Artificial intelligence-based Kubernetes container for scheduling nodes of energy composition

Kubernetes is a portable, extensible, open-source platform for managing containerized workloads and services that facilitates both declarative configuration and automation. This study presents Kubernetes Container Scheduling Strategy (KCSS) based on Artificial Intelligence (AI) that can assist in de...

Full description

Autores:
Diaz Martinez, Jorge Luis
Aziz Butt, Shariq
Michael Onyema, Edeh
Chakraborty, Dr. Chinmay
Shaheen, Qaisar
De-La-Hoz-Franco, Emiro
Ariza Colpas, Paola Patricia
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8586
Acceso en línea:
https://hdl.handle.net/11323/8586
https://doi.org/10.1007/s13198-021-01195-8
https://repositorio.cuc.edu.co/
Palabra clave:
Artificial intelligence
Automated scheduling
Cloud infrastructure
Kubernetes
Multi-criteria scheduler
Scheduling strategy
Rights
embargoedAccess
License
CC0 1.0 Universal
id RCUC2_c429f6260b1e019c5fd45977ff0f255a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8586
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Artificial intelligence-based Kubernetes container for scheduling nodes of energy composition
title Artificial intelligence-based Kubernetes container for scheduling nodes of energy composition
spellingShingle Artificial intelligence-based Kubernetes container for scheduling nodes of energy composition
Artificial intelligence
Automated scheduling
Cloud infrastructure
Kubernetes
Multi-criteria scheduler
Scheduling strategy
title_short Artificial intelligence-based Kubernetes container for scheduling nodes of energy composition
title_full Artificial intelligence-based Kubernetes container for scheduling nodes of energy composition
title_fullStr Artificial intelligence-based Kubernetes container for scheduling nodes of energy composition
title_full_unstemmed Artificial intelligence-based Kubernetes container for scheduling nodes of energy composition
title_sort Artificial intelligence-based Kubernetes container for scheduling nodes of energy composition
dc.creator.fl_str_mv Diaz Martinez, Jorge Luis
Aziz Butt, Shariq
Michael Onyema, Edeh
Chakraborty, Dr. Chinmay
Shaheen, Qaisar
De-La-Hoz-Franco, Emiro
Ariza Colpas, Paola Patricia
dc.contributor.author.spa.fl_str_mv Diaz Martinez, Jorge Luis
Aziz Butt, Shariq
Michael Onyema, Edeh
Chakraborty, Dr. Chinmay
Shaheen, Qaisar
De-La-Hoz-Franco, Emiro
Ariza Colpas, Paola Patricia
dc.subject.spa.fl_str_mv Artificial intelligence
Automated scheduling
Cloud infrastructure
Kubernetes
Multi-criteria scheduler
Scheduling strategy
topic Artificial intelligence
Automated scheduling
Cloud infrastructure
Kubernetes
Multi-criteria scheduler
Scheduling strategy
description Kubernetes is a portable, extensible, open-source platform for managing containerized workloads and services that facilitates both declarative configuration and automation. This study presents Kubernetes Container Scheduling Strategy (KCSS) based on Artificial Intelligence (AI) that can assist in decision making to control the scheduling and shifting of load to nodes. The aim is to improve the container’s schedule requested digitally from users to enhance the efficiency in scheduling and reduce cost. The constraints associated with the existing container scheduling techniques which often assign a node to every new container based on a personal criterion by relying on individual terms has been greatly improved by the new system presented in this study. The KCSS presented in this study provides multicriteria node selection based on artificial intelligence in terms of decision making systems thereby giving the scheduler a broad picture of the cloud's condition and the user's requirements. AI Scheduler allows users to easily make use of fractional Graphics Processing Units (GPUs), integer GPUs, and multiple-nodes of GPUs, for distributed training on Kubernetes. © 2021, The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-24T16:57:13Z
dc.date.available.none.fl_str_mv 2021-08-24T16:57:13Z
dc.date.issued.none.fl_str_mv 2021-07-17
dc.date.embargoEnd.none.fl_str_mv 2022-07-17
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 09756809
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8586
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/s13198-021-01195-8
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 09756809
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8586
https://doi.org/10.1007/s13198-021-01195-8
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Ahmed E, Gani A, Khan MK, Buyya R, Khan SU (2015) Seamless application execution in mobile cloud computing: motivation, taxonomy, and open challenges. J Netw Comput Appl 52:154–172
Ahmed E, Gani A, Khan MK, Buyya R, Khan SU (2015) Seamless application execution in mobile cloud computing: motivation, taxonomy, and open challenges. J Netw Comput Appl 52:154–172
Alicherry M, Lakshman T (2013) Optimizing data access latencies in cloud systems by intelligent virtual machine placement. IEEE INFOCOM. pp. 647–655
Amit K, Chinmay C, Wilson J, Kishor A, Chakraborty C, Jeberson W (2020) A novel fog computing approach for minimization of latency in healthcare using machine learning. Int J Interact Multimedia Artif Intell. https://doi.org/10.9781/ijimai.2020.12.004
Amit S, Lalit G, Chinmay C (2021) Improvement of system performance in an IT production support environment. Int J Syst Assur Eng Manag. https://doi.org/10.1007/s13198-021-01092-0
Ardagna D, Panicucci B, Trubian M, Zhang L (2012) Energy-aware autonomic resource allocation in multitier virtualized environments. IEEE Trans Serv Comput 5(1):2–19
Ariza-Colpas PP, Ayala-Mantilla CE, Shaheen Q, Piñeres-Melo MA, Villate-Daza DA, Morales-Ortega RC, De-la-Hoz-Franco E, Sanchez-Moreno H, Aziz BS, Afzal M (2021) SISME, estuarine monitoring system based on IOT and machine learning for the detection of salt wedge in aquifers: case study of the Magdalena River estuary. Sensors 21(7):2374
Aroca JA, Anta AF, Mosteiro MA, Thraves C, Wang L (2016) Power-efficient assignment of virtual machines to physical machines. Future Generat Comput Syst 54:82–94
Baccarelli E, Amendola D, Cordeschi N (2015) Minimum-energy bandwidth management for qos live migration of virtual machines. Comput Network 93:1–22
Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generat Comput Syst 28(5):755–768
Chen X, Li C, Jiang Y (2015) Optimization model and algorithm for energy efficient virtual node embedding. IEEE Commun Lett 19(8):1327–1330
Chinmay C, Roy R, Pathak S, Chakrabarti S (2011) An optimal probabilistic traffic engineering scheme for heterogeneous networks. CIIT Int J Fuzzy Syst 3(2):35–39
Chinmay C, Roy R (2012) Markov decision process based optimal gateway selection algorithm. Int J Syst Algorithms Appl 48–52
Chowdhury N, Rahman M, Boutaba R (2009) Virtual network embedding with coordinated node and link mapping. In: IEEE INFOCOM, pp. 783–791
Cordeschi N, Patriarca T, Baccarelli E (2012) Stochastic traffic engineering for realtime applications over wireless networks. J Netw Comput Appl 35(2):681–694
Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107–113
Dłaz M, Martłn C, Rubio B (2016) State-of-the-art, challenges, and open issues in the integration of internet of things and cloud computing. J Netw Comput Appl 67:99–117
Elhady GF, Tawfeek MA (2015) A comparative study into swarm intelligence algorithms for dynamic tasks scheduling in cloud computing. In: 2015 IEEE Seventh international conference on intelligent computing and information systems (ICICIS) (pp. 362–369). IEEE
Fazio M, Celesti A, Ranjan R, Liu C, Chen L, Villari M (2016) Open issues in scheduling microservices in the cloud. IEEE Cloud Comput 3(5):81–88
Felter W, Ferreira A, Rajamony R, Rubio J, (2015) An updated performance comparison of virtual machines and linux containers. In: 2015 IEEE International symposium on performance analysis of systems and software (ISPASS), pp. 171–172
Gill SS, Tuli S, Xu M, Singh I, Singh KV, Lindsay D, Tuli S, Smirnova D, Singh M, Jain U, Pervaiz H (2019) Transformative effects of IoT, blockchain and artificial intelligence on cloud computing: evolution, vision, trends and open challenges. Internet Things 8:100118
Guan X, Choi BY, Song S (2015) Energy efficient virtual network embedding for green dcs using dc topology and future migration. Comput Commun 69:50–59
Guan X, Choi BY, Song S (2014) Topology and migration-aware energy efficient virtual network embedding for green dcs. In: 23rd International conference on computer communication and networks (ICCCN). IEEE, pp. 1–8
Guerrero C, Lera I, Juiz C (2018) Genetic algorithm for multi-objective optimization of container allocation in cloud architecture. J Grid Comput 16(1):113–135
Jiang J, Lu J, Zhang G, Long G (2013) Optimal cloud resource auto-scaling for web applications. In: International symposium on cluster, cloud and grid computing (CCGrid), pp. 58–65
Kaewkasi C, Chuenmuneewong K (2017) Improvement of container scheduling for docker using ant colony optimization. In: 9th International conference on knowledge and smart technology (KST), pp. 254–259
López-Torres S, López-Torres H, Rocha-Rocha J, Butt SA, Tariq MI, Collazos-Morales C, Piñeres-Espitia G (2019) IoT monitoring of water consumption for irrigation systems using SEMMA methodology. In: International conference on intelligent human computer interaction (pp. 222–234). Springer, Cham
Onyema EM (2019) Integration of emerging technologies in teaching and learning process in Nigeria: the challenges. Central Asian J Math Theory Comput Sci 1(1):35–39
Rimal Y, Pandit P, Gocchait S, Butt SA, Obaid AJ (1804) (2021) Hyperparameter determines the best learning curve on single, multi-layer and deep neural network of student grade prediction of Pokhara University Nepal. J Phys Conf Ser 1:012054
Sachin D, Chinmay C, Jaroslav F, Rashmi G, Arun KR, Subhendu KP (2021) SSII: Secured and high-quality Steganography using Intelligent hybrid optimization algorithms for IoT. IEEE Access 9:1–16. https://doi.org/10.1109/ACCESS.2021.3089357
Shaheen Q, Shiraz M, Hashmi MU, Mahmood D, Akhtar R (2020) A lightweight location-aware fog framework (LAFF) for QoS in internet of things paradigm. Mobile Inf Syst. https://doi.org/10.1155/2020/8871976
Zheng Y, Cai L, Huang S, WangZ (2014) VM scheduling strategies based on artificial intelligence in Cloud Testing. In: 15th IEEE/ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD) (pp. 1–7). IEEE
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv International Journal of Systems Assurance Engineering and Management
dc.source.spa.fl_str_mv International Journal of Systems Assurance Engineering and Management
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/article/10.1007%2Fs13198-021-01195-8
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a74c106f-bbbc-43d6-b079-7701325ad562/download
https://repositorio.cuc.edu.co/bitstreams/a303f0fa-ee6f-483b-be7c-cf2ba583d35e/download
https://repositorio.cuc.edu.co/bitstreams/e1e601ef-c521-4b93-b66d-1f31176b83f7/download
https://repositorio.cuc.edu.co/bitstreams/454671be-636f-44cc-886b-92cdf8e26ac4/download
https://repositorio.cuc.edu.co/bitstreams/d3de6023-b9d0-4b46-87be-c78bfafb1a47/download
bitstream.checksum.fl_str_mv f12cc6ae60518835fbab7fd7cf80913f
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
d13f38f9d050864d6ca3220d2e91bd92
a9e03f9aec5cfd8cf8dd257d9fc55ce1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760756855668736
spelling Diaz Martinez, Jorge LuisAziz Butt, ShariqMichael Onyema, EdehChakraborty, Dr. ChinmayShaheen, QaisarDe-La-Hoz-Franco, EmiroAriza Colpas, Paola Patricia2021-08-24T16:57:13Z2021-08-24T16:57:13Z2021-07-172022-07-1709756809https://hdl.handle.net/11323/8586https://doi.org/10.1007/s13198-021-01195-8Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Kubernetes is a portable, extensible, open-source platform for managing containerized workloads and services that facilitates both declarative configuration and automation. This study presents Kubernetes Container Scheduling Strategy (KCSS) based on Artificial Intelligence (AI) that can assist in decision making to control the scheduling and shifting of load to nodes. The aim is to improve the container’s schedule requested digitally from users to enhance the efficiency in scheduling and reduce cost. The constraints associated with the existing container scheduling techniques which often assign a node to every new container based on a personal criterion by relying on individual terms has been greatly improved by the new system presented in this study. The KCSS presented in this study provides multicriteria node selection based on artificial intelligence in terms of decision making systems thereby giving the scheduler a broad picture of the cloud's condition and the user's requirements. AI Scheduler allows users to easily make use of fractional Graphics Processing Units (GPUs), integer GPUs, and multiple-nodes of GPUs, for distributed training on Kubernetes. © 2021, The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden.Diaz Martinez, Jorge Luis-will be generated-orcid-0000-0001-9555-0424-600Aziz Butt, ShariqMichael Onyema, Edeh-will be generated-orcid-0000-0002-4067-3256-600Chakraborty, Dr. Chinmay-will be generated-orcid-0000-0002-4385-0975-600Shaheen, Qaisar-will be generated-orcid-0000-0002-1839-1412-600De-La-Hoz-Franco, Emiro-will be generated-orcid-0000-0002-4926-7414-600Ariza Colpas, Paola Patricia-will be generated-orcid-0000-0003-4503-5461-600application/pdfengInternational Journal of Systems Assurance Engineering and ManagementCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfInternational Journal of Systems Assurance Engineering and Managementhttps://link.springer.com/article/10.1007%2Fs13198-021-01195-8Artificial intelligenceAutomated schedulingCloud infrastructureKubernetesMulti-criteria schedulerScheduling strategyArtificial intelligence-based Kubernetes container for scheduling nodes of energy compositionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAhmed E, Gani A, Khan MK, Buyya R, Khan SU (2015) Seamless application execution in mobile cloud computing: motivation, taxonomy, and open challenges. J Netw Comput Appl 52:154–172Ahmed E, Gani A, Khan MK, Buyya R, Khan SU (2015) Seamless application execution in mobile cloud computing: motivation, taxonomy, and open challenges. J Netw Comput Appl 52:154–172Alicherry M, Lakshman T (2013) Optimizing data access latencies in cloud systems by intelligent virtual machine placement. IEEE INFOCOM. pp. 647–655Amit K, Chinmay C, Wilson J, Kishor A, Chakraborty C, Jeberson W (2020) A novel fog computing approach for minimization of latency in healthcare using machine learning. Int J Interact Multimedia Artif Intell. https://doi.org/10.9781/ijimai.2020.12.004Amit S, Lalit G, Chinmay C (2021) Improvement of system performance in an IT production support environment. Int J Syst Assur Eng Manag. https://doi.org/10.1007/s13198-021-01092-0Ardagna D, Panicucci B, Trubian M, Zhang L (2012) Energy-aware autonomic resource allocation in multitier virtualized environments. IEEE Trans Serv Comput 5(1):2–19Ariza-Colpas PP, Ayala-Mantilla CE, Shaheen Q, Piñeres-Melo MA, Villate-Daza DA, Morales-Ortega RC, De-la-Hoz-Franco E, Sanchez-Moreno H, Aziz BS, Afzal M (2021) SISME, estuarine monitoring system based on IOT and machine learning for the detection of salt wedge in aquifers: case study of the Magdalena River estuary. Sensors 21(7):2374Aroca JA, Anta AF, Mosteiro MA, Thraves C, Wang L (2016) Power-efficient assignment of virtual machines to physical machines. Future Generat Comput Syst 54:82–94Baccarelli E, Amendola D, Cordeschi N (2015) Minimum-energy bandwidth management for qos live migration of virtual machines. Comput Network 93:1–22Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generat Comput Syst 28(5):755–768Chen X, Li C, Jiang Y (2015) Optimization model and algorithm for energy efficient virtual node embedding. IEEE Commun Lett 19(8):1327–1330Chinmay C, Roy R, Pathak S, Chakrabarti S (2011) An optimal probabilistic traffic engineering scheme for heterogeneous networks. CIIT Int J Fuzzy Syst 3(2):35–39Chinmay C, Roy R (2012) Markov decision process based optimal gateway selection algorithm. Int J Syst Algorithms Appl 48–52Chowdhury N, Rahman M, Boutaba R (2009) Virtual network embedding with coordinated node and link mapping. In: IEEE INFOCOM, pp. 783–791Cordeschi N, Patriarca T, Baccarelli E (2012) Stochastic traffic engineering for realtime applications over wireless networks. J Netw Comput Appl 35(2):681–694Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107–113Dłaz M, Martłn C, Rubio B (2016) State-of-the-art, challenges, and open issues in the integration of internet of things and cloud computing. J Netw Comput Appl 67:99–117Elhady GF, Tawfeek MA (2015) A comparative study into swarm intelligence algorithms for dynamic tasks scheduling in cloud computing. In: 2015 IEEE Seventh international conference on intelligent computing and information systems (ICICIS) (pp. 362–369). IEEEFazio M, Celesti A, Ranjan R, Liu C, Chen L, Villari M (2016) Open issues in scheduling microservices in the cloud. IEEE Cloud Comput 3(5):81–88Felter W, Ferreira A, Rajamony R, Rubio J, (2015) An updated performance comparison of virtual machines and linux containers. In: 2015 IEEE International symposium on performance analysis of systems and software (ISPASS), pp. 171–172Gill SS, Tuli S, Xu M, Singh I, Singh KV, Lindsay D, Tuli S, Smirnova D, Singh M, Jain U, Pervaiz H (2019) Transformative effects of IoT, blockchain and artificial intelligence on cloud computing: evolution, vision, trends and open challenges. Internet Things 8:100118Guan X, Choi BY, Song S (2015) Energy efficient virtual network embedding for green dcs using dc topology and future migration. Comput Commun 69:50–59Guan X, Choi BY, Song S (2014) Topology and migration-aware energy efficient virtual network embedding for green dcs. In: 23rd International conference on computer communication and networks (ICCCN). IEEE, pp. 1–8Guerrero C, Lera I, Juiz C (2018) Genetic algorithm for multi-objective optimization of container allocation in cloud architecture. J Grid Comput 16(1):113–135Jiang J, Lu J, Zhang G, Long G (2013) Optimal cloud resource auto-scaling for web applications. In: International symposium on cluster, cloud and grid computing (CCGrid), pp. 58–65Kaewkasi C, Chuenmuneewong K (2017) Improvement of container scheduling for docker using ant colony optimization. In: 9th International conference on knowledge and smart technology (KST), pp. 254–259López-Torres S, López-Torres H, Rocha-Rocha J, Butt SA, Tariq MI, Collazos-Morales C, Piñeres-Espitia G (2019) IoT monitoring of water consumption for irrigation systems using SEMMA methodology. In: International conference on intelligent human computer interaction (pp. 222–234). Springer, ChamOnyema EM (2019) Integration of emerging technologies in teaching and learning process in Nigeria: the challenges. Central Asian J Math Theory Comput Sci 1(1):35–39Rimal Y, Pandit P, Gocchait S, Butt SA, Obaid AJ (1804) (2021) Hyperparameter determines the best learning curve on single, multi-layer and deep neural network of student grade prediction of Pokhara University Nepal. J Phys Conf Ser 1:012054Sachin D, Chinmay C, Jaroslav F, Rashmi G, Arun KR, Subhendu KP (2021) SSII: Secured and high-quality Steganography using Intelligent hybrid optimization algorithms for IoT. IEEE Access 9:1–16. https://doi.org/10.1109/ACCESS.2021.3089357Shaheen Q, Shiraz M, Hashmi MU, Mahmood D, Akhtar R (2020) A lightweight location-aware fog framework (LAFF) for QoS in internet of things paradigm. Mobile Inf Syst. https://doi.org/10.1155/2020/8871976Zheng Y, Cai L, Huang S, WangZ (2014) VM scheduling strategies based on artificial intelligence in Cloud Testing. In: 15th IEEE/ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD) (pp. 1–7). IEEEPublicationORIGINALARTIFICIAL INTELLIGENCE-BASED KUBERNETES CONTAINER FOR SCHEDULING NODES OF ENERGY COMPOSITION.pdfARTIFICIAL INTELLIGENCE-BASED KUBERNETES CONTAINER FOR SCHEDULING NODES OF ENERGY COMPOSITION.pdfapplication/pdf55815https://repositorio.cuc.edu.co/bitstreams/a74c106f-bbbc-43d6-b079-7701325ad562/downloadf12cc6ae60518835fbab7fd7cf80913fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a303f0fa-ee6f-483b-be7c-cf2ba583d35e/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e1e601ef-c521-4b93-b66d-1f31176b83f7/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILARTIFICIAL INTELLIGENCE-BASED KUBERNETES CONTAINER FOR SCHEDULING NODES OF ENERGY COMPOSITION.pdf.jpgARTIFICIAL INTELLIGENCE-BASED KUBERNETES CONTAINER FOR SCHEDULING NODES OF ENERGY COMPOSITION.pdf.jpgimage/jpeg58959https://repositorio.cuc.edu.co/bitstreams/454671be-636f-44cc-886b-92cdf8e26ac4/downloadd13f38f9d050864d6ca3220d2e91bd92MD54TEXTARTIFICIAL INTELLIGENCE-BASED KUBERNETES CONTAINER FOR SCHEDULING NODES OF ENERGY COMPOSITION.pdf.txtARTIFICIAL INTELLIGENCE-BASED KUBERNETES CONTAINER FOR SCHEDULING NODES OF ENERGY COMPOSITION.pdf.txttext/plain1806https://repositorio.cuc.edu.co/bitstreams/d3de6023-b9d0-4b46-87be-c78bfafb1a47/downloada9e03f9aec5cfd8cf8dd257d9fc55ce1MD5511323/8586oai:repositorio.cuc.edu.co:11323/85862024-09-17 11:00:05.347http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==