Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model

Recently, intelligent video surveillance applications have become essential in public security by the use of computer vision technologies to investigate and understand long video streams. Anomaly detection and classification are considered a major element of intelligent video surveillance. The aim o...

Full description

Autores:
Mansour, Romany F.
Escorcia-García, José
Gamarra, Margarita
VILLANUEVA, JAIR ASIR
Leal, Nallig
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8394
Acceso en línea:
https://hdl.handle.net/11323/8394
https://doi.org/10.1016/j.imavis.2021.104229
https://repositorio.cuc.edu.co/
Palabra clave:
Video surveillance
Intelligent systems
Anomaly detection
Deep reinforcement learning
UCSD dataset
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_c3c96f14a4189d74b32fd2fa0dd04c0f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8394
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model
title Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model
spellingShingle Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model
Video surveillance
Intelligent systems
Anomaly detection
Deep reinforcement learning
UCSD dataset
title_short Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model
title_full Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model
title_fullStr Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model
title_full_unstemmed Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model
title_sort Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model
dc.creator.fl_str_mv Mansour, Romany F.
Escorcia-García, José
Gamarra, Margarita
VILLANUEVA, JAIR ASIR
Leal, Nallig
dc.contributor.author.spa.fl_str_mv Mansour, Romany F.
Escorcia-García, José
Gamarra, Margarita
VILLANUEVA, JAIR ASIR
Leal, Nallig
dc.subject.eng.fl_str_mv Video surveillance
Intelligent systems
Anomaly detection
Deep reinforcement learning
UCSD dataset
topic Video surveillance
Intelligent systems
Anomaly detection
Deep reinforcement learning
UCSD dataset
description Recently, intelligent video surveillance applications have become essential in public security by the use of computer vision technologies to investigate and understand long video streams. Anomaly detection and classification are considered a major element of intelligent video surveillance. The aim of anomaly detection is to automatically determine the existence of abnormalities in a short time period. Deep reinforcement learning (DRL) techniques can be employed for anomaly detection, which integrates the concepts of reinforcement learning and deep learning enabling the artificial agents in learning the knowledge and experience from actual data directly. With this motivation, this paper presents an Intelligent Video Anomaly Detection and Classification using Faster RCNN with Deep Reinforcement Learning Model, called IVADC-FDRL model. The presented IVADC-FDRL model operates on two major stages namely anomaly detection and classification. Firstly, Faster RCNN model is applied as an object detector with Residual Network as a baseline model, which detects the anomalies as objects. Besides, deep Q-learning (DQL) based DRL model is employed for the classification of detected anomalies. In order to validate the effective anomaly detection and classification performance of the IVADC-FDRL model, an extensive set of experimentations were carried out on the benchmark UCSD anomaly dataset. The experimental results showcased the better performance of the IVADC-FDRL model over the other compared methods with the maximum accuracy of 98.50% and 94.80% on the applied Test004 and Test007 dataset respectively.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-22T19:45:58Z
dc.date.available.none.fl_str_mv 2021-06-22T19:45:58Z
dc.date.issued.none.fl_str_mv 2021
dc.date.embargoEnd.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0262-8856
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8394
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.imavis.2021.104229
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0262-8856
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8394
https://doi.org/10.1016/j.imavis.2021.104229
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] X. Zhang, S. Yang, J. Zhang, W. Zhang Video anomaly detection and localization using motion-field shape description and homogeneity testing Pattern Recogn., 105 (2020), p. 107394
[2] S. Veluchamy, L.R. Karlmarx, K.M. Mahesh Detection and localization of abnormalities in surveillance video using timerider-based neural network Comput. J. (2021), Article bxab002, 10.1093/comjnl/bxab002
[3] Y. Fan, G. Wen, D. Li, S. Qiu, M.D. Levine, F. Xiao Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder Comput. Vis. Image Underst., 195 (2020), p. 102920
[4] A. Alam, M.N. Khan, J. Khan, Y.K. Lee Intellibvr-intelligent large-scale video retrieval for objects and events utilizing distributed deep-learning and semantic approaches 2020 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 28-35), IEEE (2020, February)
[5] S. Liu, J. Tang Modified deep reinforcement learning with efficient convolution feature for small target detection in vhr remote sensing imagery ISPRS International Journal of Geo-Information, 10 (3) (2021), p. 170 CrossRefView Record in ScopusGoogle Scholar
[6] S.K. Lakshmanaprabu, S.N. Mohanty, S. Krishnamoorthy, J. Uthayakumar, K. Shankar Online clinical decision support system using optimal deep neural networks Appl. Soft Comput., 81 (2019), p. 105487
[7] J. Uthayakumar, N. Metawa, K. Shankar, S.K. Lakshmanaprabu Intelligent hybrid model for financial crisis prediction using machine learning techniques Information Systems and e-Business Management, pp. (2018), pp. 1-29 View Record in ScopusGoogle Scholar
[8] R. Hinami, T. Mei, S. Satoh Joint detection and recounting of abnormal events by learning deep generic knowledge IEEE International Conference on Computer Vision (ICCV) (2017)
[9] R.T. Ionescu, F.S. Khan, M.-I. Georgescu, L. Shao Object-centric auto-encoders and dummy anomalies for abnormal event detection in video The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
[10] W. Luo, W. Liu, S. Gao A revisit of sparse coding based anomaly detection in stacked RNN framework 2017 IEEE International Conference on Computer Vision (ICCV) (2017), pp. 341-349
[11] M. Sabokrou, M. Fathy, M. Hoseini Video anomaly detection and localization based on the sparsity and reconstruction error of auto-encoder Electron. Lett., 52 (13) (2016), pp. 1122-1124
[12] M. Ravanbakhsh, M. Nabi, H. Mousavi, E. Sangineto, N. Sebe Plug-and-play CNN for crowd motion analysis: An application in anomalous event detection WACV (2017)
[13] Mohammad Sabokrou, Mohsen Fayyaz, Mahmood Fathy, Reinhard Klette Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes Comp. Vision Image Underst., 172 (2018), pp. 88-97
[14] M. Hasan, J. Choi, J. Neumanny, A.K. Roy-Chowdhury, L.S. Davis Learning Temporal Regularity in Video Sequences CVPR (2016)
[15] D. Xu, E. Ricci, Y. Yan, J. Song, N. Sebe Learning Deep Representations of Appearance and Motion for Anomalous Event Detection BMVC (2015), pp. 1-12
[16] M. Bellver, X. Giro-i-Nieto, F. Marques, J. Torres Hierarchical Object Detection with Deep Reinforcement Learning Proceedings of the Conference on Neural Information Processing Systems, Barcelona, Spain (December 2016), pp. 5-20
[17] X. Kong, B. Xin, Y. Wang, G. Hua Collaborative deep reinforcement learning for joint object search Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA (21–26 July 2017), pp. 7072-7081
[18] B. Uzkent, C. Yeh, S. Ermon Efficient object detection in large images using deep reinforcement learning Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA (1–5 March 2020), pp. 1824-1833
[19] S. Liu, D. Huang, Y. Wang Pay attention to them: deep reinforcement learning-based Cascade object detection IEEE Trans Neural Netw. Learn Syst., 31 (2020), pp. 2544-2556
[20] S. Ren, K. He, R. Girshick, J. Sun Faster R-CNN: towards real-time object detection with region proposal networks IEEE Trans. Pattern Anal. Mach. Intell., 39 (6) (2015), pp. 1137-1149
[21] A.A. Micheal, K. Vani Automatic object tracking in optimized UAV video J. Supercomput., 75 (8) (2019), pp. 4986-4999
[22] X. Lei, Z. Sui Intelligent fault detection of high voltage line based on the faster R-CNN Measurement, 138 (2019), pp. 379-385
[23] Y. Ding, L. Ma, J. Ma, M. Suo, L. Tao, Y. Cheng, C. Lu Intelligent fault diagnosis for rotating machinery using deep Q-network based health state classification: a deep reinforcement learning approach Adv. Eng. Inform., 42 (2019), p. 100977
[24] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis Human-level control through deep reinforcement learning Nature, 518 (2015), pp. 529-533
[25] http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
[26] B.S. Murugan, M. Elhoseny, K. Shankar, J. Uthayakumar Region-based scalable smart system for anomaly detection in pedestrian walkways Computers & Electrical Engineering, 75 (2019), pp. 146-160
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Image and Vision Computing
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0262885621001347
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/baf3c5cf-9d08-47eb-9ebf-d79d16c46af5/download
https://repositorio.cuc.edu.co/bitstreams/1a571feb-3d70-48a3-a331-8dbb0708350a/download
https://repositorio.cuc.edu.co/bitstreams/4dd63155-5b71-433f-aa27-25ab0ac4f30f/download
https://repositorio.cuc.edu.co/bitstreams/3ff162eb-9e19-47c7-ad72-8c389ccb43b8/download
https://repositorio.cuc.edu.co/bitstreams/2f3a18a9-9443-4df3-8970-c4248f14274c/download
bitstream.checksum.fl_str_mv d7f2ceced00bcd9a894ab777ba96a4f6
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
623ddd6377a905a912e15f008f6c498f
87e89afcd8c39d8b65dd31157fd09292
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760806180683776
spelling Mansour, Romany F.Escorcia-García, JoséGamarra, MargaritaVILLANUEVA, JAIR ASIRLeal, Nallig2021-06-22T19:45:58Z2021-06-22T19:45:58Z202120230262-8856https://hdl.handle.net/11323/8394https://doi.org/10.1016/j.imavis.2021.104229Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Recently, intelligent video surveillance applications have become essential in public security by the use of computer vision technologies to investigate and understand long video streams. Anomaly detection and classification are considered a major element of intelligent video surveillance. The aim of anomaly detection is to automatically determine the existence of abnormalities in a short time period. Deep reinforcement learning (DRL) techniques can be employed for anomaly detection, which integrates the concepts of reinforcement learning and deep learning enabling the artificial agents in learning the knowledge and experience from actual data directly. With this motivation, this paper presents an Intelligent Video Anomaly Detection and Classification using Faster RCNN with Deep Reinforcement Learning Model, called IVADC-FDRL model. The presented IVADC-FDRL model operates on two major stages namely anomaly detection and classification. Firstly, Faster RCNN model is applied as an object detector with Residual Network as a baseline model, which detects the anomalies as objects. Besides, deep Q-learning (DQL) based DRL model is employed for the classification of detected anomalies. In order to validate the effective anomaly detection and classification performance of the IVADC-FDRL model, an extensive set of experimentations were carried out on the benchmark UCSD anomaly dataset. The experimental results showcased the better performance of the IVADC-FDRL model over the other compared methods with the maximum accuracy of 98.50% and 94.80% on the applied Test004 and Test007 dataset respectively.Mansour, Romany F.Escorcia-García, José-will be generated-orcid-0000-0002-4746-9047-600Gamarra, Margarita-will be generated-orcid-0000-0003-1834-2984-600VILLANUEVA, JAIR ASIR-will be generated-orcid-0000-0002-5672-2243-600Leal, Nallig-will be generated-orcid-0000-0002-4913-8540-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Image and Vision Computinghttps://www.sciencedirect.com/science/article/pii/S0262885621001347Video surveillanceIntelligent systemsAnomaly detectionDeep reinforcement learningUCSD datasetIntelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning modelPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] X. Zhang, S. Yang, J. Zhang, W. Zhang Video anomaly detection and localization using motion-field shape description and homogeneity testing Pattern Recogn., 105 (2020), p. 107394[2] S. Veluchamy, L.R. Karlmarx, K.M. Mahesh Detection and localization of abnormalities in surveillance video using timerider-based neural network Comput. J. (2021), Article bxab002, 10.1093/comjnl/bxab002[3] Y. Fan, G. Wen, D. Li, S. Qiu, M.D. Levine, F. Xiao Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder Comput. Vis. Image Underst., 195 (2020), p. 102920[4] A. Alam, M.N. Khan, J. Khan, Y.K. Lee Intellibvr-intelligent large-scale video retrieval for objects and events utilizing distributed deep-learning and semantic approaches 2020 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 28-35), IEEE (2020, February)[5] S. Liu, J. Tang Modified deep reinforcement learning with efficient convolution feature for small target detection in vhr remote sensing imagery ISPRS International Journal of Geo-Information, 10 (3) (2021), p. 170 CrossRefView Record in ScopusGoogle Scholar[6] S.K. Lakshmanaprabu, S.N. Mohanty, S. Krishnamoorthy, J. Uthayakumar, K. Shankar Online clinical decision support system using optimal deep neural networks Appl. Soft Comput., 81 (2019), p. 105487[7] J. Uthayakumar, N. Metawa, K. Shankar, S.K. Lakshmanaprabu Intelligent hybrid model for financial crisis prediction using machine learning techniques Information Systems and e-Business Management, pp. (2018), pp. 1-29 View Record in ScopusGoogle Scholar[8] R. Hinami, T. Mei, S. Satoh Joint detection and recounting of abnormal events by learning deep generic knowledge IEEE International Conference on Computer Vision (ICCV) (2017)[9] R.T. Ionescu, F.S. Khan, M.-I. Georgescu, L. Shao Object-centric auto-encoders and dummy anomalies for abnormal event detection in video The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)[10] W. Luo, W. Liu, S. Gao A revisit of sparse coding based anomaly detection in stacked RNN framework 2017 IEEE International Conference on Computer Vision (ICCV) (2017), pp. 341-349[11] M. Sabokrou, M. Fathy, M. Hoseini Video anomaly detection and localization based on the sparsity and reconstruction error of auto-encoder Electron. Lett., 52 (13) (2016), pp. 1122-1124[12] M. Ravanbakhsh, M. Nabi, H. Mousavi, E. Sangineto, N. Sebe Plug-and-play CNN for crowd motion analysis: An application in anomalous event detection WACV (2017)[13] Mohammad Sabokrou, Mohsen Fayyaz, Mahmood Fathy, Reinhard Klette Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes Comp. Vision Image Underst., 172 (2018), pp. 88-97[14] M. Hasan, J. Choi, J. Neumanny, A.K. Roy-Chowdhury, L.S. Davis Learning Temporal Regularity in Video Sequences CVPR (2016)[15] D. Xu, E. Ricci, Y. Yan, J. Song, N. Sebe Learning Deep Representations of Appearance and Motion for Anomalous Event Detection BMVC (2015), pp. 1-12[16] M. Bellver, X. Giro-i-Nieto, F. Marques, J. Torres Hierarchical Object Detection with Deep Reinforcement Learning Proceedings of the Conference on Neural Information Processing Systems, Barcelona, Spain (December 2016), pp. 5-20[17] X. Kong, B. Xin, Y. Wang, G. Hua Collaborative deep reinforcement learning for joint object search Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA (21–26 July 2017), pp. 7072-7081[18] B. Uzkent, C. Yeh, S. Ermon Efficient object detection in large images using deep reinforcement learning Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA (1–5 March 2020), pp. 1824-1833[19] S. Liu, D. Huang, Y. Wang Pay attention to them: deep reinforcement learning-based Cascade object detection IEEE Trans Neural Netw. Learn Syst., 31 (2020), pp. 2544-2556[20] S. Ren, K. He, R. Girshick, J. Sun Faster R-CNN: towards real-time object detection with region proposal networks IEEE Trans. Pattern Anal. Mach. Intell., 39 (6) (2015), pp. 1137-1149[21] A.A. Micheal, K. Vani Automatic object tracking in optimized UAV video J. Supercomput., 75 (8) (2019), pp. 4986-4999[22] X. Lei, Z. Sui Intelligent fault detection of high voltage line based on the faster R-CNN Measurement, 138 (2019), pp. 379-385[23] Y. Ding, L. Ma, J. Ma, M. Suo, L. Tao, Y. Cheng, C. Lu Intelligent fault diagnosis for rotating machinery using deep Q-network based health state classification: a deep reinforcement learning approach Adv. Eng. Inform., 42 (2019), p. 100977[24] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis Human-level control through deep reinforcement learning Nature, 518 (2015), pp. 529-533[25] http://www.svcl.ucsd.edu/projects/anomaly/dataset.html[26] B.S. Murugan, M. Elhoseny, K. Shankar, J. Uthayakumar Region-based scalable smart system for anomaly detection in pedestrian walkways Computers & Electrical Engineering, 75 (2019), pp. 146-160PublicationORIGINALIntelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model.pdfIntelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model.pdfapplication/pdf80599https://repositorio.cuc.edu.co/bitstreams/baf3c5cf-9d08-47eb-9ebf-d79d16c46af5/downloadd7f2ceced00bcd9a894ab777ba96a4f6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/1a571feb-3d70-48a3-a331-8dbb0708350a/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/4dd63155-5b71-433f-aa27-25ab0ac4f30f/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILIntelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model.pdf.jpgIntelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model.pdf.jpgimage/jpeg62743https://repositorio.cuc.edu.co/bitstreams/3ff162eb-9e19-47c7-ad72-8c389ccb43b8/download623ddd6377a905a912e15f008f6c498fMD54TEXTIntelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model.pdf.txtIntelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model.pdf.txttext/plain7343https://repositorio.cuc.edu.co/bitstreams/2f3a18a9-9443-4df3-8970-c4248f14274c/download87e89afcd8c39d8b65dd31157fd09292MD5511323/8394oai:repositorio.cuc.edu.co:11323/83942024-09-17 12:47:14.045http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==