrillo, A., Arias-Fonseca, S., McClean, S., de Felice, F., Nugent, C., & Uribe-Lopez, ´ S. A. (2024). An AI-based multiphase framework for improving the mechanical ventilation availability in emergency departments during respiratory disease seasons: A case study. International Journal of Emergency Medicine, 17(1), 45 Padovano, A., Longo, F., Manca, L., & Grugni, R. (2024). Improving safety management in railway stations through a simulation-based digital twin approach. Computers & Industrial Engineering, 187, Article 109839. Patel, D., Kher, V., Desai, B., Lei, X., Cen, S., Nanda, N., & Oberai, A. A. (2021). Machine learning based predictors for COVID-19 disease severity. Scientific Reports, 11(1), 4673. Peng, J., Chen, C., Zhou, M., Xie, X., Zhou, Y., & Luo, C. H. (2020). A machine-learning approach to forecast aggravation risk in patients with acute exacerbation of chronic obstructive pulmonary disease with clinical indicators. Scientific Reports, 10(1), 3118. Pourmand, A., Caggiula, A., Barnett, J., Ghassemi, M., & Shesser, R. (2023). Rethinking traditional emergency department care models in a post-coronavirus disease-2019 world. Journal of Emergency Nursing Poursoltan, M., Masmoudi, M., & Albert, P. (2022). Application of risk management for discrete event simulation projects in healthcare systems. Engineering Management Journal, 34(1), 24–36. Prajpat, N., & Tiwari, A. (2017). A review of assembly optimisation applications using discrete event simulation. International Journal of Computer Integrated Manufacturing, 30(2–3), 215–228. Raita, Y., Camargo, C. A., Jr, Macias, C. G., Mansbach, J. M., Piedra, P. A., Porter, S. C., & Hasegawa, K. (2020). Machine learning-based prediction of acute severity in infants hospitalized for bronchiolitis: A multicenter prospective study. Scientific Reports, 10 (1), 10979. Serper, N., Elif, S¸ ., & Çalis¸, B. (2022). Discrete event simulation model performed with data analytics for a call center optimization. Istanbul Business Research, 51(1), 189–208. Shakerkhatibi, M., Dianat, I., Asghari Jafarabadi, M., Azak, R., & Kousha, A. (2015). Air pollution and hospital admissions for cardiorespiratory diseases in Iran: Artificial neural network versus conditional logistic regression. International Journal of Environmental Science and Technology, 12, 3433–3442. Silveyra, P., Fuentes, N., & Rodriguez Bauza, D. E. (2021). Sex and gender differences in lung disease. In Lung Inflammation in Health and Disease (Volume II, pp. 227–258). Cham: Springer International Publishing. Stokes, K., Castaldo, R., Franzese, M., Salvatore, M., Fico, G., Pokvic, L. G., & Pecchia, L. (2021). A machine learning model for supporting symptom-based referral and diagnosis of bronchitis and pneumonia in limited resource settings. Biocybernetics and Biomedical Engineering, 41(4), 1288–1302. Sun, S., Laden, F., Hart, J. E., Qiu, H., Wang, Y., Wong, C. M., & Tian, L. (2018). Seasonal temperature variability and emergency hospital admissions for respiratory diseases: A population-based cohort study. Thorax, 73(10), 951–958. Tan, T. H., Hsu, C. C., Chen, C. J., Hsu, S. L., Liu, T. L., Lin, H. J., & Huang, C. C. (2021). Predicting outcomes in older ED patients with influenza in real time using a big datadriven and machine learning approach to the hospital information system. BMC Geriatrics, 21, 1–8. Tavanpour, M., Kazi, B., & Wainer, G. (2022). Discrete event systems specifications modelling and simulation of wireless networking applications. Journal of Simulation, 16(1), 1–25. Tayefi, M., Ngo, P., Chomutare, T., Dalianis, H., Salvi, E., Budrionis, A., & Godtliebsen, F. (2021). Challenges and opportunities beyond structured data in analysis of electronic health records. Wiley Interdisciplinary Reviews: Computational Statistics, 13 (6), e1549. Troncoso-Palacio, A., Neira-Rodado, D., Ortíz-Barrios, M., Jim´enez-Delgado, G., & Hernandez-Palma, ´ H. (2018). Using discrete-event-simulation for improving operational efficiency in laboratories: a case study in pharmaceutical industry. In Advances in Swarm Intelligence: 9th International Conference, ICSI 2018, Shanghai, China, June 17-22, 2018, Proceedings, Part II 9 (pp. 440–451). Springer International Publishing Turner, A., et al. (2019). A discrete event simulation model for analysis of farm scale grain transportation systems. Computers and Electronics in Agriculture, 167, Article 105040 Turner, C., Hutabarat, W., Oyekan, J., & Tiwari, A. (2016). Discrete event simulation and virtual reality use in industry: New opportunities and future trends. IEEE Transactions on Human-Machine Systems, 46(6), 882–894. Utkin, L. V., Kovalev, M. S., & Coolen, F. P. (2020). Imprecise weighted extensions of random forests for classification and regression. Applied Soft Computing, 92, Article 106324. Wilson, R., Mercier, P., & Navarra, A. (2022). Integrated artificial neural network and discrete event simulation framework for regional development of refractory gold systems. Mining, 2(1), 123–154. Wu, C. T., Li, G. H., Huang, C. T., Cheng, Y. C., Chen, C. H., Chien, J. Y., & Lai, F. (2021). Acute exacerbation of a chronic obstructive pulmonary disease prediction system using wearable device data, machine learning, and deep learning: Development and cohort study. JMIR mHealth and uHealth, 9(5), e22591. Xavier, J. M. D. V., Silva, F. D. D. S., Olinda, R. A. D., Querino, L. A. L., Araujo, P. S. B., Lima, L. F. C., & Rosado, B. N. C. L. (2022). Climate seasonality and lower respiratory tract diseases: A predictive model for pediatric hospitalizations. Revista Brasileira de Enfermagem, 75. e20210680. Xu, Z., Shen, D., Nie, T., & Kou, Y. (2020). A hybrid sampling algorithm combining MSMOTE and ENN based on Random forest for medical imbalanced data. Journal of Biomedical Informatics, 107, Article 103465. Xue, Z., Zhang, T., & Lin, L. (2022). Progress prediction of Parkinson’s disease based on graph wavelet transform and attention weighted random forest. Expert Systems with Applications, 203, Article 117483. Yanamala, N., Krishna, N. H., Hathaway, Q. A., Radhakrishnan, A., Sunkara, S., Patel, H., & Sengupta, P. P. (2021). A vital sign-based prediction algorithm for differentiating COVID-19 versus seasonal influenza in hospitalized patients. NPJ Digital Medicine, 4 (1), 95. Yang, J., Xu, X., Ma, X., Wang, Z., You, Q., Shan, W., & Yin, C. (2023). Application of machine learning to predict hospital visits for respiratory diseases using meteorological and air pollution factors in Linyi, China. Environmental Science and Pollution Research, 30(38), 88431–88443. Zeinali, F., Mahootchi, M., & Sepehri, M. M. (2015). Resource planning in the emergency departments: A simulation-based metamodeling approach. Simulation Modelling Practice and Theory, 53, 123–138. Zúniga, ˜ E., et al. (2020). A simulation-based optimization methodology for facility layout design in manufacturing. IEEE Access, 8, 163818–163828. |
dc.relation.citationendpage.none.fl_str_mv |
15 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
194 |
dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
15 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.place.none.fl_str_mv |
United Kingdom |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0360835224005266 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/8c3ddaf4-35e1-453a-9e23-94280f6e6c5e/download https://repositorio.cuc.edu.co/bitstreams/43a518a5-48ba-4f78-b8fa-96b2e0b26de2/download https://repositorio.cuc.edu.co/bitstreams/7c4c4574-2ff8-4c69-a709-cdf2747facce/download https://repositorio.cuc.edu.co/bitstreams/e914020e-60d7-46d1-bf3c-be8732c8a763/download |
bitstream.checksum.fl_str_mv |
1679b347d472e787c88238f2a93a3ea7 73a5432e0b76442b22b026844140d683 adfe9ff488b9ea9a805972b40632dd1b 2bed6147e1d79a1922a7bd162655401f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166821885247488 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ortiz-Barrios, MiguelIshizaka c , AlessioBarbati, MariaArias-Fonseca, SebastiánKhan, JehangirGul, MuhammetYücesan, MelihAlfaro-Saíz, Juan-JosePérez-Aguilar, Armando2025-02-27T14:18:01Z2025-02-27T14:18:01Z2024-08Miguel Ortiz-Barrios, Alessio Ishizaka, Maria Barbati, Sebastián Arias-Fonseca, Jehangir Khan, Muhammet Gul, Melih Yücesan, Juan-Jose Alfaro-Saíz, Armando Pérez-Aguilar, Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons, Computers & Industrial Engineering, Volume 194, 2024, 110405, ISSN 0360-8352, https://doi.org/10.1016/j.cie.2024.110405.0360-8352https://hdl.handle.net/11323/1399410.1016/j.cie.2024.110405Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Seasonal Respiratory Diseases (SRDs) usually produce a heightened number of Emergency Department (ED) attendances due to their rapid dissemination within the community and the ineffective prevention measures. Such a context requires effective management of the emergency care processes to provide in-time diagnosis and treatment to infected patients. Nonetheless, EDs have evidenced severe operational deficiencies during these periods, thereby provoking extended bed waiting times in Hospitalization Departments (HDs). Therefore, this paper presents a hybrid approach merging Artificial Intelligence (AI) and Discrete-Event Simulation (DES) to shorten the bed waiting times in HDs considering patient records collated in the first emergency care stages. First, we implemented Random Forest (RF) to estimate the probability of respiratory worsening based on sociodemographic and clinical patient data. Second, we inserted these probabilities into a DES model mimicking the emergency care from the admission to the HD. We then pretested different HD configurations and strategies seeking to reduce the HD bed waiting time. A case study of a European hospital group was used to validate the suggested framework. The AI-DES model enabled decision-makers to identify an improvement proposal with hospitalization bed waiting time lessening, oscillating between 7.93 and 7.98 h.15 páginasapplication/pdfengElsevier LtdUnited Kingdomhttps://www.sciencedirect.com/science/article/pii/S0360835224005266Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasonsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Computers & industrial engineeringAbideen, A., & Mohamad, F. (2021). Improving the performance of a Malaysian pharmaceutical warehouse supply chain by integrating value stream mapping and discrete event simulation. Journal of Modelling in Management, 16(1), 70–102.Aktar, S., Ahamad, M. M., Rashed-Al-Mahfuz, M., Azad, A. K. M., Uddin, S., Kamal, A. H. M., & Moni, M. A. (2021). Machine learning approach to predicting COVID-19 disease severity based on clinical blood test data: Statistical analysis and model development. JMIR medical informatics, 9(4), e25884.Albrecht, F., Kleine, O., & Abele, E. (2014). Planning and optimization of changeable production systems by applying an integrated system dynamic and discrete event simulation approach. Procedia CIRP, 17, 386–391.Albuquerque, P. C., Cajueiro, D. O., & Rossi, M. D. (2022). Machine learning models for forecasting power electricity consumption using a high dimensional dataset. Expert Systems with Applications, 187, Article 115917.Ali, O., Abdelbaki, W., Shrestha, A., Elbasi, E., Alryalat, M. A. A., & Dwivedi, Y. K. (2023). A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge, 8(1), Article 100333Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., & Albekairy, A. M. (2023). Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC medical education, 23(1), 689.Antunes, B., et al. (2019). A Solution Framework Based on Process Mining, Optimization, and Discrete-Event Simulation to Improve Queue Performance in an Emergency Department. Vienna: Springer International PublishingArias, J. C., Ramos, M. I., & Cubillas, J. J. (2023). Predicting emergency health care demands due to respiratory diseases. International Journal of Medical Informatics, 177, Article 105163.Arora, S., Taylor, J. W., & Mak, H. Y. (2023). Probabilistic forecasting of patient waiting times in an emergency department. Manufacturing & Service Operations Management, 25(4), 1489–1508.Atalan, A., S¸ ahin, H., & Atalan, Y. (2022). Integration of machine learning algorithms and discrete-event simulation for the cost of healthcare resources. Healthcare MDPI, 10(10), 1920.Austin, P. C., White, I. R., Lee, D. S., & van Buuren, S. (2021). Missing data in clinical research: A tutorial on multiple imputation. Canadian Journal of Cardiology, 37(9), 1322–1331.Basaglia, A., Spacone, E., Van de Lindt, J., & Kirsch, T. (2022). A discrete-event simulation model of hospital patient flow following major earthquakes. International Journal of Disaster Risk Reduction, 71, Article 102825.Becerra, M., Jerez, A., Aballay, B., Garc´es, H. O., & Fuentes, A. (2020). Forecasting emergency admissions due to respiratory diseases in high variability scenarios using time series: A case study in Chile. Science of the total environment, 706, Article 134978.Bhosekar, A., Eks¸ioglu, ˘ S., Is¸ık, T., & Allen, R. (2023). A discrete event simulation model for coordinating inventory management and material handling in hospitals. Annals of Operations Research, 320, 1–28.Bolourani, S., Brenner, M., Wang, P., McGinn, T., Hirsch, J. S., Barnaby, D., & Northwell COVID-19 Research Consortium. (2021). A machine learning prediction model of respiratory failure within 48 hours of patient admission for COVID-19: Model development and validation. Journal of medical Internet research, 23(2), e24246.Boyle, L. M., Marshall, A. H., & Mackay, M. (2022). A framework for developing generalisable discrete event simulation models of hospital emergency departments. European Journal of Operational Research, 302(1), 337–347.Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.Casanova, R., Saldana, S., Chew, E. Y., Danis, R. P., Greven, C. M., & Ambrosius, W. T. (2014). Application of random forests methods to diabetic retinopathy classification analyses. PLOS one, 9(6), e98587Ceglowski, R., Churilov, L., & Wasserthiel, J. (2016). Combining data mining and discrete event simulation for a value-added view of a hospital emergency department. Operational Research for Emergency Planning in Healthcare, 1, 119–138.Chan, K., Rabaev, M., & Pratama, H. (2022). Generation of synthetic manufacturing datasets for machine learning using discrete-event simulation. Production & Manufacturing Research, 10(1), 337–353.Chiu, H. Y. R., Hwang, C. K., Chen, S. Y., Shih, F. Y., Han, H. C., King, C. C., & Oyang, Y. J. (2022). Machine learning for emerging infectious disease field responses. Scientific Reports, 12(1), 328.De Fatima ´ Cobre, A., Stremel, D. P., Noleto, G. R., Fachi, M. M., Surek, M., Wiens, A., & Pontarolo, R. (2021). Diagnosis and prediction of COVID-19 severity: Can biochemical tests and machine learning be used as prognostic indicators? Computers in biology and medicine, 134, Article 104531.De Freitas, V. M., Chiloff, D. M., Bosso, G. G., Teixeira, J. O. P., Hernandes, I. C. D. G., Padilha, M. D. P., & Rangel, E. ´ B. (2022). A machine learning model for predicting hospitalization in patients with respiratory symptoms during the COVID-19 pandemic. Journal of Clinical Medicine, 11(15), 4574.Devapriya, P., Stromblad, ¨ C. T., Bailey, M. D., Frazier, S., Bulger, J., Kemberling, S. T., & Wood, K. E. (2015). StratBAM: A discrete-event simulation model to support strategic hospital bed capacity decisions. Journal of medical systems, 39, 1–13Fava, G., Giovannelli, T., Messedaglia, M., & Roma, M. (2022). Effect of different patient peak arrivals on an emergency department via discrete event simulation: A case study. Simulation, 98(3), 161–181.Fernandez-Delgado, ´ M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? The journal of machine learning research, 15(1), 3133–3181.Ferrari, D., Milic, J., Tonelli, R., Ghinelli, F., Meschiari, M., Volpi, S., & Guaraldi, G. (2020). Machine learning in predicting respiratory failure in patients with COVID-19 pneumonia—challenges, strengths, and opportunities in a global health emergency. PLoS One, 15(11), e0239172.Gao, Y., Yin, X., He, Z., & Wang, X. (2023). A deep learning process anomaly detection approach with representative latent features for low discriminative and insufficient abnormal data. Computers & Industrial Engineering, 176, Article 108936.Gawlitza, J., Ziegelmayer, S., Wilkens, H., Jagoda, P., Raczeck, P., Buecker, A., & Stroeder, J. (2021). Beyond the d-dimer–Machine-learning assisted pre-test probability evaluation in patients with suspected pulmonary embolism and elevated d-dimers. Thrombosis Research, 205, 11–16.Gershon, A., Thiruchelvam, D., Moineddin, R., Zhao, X. Y., Hwee, J., & To, T. (2017). Forecasting hospitalization and emergency department visit rates for chronic obstructive pulmonary disease. A time-series analysis. Annals of the American Thoracic Society, 14(6), 867–873.Ghosh, D., & Cabrera, J. (2021). Enriched random forest for high dimensional genomic data. IEEE/ACM transactions on computational biology and bioinformatics, 19(5), 2817–2828.Gillespie, J., McClean, S., Garg, L., Barton, M., Scotney, B., & Fullerton, K. (2016). A multi-phase DES modelling framework for patient-centred care. Journal of the Operational Research Society, 67, 1239–1249.Goto, T., Camargo, C. A., Jr, Faridi, M. K., Yun, B. J., & Hasegawa, K. (2018). Machine learning approaches for predicting disposition of asthma and COPD exacerbations in the ED. The American Journal of Emergency Medicine, 36(9), 1650–1654.Greasley, A. (2005). Using system dynamics in a discrete-event simulation study of a manufacturing plant. International Journal of Operations & Production Management, 25 (6), 534–548.Greasley, A., & Edwards, J. (2021). Enhancing discrete-event simulation with big data analytics: A review. Journal of the Operational Research Society, 72(2), 247–267.Gul, M., & Celik, E. (2020). An exhaustive review and analysis on applications of statistical forecasting in hospital emergency departments. Health Systems, 9(4), 263–284.Gul, M., Celik, E., Gumus, A. T., & Guneri, A. F. (2016). Emergency department performance evaluation by an integrated simulation and interval type-2 fuzzy MCDM-based scenario analysis. European Journal of Industrial Engineering, 10(2), 196–223.Guo, Z., Wan, Y., & Ye, H. (2019). A data imputation method for multivariate time series based on generative adversarial network. Neurocomputing, 360, 185–197.Harper, A., & Mustafee, N. (2019). A hybrid modelling approach using forecasting and real-time simulation to prevent emergency department overcrowding. In 2019 Winter Simulation Conference (WSC) (pp. 1208–1219). IEEE.Holodinsky, J. K., Yu, A. Y., Kapral, M. K., & Austin, P. C. (2021). Using random forests to model 90-day hometime in people with stroke. BMC Medical Research Methodology, 21(1), 102.Hong, S., & Lynn, H. S. (2020). Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction. BMC Medical Research Methodology, 20, 1–12.Hosseini_Shokouh, S., Mohammadi, K., & Yaghoubi, M. (2022). Optimization of service process in emergency department using discrete event simulation and machine learning algorithm. Archives of Academic Emergency Medicine, 10(1)Hu, W., et al. (2023). Modeling Real-time operations of Metro-based urban underground logistics system network: A discrete event simulation approach. Tunnelling and Underground Space Technology, 132, Article 104896.Iwase, S., Nakada, T. A., Shimada, T., Oami, T., Shimazui, T., Takahashi, N., & Kawakami, E. (2022). Prediction algorithm for ICU mortality and length of stay using machine learning. Scientific reports, 12(1), 12912.Jackins, V., Vimal, S., Kaliappan, M., & Lee, M. Y. (2021). AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes. The Journal of Supercomputing, 77(5), 5198–5219.Jacobson, S., Hall, S., & Swisher, J. (2013). Discrete-event simulation of health care systems. In R. W. Hall (Ed.), Patient flow: Reducing delay in healthcare delivery (pp. 273–309). Boston: Springer.Kampa, A., Golda, G., & Paprocka, I. (2017). Discrete event simulation method as a tool for improvement of manufacturing systems. Computers, 6(1), 10Kang, Z., Catal, C., & Tekinerdogan, B. (2020). Machine learning applications in production lines: A systematic literature review. Computers & Industrial Engineering, 149, Article 106773.Kang, J., Chen, T., Luo, H., Luo, Y., Du, G., & Jiming-Yang, M. (2021). Machine learning predictive model for severe COVID-19. Infection, Genetics and Evolution, 90, Article 104737.Kaur, P., Kumar, R., & Kumar, M. (2019). A healthcare monitoring system using random forest and internet of things (IoT). Multimedia Tools and Applications, 78, 19905–19916.Keskin, M., Çatay, B., & Laporte, G. (2021). A simulation-based heuristic for the electric vehicle routing problem with time windows and stochastic waiting times at recharging stations. Computers & Operations Research, 125, Article 105060.Kranz, M., Nitsch, V., & Mütze-Niewohner, ¨ S. (2023). Linking discrete-event simulation with artificial intelligence: A literature-based analysis of existing approaches in the context of manufacturing planning and control. Singapore: IEEE.Kumar, A. K., Ritam, M., Han, L., Guo, S., & Chandra, R. (2022). Deep learning for predicting respiratory rate from biosignals. Computers in Biology and Medicine, 144, Article 105338.Le, S., Pellegrini, E., Green-Saxena, A., Summers, C., Hoffman, J., Calvert, J., & Das, R. (2020). Supervised machine learning for the early prediction of acute respiratory distress syndrome (ARDS). Journal of Critical Care, 60, 96–102.Le Lay, J., Augusto, V., Alfonso-Lizarazo, E., Masmoudi, M., Gramont, B., Xie, X., & Celarier, T. (2023). COVID-19 bed management using a two-step process mining and discrete-event simulation approach. IEEE Transactions on Automation Science and EngineeringLin, J., Xing, B., Tang, H., Yang, L., Yuan, Y., Gu, Y., & Zhou, J. (2020). Hospitalization due to asthma exacerbation: A China Asthma Research Network (CARN) retrospective study in 29 provinces across mainland China. Allergy, Asthma & Immunology Research, 12(3), 485.Liu, Y., Shen, Y., & Wei, B. (2022). The clinical risk factors of adenovirus pneumonia in children based on the logistic regression model: correlation with lactate dehydrogenase. International Journal of Clinical PracticeLoef, B., Wong, A., Janssen, N. A., Strak, M., Hoekstra, J., Picavet, H. S. J., & Herber, G. C. M. (2022). Using random forest to identify longitudinal predictors of health in a 30-year cohort study. Scientific Reports, 12(1), 10372.Lujan-Moreno, G. A., Howard, P. R., Rojas, O. G., & Montgomery, D. C. (2018). Design of experiments and response surface methodology to tune machine learning hyperparameters, with a random forest case-study. Expert Systems with Applications, 109, 195–205Lyubchenko, A., Kopytov, E., Bogdanov, A., & Maystrenko, V. (2020). Discrete-event simulation of operation and maintenance of telecommunication equipment using AnyLogic-based multi-state models. Journal of Physics: Conference Series, 1441(1), Article 012046.Ma, F., Yu, L., Ye, L., Yao, D. D., & Zhuang, W. (2020). Length-of-stay prediction for pediatric patients with respiratory diseases using decision tree methods. IEEE Journal of Biomedical and Health Informatics, 24(9), 2651–2662.McClean, S., Barton, M., Garg, L., & Fullerton, K. (2011). A modeling framework that combines markov models and discrete-event simulation for stroke patient care. ACM Transactions on Modeling and Computer Simulation (TOMACS), 21(4), 1–26.Melman, G. J., Parlikad, A. K., & Cameron, E. A. B. (2021). Balancing scarce hospital resources during the COVID-19 pandemic using discrete-event simulation. Health Care Management Science, 24(2), 356–374.Morgareidge, D., Hui, C., & Jun, J. (2014). Performance-driven design with the support of digital tools: Applying discrete event simulation and space syntax on the design of the emergency department. Frontiers of Architectural Research, 3(3), 250–264.Nan, S. N., Wittayachamnankul, B., Wongtanasarasin, W., Tangsuwanaruk, T., Sutham, K., & Thinnukool, O. (2024). An effective methodology for scoring to assist emergency physicians in identifying overcrowding in an academic emergency department in Thailand. BMC Medical Informatics and Decision Making, 24(1), 83Nas, S., & Koyuncu, M. (2019). Emergency department capacity planning: a recurrent neural network and simulation approach. Computational and Mathematical Methods in Medicine.Navares, R., Díaz, J., Linares, C., & Aznarte, J. L. (2018). Comparing ARIMA and computational intelligence methods to forecast daily hospital admissions due to circulatory and respiratory causes in Madrid. Stochastic Environmental Research and Risk Assessment, 32, 2849–2859.Navarro Romero, E. D. C., Gelves Alarcon, ´ O. ´ M., & García Corrales, N. (2020). Analisis ´ correlacional entre la economía, los índices sociodemogr´ aficos y las estadísticas de contagio por Covid-19, aplicando la metodología de Clustering en países de Am´erica. Inge Cuc, 17(1), 285–302.NHS England, (2023, November 14). Artificial intelligence to help boost NHS winter response and prevent avoidable admissions. https://www.england.nhs.uk/2023/11/ artificial-intelligence-to-help-boost-nhs-winter-response-and-prevent-avoidableadmissions/Ning, L., Zhou, Y. L., Sun, H., Zhang, Y., Shen, C., Wang, Z., & Hong, J. (2023). Microbiome and metabolome features in inflammatory bowel disease via multiomics integration analyses across cohorts. Nature Communications, 14(1), 7135Nunez-Perez, ˜ N., Ortíz-Barrios, M., McClean, S., Salas-Navarro, K., Jimenez-Delgado, G., & Castillo-Zea, A. (2017). Discrete-event simulation to reduce waiting time in accident and emergency departments: A case study in a district general clinic. In Ubiquitous Computing and Ambient Intelligence: 11th International Conference, UCAmI 2017, Philadelphia, PA, USA, November 7–10, 2017, Proceedings (pp. 352–363). Springer International Publishing.Ordu, M., Demir, E., Tofallis, C., & Gunal, M. M. (2023). A comprehensive and integrated hospital decision support system for efficient and effective healthcare services delivery using discrete event simulation. Healthcare Analytics, 4, Article 100248.Ordu, M., Demir, E., Tofallis, C., & Gunal, M. M. (2021). A novel healthcare resource allocation decision support tool: A forecasting-simulation-optimization approach. Journal of the Operational Research Society, 72(3), 485–500.Ortiz-Barrios, M., Arias-Fonseca, S., Ishizaka, A., Barbati, M., Avendano-Collante, ˜ B., & Navarro-Jim´enez, E. (2023). Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study. Journal of Business Research, 160, Article 113806.Ortíz-Barrios, M. A., Escorcia-Caballero, J. P., S´ anchez-S´ anchez, F., De Felice, F., & Petrillo, A. (2017). Efficiency analysis of integrated public hospital networks in outpatient internal medicine. Journal of Medical Systems, 41, 1–18.Ortiz-Barrios, M., & Alfaro-Saiz, J. J. (2020). An integrated approach for designing intime and economically sustainable emergency care networks: A case study in the public sector. PloS One, 15(6), e0234984.Ortiz-Barrios, M., Petrillo, A., Arias-Fonseca, S., McClean, S., de Felice, F., Nugent, C., & Uribe-Lopez, ´ S. A. (2024). An AI-based multiphase framework for improving the mechanical ventilation availability in emergency departments during respiratory disease seasons: A case study. International Journal of Emergency Medicine, 17(1), 45Padovano, A., Longo, F., Manca, L., & Grugni, R. (2024). Improving safety management in railway stations through a simulation-based digital twin approach. Computers & Industrial Engineering, 187, Article 109839.Patel, D., Kher, V., Desai, B., Lei, X., Cen, S., Nanda, N., & Oberai, A. A. (2021). Machine learning based predictors for COVID-19 disease severity. Scientific Reports, 11(1), 4673.Peng, J., Chen, C., Zhou, M., Xie, X., Zhou, Y., & Luo, C. H. (2020). A machine-learning approach to forecast aggravation risk in patients with acute exacerbation of chronic obstructive pulmonary disease with clinical indicators. Scientific Reports, 10(1), 3118.Pourmand, A., Caggiula, A., Barnett, J., Ghassemi, M., & Shesser, R. (2023). Rethinking traditional emergency department care models in a post-coronavirus disease-2019 world. Journal of Emergency NursingPoursoltan, M., Masmoudi, M., & Albert, P. (2022). Application of risk management for discrete event simulation projects in healthcare systems. Engineering Management Journal, 34(1), 24–36.Prajpat, N., & Tiwari, A. (2017). A review of assembly optimisation applications using discrete event simulation. International Journal of Computer Integrated Manufacturing, 30(2–3), 215–228.Raita, Y., Camargo, C. A., Jr, Macias, C. G., Mansbach, J. M., Piedra, P. A., Porter, S. C., & Hasegawa, K. (2020). Machine learning-based prediction of acute severity in infants hospitalized for bronchiolitis: A multicenter prospective study. Scientific Reports, 10 (1), 10979.Serper, N., Elif, S¸ ., & Çalis¸, B. (2022). Discrete event simulation model performed with data analytics for a call center optimization. Istanbul Business Research, 51(1), 189–208.Shakerkhatibi, M., Dianat, I., Asghari Jafarabadi, M., Azak, R., & Kousha, A. (2015). Air pollution and hospital admissions for cardiorespiratory diseases in Iran: Artificial neural network versus conditional logistic regression. International Journal of Environmental Science and Technology, 12, 3433–3442.Silveyra, P., Fuentes, N., & Rodriguez Bauza, D. E. (2021). Sex and gender differences in lung disease. In Lung Inflammation in Health and Disease (Volume II, pp. 227–258). Cham: Springer International Publishing.Stokes, K., Castaldo, R., Franzese, M., Salvatore, M., Fico, G., Pokvic, L. G., & Pecchia, L. (2021). A machine learning model for supporting symptom-based referral and diagnosis of bronchitis and pneumonia in limited resource settings. Biocybernetics and Biomedical Engineering, 41(4), 1288–1302.Sun, S., Laden, F., Hart, J. E., Qiu, H., Wang, Y., Wong, C. M., & Tian, L. (2018). Seasonal temperature variability and emergency hospital admissions for respiratory diseases: A population-based cohort study. Thorax, 73(10), 951–958.Tan, T. H., Hsu, C. C., Chen, C. J., Hsu, S. L., Liu, T. L., Lin, H. J., & Huang, C. C. (2021). Predicting outcomes in older ED patients with influenza in real time using a big datadriven and machine learning approach to the hospital information system. BMC Geriatrics, 21, 1–8.Tavanpour, M., Kazi, B., & Wainer, G. (2022). Discrete event systems specifications modelling and simulation of wireless networking applications. Journal of Simulation, 16(1), 1–25.Tayefi, M., Ngo, P., Chomutare, T., Dalianis, H., Salvi, E., Budrionis, A., & Godtliebsen, F. (2021). Challenges and opportunities beyond structured data in analysis of electronic health records. Wiley Interdisciplinary Reviews: Computational Statistics, 13 (6), e1549.Troncoso-Palacio, A., Neira-Rodado, D., Ortíz-Barrios, M., Jim´enez-Delgado, G., & Hernandez-Palma, ´ H. (2018). Using discrete-event-simulation for improving operational efficiency in laboratories: a case study in pharmaceutical industry. In Advances in Swarm Intelligence: 9th International Conference, ICSI 2018, Shanghai, China, June 17-22, 2018, Proceedings, Part II 9 (pp. 440–451). Springer International PublishingTurner, A., et al. (2019). A discrete event simulation model for analysis of farm scale grain transportation systems. Computers and Electronics in Agriculture, 167, Article 105040Turner, C., Hutabarat, W., Oyekan, J., & Tiwari, A. (2016). Discrete event simulation and virtual reality use in industry: New opportunities and future trends. IEEE Transactions on Human-Machine Systems, 46(6), 882–894.Utkin, L. V., Kovalev, M. S., & Coolen, F. P. (2020). Imprecise weighted extensions of random forests for classification and regression. Applied Soft Computing, 92, Article 106324.Wilson, R., Mercier, P., & Navarra, A. (2022). Integrated artificial neural network and discrete event simulation framework for regional development of refractory gold systems. Mining, 2(1), 123–154.Wu, C. T., Li, G. H., Huang, C. T., Cheng, Y. C., Chen, C. H., Chien, J. Y., & Lai, F. (2021). Acute exacerbation of a chronic obstructive pulmonary disease prediction system using wearable device data, machine learning, and deep learning: Development and cohort study. JMIR mHealth and uHealth, 9(5), e22591.Xavier, J. M. D. V., Silva, F. D. D. S., Olinda, R. A. D., Querino, L. A. L., Araujo, P. S. B., Lima, L. F. C., & Rosado, B. N. C. L. (2022). Climate seasonality and lower respiratory tract diseases: A predictive model for pediatric hospitalizations. Revista Brasileira de Enfermagem, 75. e20210680.Xu, Z., Shen, D., Nie, T., & Kou, Y. (2020). A hybrid sampling algorithm combining MSMOTE and ENN based on Random forest for medical imbalanced data. Journal of Biomedical Informatics, 107, Article 103465.Xue, Z., Zhang, T., & Lin, L. (2022). Progress prediction of Parkinson’s disease based on graph wavelet transform and attention weighted random forest. Expert Systems with Applications, 203, Article 117483.Yanamala, N., Krishna, N. H., Hathaway, Q. A., Radhakrishnan, A., Sunkara, S., Patel, H., & Sengupta, P. P. (2021). A vital sign-based prediction algorithm for differentiating COVID-19 versus seasonal influenza in hospitalized patients. NPJ Digital Medicine, 4 (1), 95.Yang, J., Xu, X., Ma, X., Wang, Z., You, Q., Shan, W., & Yin, C. (2023). Application of machine learning to predict hospital visits for respiratory diseases using meteorological and air pollution factors in Linyi, China. Environmental Science and Pollution Research, 30(38), 88431–88443.Zeinali, F., Mahootchi, M., & Sepehri, M. M. (2015). Resource planning in the emergency departments: A simulation-based metamodeling approach. Simulation Modelling Practice and Theory, 53, 123–138.Zúniga, ˜ E., et al. (2020). A simulation-based optimization methodology for facility layout design in manufacturing. IEEE Access, 8, 163818–163828.151194Discrete-Event simulation (DES)Artificial intelligence (AI)Random forest (RF)Hospitalization departments (HDs)Seasonal respiratory diseases (SRDs)Bed waiting timePublicationORIGINALIntegrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons.pdfIntegrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons.pdfapplication/pdf3376217https://repositorio.cuc.edu.co/bitstreams/8c3ddaf4-35e1-453a-9e23-94280f6e6c5e/download1679b347d472e787c88238f2a93a3ea7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/43a518a5-48ba-4f78-b8fa-96b2e0b26de2/download73a5432e0b76442b22b026844140d683MD52TEXTIntegrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons.pdf.txtIntegrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons.pdf.txtExtracted texttext/plain93250https://repositorio.cuc.edu.co/bitstreams/7c4c4574-2ff8-4c69-a709-cdf2747facce/downloadadfe9ff488b9ea9a805972b40632dd1bMD53THUMBNAILIntegrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons.pdf.jpgIntegrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons.pdf.jpgGenerated Thumbnailimage/jpeg14367https://repositorio.cuc.edu.co/bitstreams/e914020e-60d7-46d1-bf3c-be8732c8a763/download2bed6147e1d79a1922a7bd162655401fMD5411323/13994oai:repositorio.cuc.edu.co:11323/139942025-02-28 04:02:16.974https://creativecommons.org/licenses/by/4.0/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |