Análisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor

In this work an energetic and exergetic evaluation of an absorption-diffusion refrigeration system operating with renewable energy sources is performed, the sources evaluated were photovoltaic solar energy, biogas obtained from rumen content, and gasification gas from corn residues, which have a hig...

Full description

Autores:
Rhenals Julio, Jesús David
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8516
Acceso en línea:
https://hdl.handle.net/11323/8516
https://repositorio.cuc.edu.co/
Palabra clave:
Renewable energies
Cooling
Exergy
Absorption-diffusion
Biomass
Solar radiation
Energías renovables
Refrigeración
Exergía
Absorción-difusión
Biomasa
Radiación solar
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_c3c26b68b5d169da07b403cbc5bdf221
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8516
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Análisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor
title Análisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor
spellingShingle Análisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor
Renewable energies
Cooling
Exergy
Absorption-diffusion
Biomass
Solar radiation
Energías renovables
Refrigeración
Exergía
Absorción-difusión
Biomasa
Radiación solar
title_short Análisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor
title_full Análisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor
title_fullStr Análisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor
title_full_unstemmed Análisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor
title_sort Análisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor
dc.creator.fl_str_mv Rhenals Julio, Jesús David
dc.contributor.advisor.spa.fl_str_mv Sagastume Gutiérrez, Alexis
Mendoza Fandiño, Jorge Mario
dc.contributor.author.spa.fl_str_mv Rhenals Julio, Jesús David
dc.subject.spa.fl_str_mv Renewable energies
Cooling
Exergy
Absorption-diffusion
Biomass
Solar radiation
Energías renovables
Refrigeración
Exergía
Absorción-difusión
Biomasa
Radiación solar
topic Renewable energies
Cooling
Exergy
Absorption-diffusion
Biomass
Solar radiation
Energías renovables
Refrigeración
Exergía
Absorción-difusión
Biomasa
Radiación solar
description In this work an energetic and exergetic evaluation of an absorption-diffusion refrigeration system operating with renewable energy sources is performed, the sources evaluated were photovoltaic solar energy, biogas obtained from rumen content, and gasification gas from corn residues, which have a high potential in the department of Cordoba. Initially, an energetic characterization of the studied sources was carried out; for biogas and gasification gas, the thermochemical characteristics of the biomasses and the composition and calorific value of the fuel gas were determined, obtaining lower calorific values of 30 MJ/kg for biogas and 5,18 MJ/kg for gasification gas. In the case of solar energy, using a Gaussian model for hourly radiation, the operating hours of the refrigeration system operating with this source were estimated, obtaining an operating time between 6.5 and 7.56 hours per day. Subsequently, the energy and exergy analysis of the system was carried out, calculating the performance coefficients with each energy source; biogas showed a performance coefficient of 0,18 in energy and 0,2 in exergy, while solar energy had a performance of 0,095 in energy and 0,0065 in exergy, and gasification gas had a performance of 0,06 in energy and 0,022 in exergy. Finally, the economic analysis of the system showed that the source with the lowest operating costs is photovoltaic solar energy, so the use of this source is recommended for cooling in non-interconnected areas of the department.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-12T14:49:17Z
dc.date.available.none.fl_str_mv 2021-08-12T14:49:17Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8516
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/8516
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acuña, A., Velázquez, N., & Cerezo, J. (2013). Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant. Applied Thermal Engineering, 51(1–2), 1273–1281. https://doi.org/10.1016/j.applthermaleng.2012.10.046
Al-Nimr, M. A., & Mugdadi, B. (2020). A hybrid absorption/thermo-electric cooling system driven by a concentrated photovoltaic/thermal unit. Sustainable Energy Technologies and Assessments, 40, 100769. https://doi.org/10.1016/J.SETA.2020.100769
Aman, J., Ting, D. S. K., & Henshaw, P. (2014). Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system. Applied Thermal Engineering, 62(2), 424–432. https://doi.org/10.1016/J.APPLTHERMALENG.2013.10.006
Amaris, C., Vallès, M., & Bourouis, M. (2018). Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review. Applied Energy, 231, 826–853. https://doi.org/10.1016/J.APENERGY.2018.09.071
Anukam, A. I., Goso, B. P., Okoh, O. O., & Mamphweli, S. N. (2017). Studies on Characterization of Corn Cob for Application in a Gasification Process for Energy Production. Journal of Chemistry, 2017, 6478389. https://doi.org/10.1155/2017/6478389
Asadi, J., Amani, P., Amani, M., Kasaeian, A., & Bahiraei, M. (2018). Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors. Energy Conversion and Management, 173(August), 715–727. https://doi.org/10.1016/j.enconman.2018.08.013
ASTM D3172-13. (2013). Standard Practice for Proximate Analysis of Coal and Coke. https://doi.org/10.1520/D3172-13
ASTM D3173 / D3173M-17a. (2017). Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. https://doi.org/10.1520/D3173_D3173M-17A
ASTM D3174-12. (2018). Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. https://doi.org/10.1520/D3174-12R18E01
ASTM D3177-02. (2007). Standard Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke (Withdrawn 2012). https://doi.org/10.1520/D3177-02R07
ASTM D4239-18. (2018). Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion. https://doi.org/10.1520/D4239- 18E01
ASTM D5373-16. (2016). Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. https://doi.org/10.1520/D5373-16
ASTM D5865 / D5865M-19. (2019). Standard Test Method for Gross Calorific Value of Coal and Coke. https://doi.org/10.1520/D5865_D5865M-19
Balafkandeh, S., Zare, V., & Gholamian, E. (2019). Multi-objective optimization of a trigeneration system based on biomass gasification/digestion combined with S-CO2 cycle and absorption chiller. Energy Conversion and Management, 200, 112057. https://doi.org/10.1016/J.ENCONMAN.2019.112057
Basu, P. (2018). Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory (Third Edit). Elsevier Science. https://books.google.com.co/books?id=BYM2DwAAQBAJ
Bejan, A. (2016). Advanced Engineering Thermodynamics. Wiley. https://books.google.com.co/books?id=j0zSDAAAQBAJ
Bellos, E., Tzivanidis, C., Symeou, C., & Antonopoulos, K. A. (2017). Energetic, exergetic and financial evaluation of a solar driven absorption chiller – A dynamic approach. Energy Conversion and Management, 137, 34–48. https://doi.org/10.1016/J.ENCONMAN.2017.01.041
Ben Ezzine, N., Garma, R., & Bellagi, A. (2010). A numerical investigation of a diffusionabsorption refrigeration cycle based on R124-DMAC mixture for solar cooling. Energy, 35(5), 1874–1883. https://doi.org/10.1016/j.energy.2009.12.032
Ben Ezzine, N., Garma, R., Bourouis, M., & Bellagi, A. (2010). Experimental studies on bubble pump operated diffusion absorption machine based on light hydrocarbons for solar cooling. Renewable Energy, 35(2), 464–470. https://doi.org/10.1016/j.renene.2009.07.026
Cacua, K., Olmos-Villalba, L., Herrera, B., & Gallego, A. (2016). Experimental evaluation of a diesel-biogas dual fuel engine operated on micro-trigeneration system for power, drying and cooling. Applied Thermal Engineering, 100, 762–767. https://doi.org/10.1016/J.APPLTHERMALENG.2016.02.067
Calise, F., Libertini, L., & Vicidomini, M. (2017). Design and optimization of a novel solar cooling system for combined cycle power plants. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.06.157
Chejne, F., Valdés, C., Marrugo, G., Gómez, C., Montoya, J., Macías, R., Londoño, C., De La Cruz, J., Ocampo, A., & Arenas, E. (2017). La gasificación, alternativa de generación de energía y productos con alto valor agregado para la industria. Medellín: Universidad Nacional de Colombia.
Costa, V. A. F., Tarelho, L. A. C., & Sobrinho, A. (2019). Mass, energy and exergy analysis of a biomass boiler: A portuguese representative case of the pulp and paper industry. Applied Thermal Engineering, 152(January), 350–361. https://doi.org/10.1016/j.applthermaleng.2019.01.033
Dayton, D. C., & Foust, T. D. (2020). Chapter Two - Biomass Characterization. In D. C. Dayton & T. D. Foust (Eds.), Analytical Methods for Biomass Characterization and Conversion (pp. 19–35). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-815605-6.00002-0
de Jong, W., & van Ommen, J. R. (2014). Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes. Wiley. https://books.google.com.co/books?id=gm8TBwAAQBAJ
de Kuyper, J. C. V, & Morales, S. R. (2014). Fuentes de energía, renovables y no renovables: aplicaciones. Alfaomega. https://books.google.com.co/books?id=-P78jgEACAAJ
Dincer, I., & Rosen, M. A. (2007). Exergy: Energy, Environment and Sustainable Development. Elsevier Science. https://books.google.com.co/books?id=ruR7U3IjrR0C
DNP Colombia. (2016). Pérdida y Desperdicio de alimentos en Colombia: Estudio de la Dirección de Seguimiento y Evaluación de Políticas Públicas. Departamento Nacional de Planeación.
El Haj Assad, M., Nazari, M. A., Ehyaei, M. A., & Rosen, M. A. (2021). Heat pumps and absorption chillers. In Design and Performance Optimization of Renewable Energy Systems (pp. 163–180). Elsevier. https://doi.org/10.1016/b978-0-12-821602-6.00013-4
Fao. (2012). Pérdidas y desperdicio de alimentos en el mundo – Alcance, causas y prevención. In Roma. https://doi.org/10.3738/1982.2278.562
Fenalce. (2020). Maíz para Colombía, visión 2030. Www.Fenalce.Org. https://www.fenalce.org/alfa/pg.php?pa=1
Fuess, L. T., & Garcia, M. L. (2017). Anaerobic biodigestion for enhanced bioenergy generation in ethanol biorefineries: Understanding the potentials of vinasse as a biofuel. In Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen (pp. 149–183). Elsevier Inc. https://doi.org/10.1016/B978-0-08-101031-0.00005-3
Gamarra Quintero, J. S., Gonzalez, C. A. D., & Pacheco Sandoval, L. (2021). Exergoeconomic analysis of a simulated system of biomass gasification-based power generation with surplus syngas storage in a rural zone in Colombia. Sustainable Energy Technologies and Assessments, 44, 101075. https://doi.org/10.1016/j.seta.2021.101075
Gebrehawariat, E., Animut, G., Urge, M., & Mekasha, Y. (2016). Sun-Dried Bovine Rumen Content (SDRC) as an Ingredient of a Ration for White Leghorn Layers. East African Journal of Sciences, 10(1), 29–40.
Gomez, R. D., Palacio, M., Arango, J. F., Avila, A. E., & Mendoza, J. M. (2021). Evaluation of the energy generation potential by an experimental characterization of residual biomass blends from Córdoba, Colombia in a downdraft gasifier. Waste Management, 120, 522–529. https://doi.org/10.1016/j.wasman.2020.10.014
IDEAM. (2020). Atlas de radiación solar. http://atlas.ideam.gov.co/visorAtlasRadiacion.html
IPSE. (2020). Caracterizacion energética de zonas no interconectadas (Vol. 2). https://ipse.gov.co/cnm/caracterizacion-de-las-zni/
Isaza, C., Pilatowsky, I., Romero, R., & Cortés, F. (2010). Análisis termodinámico de un sistema de refrigeración solar por absorción usando soluciones de Monometolamina - agua para la conservación de alimentos. Biotecnología En El Sector Agropecuario y Agroindustrial, 8, 18–25. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692- 35612010000100003&nrm=iso
ISO 562-10. (2010). specifies a method of determining the volatile matter of hard coal and of coke. https://www.iso.org/standard/55943.html
Lazzarin, R. M., & Noro, M. (2018). Past, present, future of solar cooling: Technical and economical considerations. Solar Energy. https://doi.org/10.1016/j.solener.2017.12.055
León Mejía, J. M., & Novoa Posada, A. L. (2018). Evaluación del rendimiento energético del biogás de estiércol bovino empleando la tecnología mci en ciclo otto y diésel para la generación de potencia en el departamento de Córdoba. https://repositorio.unicordoba.edu.co/handle/ucordoba/668
Lesme, R. L., Martillo, J., & Oliva, L. (2020). Estudio de la gasificación de la tusa del maíz para la generación de electricidad Study of the corn cob gasification of the for the electricity generation Métodos y Materiales. 23(3), 1–9.
Li, X., Kan, X., Sun, X., Zhao, Y., Ge, T., Dai, Y., & Wang, C. H. (2019). Performance analysis of a biomass gasification-based CCHP system integrated with variable-effect LiBr-H2O absorption cooling and desiccant dehumidification. Energy, 176, 961–979. https://doi.org/10.1016/J.ENERGY.2019.04.040
López, A. R., Krumm, A., Schattenhofer, L., Burandt, T., Montoya, F. C., Oberländer, N., & Oei, P. Y. (2020). Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market. Renewable Energy, 148, 1266–1279. https://doi.org/10.1016/j.renene.2019.10.066
López González, L. M., Pereda Reyes, I., Escobar Román, R., Pedraza Garciga, J., & Romero Romero, O. (2018). Efecto de la aplicación de métodos de pre-tratamientos en el proceso de digestión anaerobia de la biomasa lignocelulósica. Tecnología Química, 38(2), 324–334. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224- 61852018000200010&lng=es&nrm=iso&tlng=es
Macriss, R A; Gutraj, J M; Zawacki, T. S. (1988). Absorption fluids data survey: Final report on worldwide data. https://doi.org/AC05-84OR21400
Mansouri, R., Bourouis, D. M., & Dr. Ahmed Bellagi. (2016). ABSORPTION / DIFFUSION REFRIGERATING MACHINES USING AMMONIA AS A REFRIGERANT : SIMULATION UNDER STEADY-STATE AND DYNAMIC REGIMES The eoretic cal and d expe riment tal stud dy of a absorpt tion an nd abs orption n / diffus sion re efrigera ating m machin e. Universitat Rovira I Virgili.
Martillo Aseffe, J. A., Martínez González, A., Jaén, R. L., & Silva Lora, E. E. (2021). The corn cob gasification-based renewable energy recovery in the life cycle environmental performance of seed-corn supply chain: An Ecuadorian case study. Renewable Energy, 163, 1523–1535. https://doi.org/10.1016/j.renene.2020.10.053
Mendoza, J., Rhenals-Julio, J., Avila, A., & Durando, E. (2021). Análise Exergoeconômica da Gasificação de Sabugo de Milho Integrado em um Sistema de Geração de Energia: Estudo de Caso na Colômbia. 76, 1–7.
Ministerio de minas y energías. (2016). Plan de acción indicativo de eficiencia energética 2017- 2022. http://www1.upme.gov.co/Documents/PAI_PROURE_2017_2022.pdf
Moharramian, A., Soltani, S., Rosen, M. A., Mahmoudi, S. M. S., & Jafari, M. (2019). Conventional and enhanced thermodynamic and exergoeconomic analyses of a photovoltaic combined cycle with biomass post firing and hydrogen production. Applied Thermal Engineering, 160, 113996. https://doi.org/10.1016/j.applthermaleng.2019.113996
Molina, G., Gupta, V. K., Singh, B. N., & Gathergood, N. (2020). Bioprocessing for Biomolecules Production. Wiley. https://books.google.com.co/books?id=Eb64DwAAQBAJ
Neveras triviales. (2021). No Title. https://www.serviciodometicwaeco.com/neveras-trivalentesf8.html
Nikbakhti, R., Wang, X., Hussein, A. K., & Iranmanesh, A. (2020). Absorption cooling systems – Review of various techniques for energy performance enhancement. Alexandria Engineering Journal, 59(2), 707–738. https://doi.org/10.1016/J.AEJ.2020.01.036
Olaya, Y., & Gonzalez, L. (2009). Fundamentos para el diseño de biodigestores. Módulo para la asignatura de Construcciones Agrícolas. In Universidad nacional de Colombia (Vol. 51, Issue 2). https://doi.org/10.1017/CBO9781107415324.004
OPUREB&DANM. (2016). Desarrollo de integración tecnológica de recursos energéticos renovables en sistemas productivos agrícolas y agroindustriales Montería, Córdoba, Caribe.
Palencia-Severiche, G., Mercado-F, T., & Combath-Caballero, E. (2006). Estudio agroclimático de Córdoba. In Facultad de Ciencias Agrícolas. Universidad de Córdoba. Montería, Colombia.
Querol, E., Gonzalez-Regueral, B., & Perez-Benedito, J. L. (2012). Practical Approach to Exergy and Thermoeconomic Analyses of Industrial Processes. Springer London. https://books.google.com.co/books?id=d8BPo78kjocC
Razmi, A. R., & Janbaz, M. (2020). Exergoeconomic assessment with reliability consideration of a green cogeneration system based on compressed air energy storage (CAES). Energy Conversion and Management, 204, 112320. https://doi.org/10.1016/j.enconman.2019.112320
REN21. (2017). Ren 21 - Renewable Global Futures Report. Great debates towards 100 % renewable energy. Ren21. https://doi.org/10.1109/JRPROC.1918.217382
Rhenals, J. D., & Torres, M. L. (2016). ANÁLISIS EXERGOECONÓMICO DE LA GASIFICACIÓN DE TUSA DE MAÍZ EMPLEANDO VAPOR DE AGUA COMO AGENTE GASIFICANTE, INTEGRADO A UN SISTEMA DE GENERACIÓN DE POTENCIA. https://repositorio.unicordoba.edu.co/handle/ucordoba/669
Rodríguez-Muñoz, J. L., & Belman-Flores, J. M. (2014). Review of diffusion-absorption refrigeration technologies. In Renewable and Sustainable Energy Reviews (Vol. 30, pp. 145–153). Pergamon. https://doi.org/10.1016/j.rser.2013.09.019
Rokni, M. (2018). Design and analysis of a waste gasification energy system with solid oxide fuel cells and absorption chillers. International Journal of Hydrogen Energy, 43(11), 5922– 5938. https://doi.org/10.1016/J.IJHYDENE.2017.10.123
Sagastume, A., Mendoza, J. M., Cabello, J. J., & Rhenals, J. D. (2021). The Available Waste-toenergy Potential from Agricultural Wastes in the Department of Córdoba , Colombia. 11(3), 44–50.
Sakirkin, S., Morgan, C., Macdonald, J., & Auvermann, B. (2011). Effect of Diet Composition on the Determination of Ash and Moisture Content in Solid Cattle Manure Using Visible and Near-Infrared Spectroscopy. Applied Spectroscopy, 65, 1056–1061. https://doi.org/10.1366/11-06333
Sayadi, Z., Ben Thameur, N., Bourouis, M., & Bellagi, A. (2013). Performance optimization of solar driven small-cooled absorption-diffusion chiller working with light hydrocarbons. Energy Conversion and Management, 74, 299–307. https://doi.org/10.1016/j.enconman.2013.05.029
Secretaría de desarrollo economico de Córdoba. (2018). Evaluaciones agropecuarias municipales. Gobernación de Córdoba.
Sevinchan, E., Dincer, I., & Lang, H. (2019). Energy and exergy analyses of a biogas driven multigenerational system. Energy, 166, 715–723. https://doi.org/10.1016/J.ENERGY.2018.10.085
Shariff, A., Mohamad Aziz, N. S., Ismail, N. I., & Abdullah, N. (2016). Corn Cob as a Potential Feedstock for Slow Pyrolysis of Biomass. Journal of Physical Science, 27(2), 123–137. https://doi.org/10.21315/jps2016.27.2.9
Siddiki, S. Y. A., Uddin, M. N., Mofijur, M., Fattah, I. M. R., Ong, H. C., Lam, S. S., Kumar, P.
S., & Ahmed, S. F. (2021). Theoretical calculation of biogas production and greenhouse gas emission reduction potential of livestock, poultry and slaughterhouse waste in Bangladesh. Journal of Environmental Chemical Engineering, 9(3), 105204. https://doi.org/10.1016/j.jece.2021.105204
SIEL. (2017). Cobertura de Energía Eléctrica a 2016. http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadi sticas/tabid/81/Default.aspx
SIEL. (2018). Indice de cobertura de energía electrica. http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadi sticas/tabid/81/Default.aspx
Silva, S. R., Bonanato, G., Costa, E. F. da, Sarrouh, B., & Costa, A. O. S. da. (2021). Specific chemical exergy prediction for biological molecules using hybrid models. Chemical Engineering Science, 235, 116462. https://doi.org/10.1016/j.ces.2021.116462
Unidad de Planeación Minero-Energética [UPME]. (2021). Balance energético Colombiano. Balance Energético Colombiano. http://www1.upme.gov.co/InformacionCifras/Paginas/PETROLEO.aspx
Unidad de Planeación Minero Energética. (2015). Integración de las Energías Renovables No Convencionales en Colombia. In Unidad de Planeación Minero Energética. http://www1.upme.gov.co/DemandaEnergetica/INTEGRACION_ENERGIAS_RENOVAN LES_WEB.pdf
Unidad de Planeación Minero Energética - UPME. (2016). Boletín Estadístico de Minas y energía 2012 – 2016. Ministerio de Minas y Energía. https://doi.org/10.1017/CBO9781107415324.004
Vazini Modabber, H., & Khoshgoftar Manesh, M. H. (2021). 4E dynamic analysis of a waterpower cogeneration plant integrated with solar parabolic trough collector and absorption chiller. Thermal Science and Engineering Progress, 21, 100785. https://doi.org/10.1016/J.TSEP.2020.100785
Yildiz, A., & Ersöz, M. A. (2013). Energy and exergy analyses of the diffusion absorption refrigeration system. Energy, 60, 407–415. https://doi.org/10.1016/J.ENERGY.2013.07.062
Yildiz, A., Ersöz, M. A., & Gözmen, B. (2014). Effect of insulation on the energy and exergy performances in Diffusion Absorption Refrigeration (DAR) systems. International Journal of Refrigeration, 44, 161–167. https://doi.org/10.1016/J.IJREFRIG.2014.04.021
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.program.spa.fl_str_mv Maestría en Eficiencia Energética y Energías Renovables
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8516/1/An%c3%a1lisis%20energ%c3%a9tico%20y%20exerg%c3%a9tico%20de%20un%20sistema%20de%20refrigeraci%c3%b3n%20absorci%c3%b3n-difusi%c3%b3n%20con%20diferentes%20fuentes%20de%20calor.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8516/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8516/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/8516/4/An%c3%a1lisis%20energ%c3%a9tico%20y%20exerg%c3%a9tico%20de%20un%20sistema%20de%20refrigeraci%c3%b3n%20absorci%c3%b3n-difusi%c3%b3n%20con%20diferentes%20fuentes%20de%20calor.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/8516/5/An%c3%a1lisis%20energ%c3%a9tico%20y%20exerg%c3%a9tico%20de%20un%20sistema%20de%20refrigeraci%c3%b3n%20absorci%c3%b3n-difusi%c3%b3n%20con%20diferentes%20fuentes%20de%20calor.pdf.txt
bitstream.checksum.fl_str_mv 8e09db310f903eefd9eeb1f9e956da0c
934f4ca17e109e0a05eaeaba504d7ce4
e30e9215131d99561d40d6b0abbe9bad
d4786a05577b2ec6b975d7a33b1d0e0a
c8aa714a92d4f3c2b78ba8594d1b991b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400230815629312
spelling Sagastume Gutiérrez, Alexis9d72c6f50c20cd5568a9d3277ce08e4d-1Mendoza Fandiño, Jorge Mario8170ddff274ae7d2184bc267fcc95f2e-1Rhenals Julio, Jesús David33745ccafe0d2adb70694083ce0359172021-08-12T14:49:17Z2021-08-12T14:49:17Z2021https://hdl.handle.net/11323/8516Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this work an energetic and exergetic evaluation of an absorption-diffusion refrigeration system operating with renewable energy sources is performed, the sources evaluated were photovoltaic solar energy, biogas obtained from rumen content, and gasification gas from corn residues, which have a high potential in the department of Cordoba. Initially, an energetic characterization of the studied sources was carried out; for biogas and gasification gas, the thermochemical characteristics of the biomasses and the composition and calorific value of the fuel gas were determined, obtaining lower calorific values of 30 MJ/kg for biogas and 5,18 MJ/kg for gasification gas. In the case of solar energy, using a Gaussian model for hourly radiation, the operating hours of the refrigeration system operating with this source were estimated, obtaining an operating time between 6.5 and 7.56 hours per day. Subsequently, the energy and exergy analysis of the system was carried out, calculating the performance coefficients with each energy source; biogas showed a performance coefficient of 0,18 in energy and 0,2 in exergy, while solar energy had a performance of 0,095 in energy and 0,0065 in exergy, and gasification gas had a performance of 0,06 in energy and 0,022 in exergy. Finally, the economic analysis of the system showed that the source with the lowest operating costs is photovoltaic solar energy, so the use of this source is recommended for cooling in non-interconnected areas of the department.En el presente trabajo se realiza una evaluación energética y exergética de un sistema de refrigeración por absorción-difusión funcionando con fuentes de energía renovables, las fuentes evaluadas fueron; energía solar fotovoltaica, biogás obtenido de contenido ruminal y gas de gasificación de residuos del maíz, las cuales tienen un alto potencial en el departamento de Córdoba. Inicialmente se realizó una caracterización energética de las fuentes estudiadas, para el biogás y el gas de gasificación se determinaron las características termoquímicas de las biomasas y la composición y poder calorífico del gas combustible, obteniendo valores de poder calorífico inferior de 30 MJ/kg para el biogás y 5,18 MJ/kg para el gas de gasificación. Para la energía solar por medio de un modelo gaussiano para la radiación horaria se estimaron las horas de funcionamiento del sistema de refrigeración operando con esta fuente, obtenido un tiempo de funcionamiento entre 6,5 y 7,56 horas por día. Posteriormente se realizó el análisis energético y exergético del sistema, calculando los coeficientes de desempeño con cada fuente de energía, el biogás mostró un coeficiente de desempeño de 0,18 en energía y de 0,2 en exergía, por su parte la energía solar presentó un desempeño de 0,095 en energía y 0,0065 en exergía y el gas de gasificación tuvo un desempeño de 0,06 en energía y 0,022 en exergía. Finalmente, del análisis económico del sistema se obtuvo que la fuente que presenta los menores costos de operación es la energía solar fotovoltaica, por lo que se recomienda el uso de esta fuente para refrigeración en zonas no interconectadas del departamento.application/pdfspaCorporación Universidad de la CostaMaestría en Eficiencia Energética y Energías RenovablesAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Renewable energiesCoolingExergyAbsorption-diffusionBiomassSolar radiationEnergías renovablesRefrigeraciónExergíaAbsorción-difusiónBiomasaRadiación solarAnálisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calorTrabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionAcuña, A., Velázquez, N., & Cerezo, J. (2013). Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant. Applied Thermal Engineering, 51(1–2), 1273–1281. https://doi.org/10.1016/j.applthermaleng.2012.10.046Al-Nimr, M. A., & Mugdadi, B. (2020). A hybrid absorption/thermo-electric cooling system driven by a concentrated photovoltaic/thermal unit. Sustainable Energy Technologies and Assessments, 40, 100769. https://doi.org/10.1016/J.SETA.2020.100769Aman, J., Ting, D. S. K., & Henshaw, P. (2014). Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system. Applied Thermal Engineering, 62(2), 424–432. https://doi.org/10.1016/J.APPLTHERMALENG.2013.10.006Amaris, C., Vallès, M., & Bourouis, M. (2018). Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review. Applied Energy, 231, 826–853. https://doi.org/10.1016/J.APENERGY.2018.09.071Anukam, A. I., Goso, B. P., Okoh, O. O., & Mamphweli, S. N. (2017). Studies on Characterization of Corn Cob for Application in a Gasification Process for Energy Production. Journal of Chemistry, 2017, 6478389. https://doi.org/10.1155/2017/6478389Asadi, J., Amani, P., Amani, M., Kasaeian, A., & Bahiraei, M. (2018). Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors. Energy Conversion and Management, 173(August), 715–727. https://doi.org/10.1016/j.enconman.2018.08.013ASTM D3172-13. (2013). Standard Practice for Proximate Analysis of Coal and Coke. https://doi.org/10.1520/D3172-13ASTM D3173 / D3173M-17a. (2017). Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. https://doi.org/10.1520/D3173_D3173M-17AASTM D3174-12. (2018). Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. https://doi.org/10.1520/D3174-12R18E01ASTM D3177-02. (2007). Standard Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke (Withdrawn 2012). https://doi.org/10.1520/D3177-02R07ASTM D4239-18. (2018). Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion. https://doi.org/10.1520/D4239- 18E01ASTM D5373-16. (2016). Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. https://doi.org/10.1520/D5373-16ASTM D5865 / D5865M-19. (2019). Standard Test Method for Gross Calorific Value of Coal and Coke. https://doi.org/10.1520/D5865_D5865M-19Balafkandeh, S., Zare, V., & Gholamian, E. (2019). Multi-objective optimization of a trigeneration system based on biomass gasification/digestion combined with S-CO2 cycle and absorption chiller. Energy Conversion and Management, 200, 112057. https://doi.org/10.1016/J.ENCONMAN.2019.112057Basu, P. (2018). Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory (Third Edit). Elsevier Science. https://books.google.com.co/books?id=BYM2DwAAQBAJBejan, A. (2016). Advanced Engineering Thermodynamics. Wiley. https://books.google.com.co/books?id=j0zSDAAAQBAJBellos, E., Tzivanidis, C., Symeou, C., & Antonopoulos, K. A. (2017). Energetic, exergetic and financial evaluation of a solar driven absorption chiller – A dynamic approach. Energy Conversion and Management, 137, 34–48. https://doi.org/10.1016/J.ENCONMAN.2017.01.041Ben Ezzine, N., Garma, R., & Bellagi, A. (2010). A numerical investigation of a diffusionabsorption refrigeration cycle based on R124-DMAC mixture for solar cooling. Energy, 35(5), 1874–1883. https://doi.org/10.1016/j.energy.2009.12.032Ben Ezzine, N., Garma, R., Bourouis, M., & Bellagi, A. (2010). Experimental studies on bubble pump operated diffusion absorption machine based on light hydrocarbons for solar cooling. Renewable Energy, 35(2), 464–470. https://doi.org/10.1016/j.renene.2009.07.026Cacua, K., Olmos-Villalba, L., Herrera, B., & Gallego, A. (2016). Experimental evaluation of a diesel-biogas dual fuel engine operated on micro-trigeneration system for power, drying and cooling. Applied Thermal Engineering, 100, 762–767. https://doi.org/10.1016/J.APPLTHERMALENG.2016.02.067Calise, F., Libertini, L., & Vicidomini, M. (2017). Design and optimization of a novel solar cooling system for combined cycle power plants. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.06.157Chejne, F., Valdés, C., Marrugo, G., Gómez, C., Montoya, J., Macías, R., Londoño, C., De La Cruz, J., Ocampo, A., & Arenas, E. (2017). La gasificación, alternativa de generación de energía y productos con alto valor agregado para la industria. Medellín: Universidad Nacional de Colombia.Costa, V. A. F., Tarelho, L. A. C., & Sobrinho, A. (2019). Mass, energy and exergy analysis of a biomass boiler: A portuguese representative case of the pulp and paper industry. Applied Thermal Engineering, 152(January), 350–361. https://doi.org/10.1016/j.applthermaleng.2019.01.033Dayton, D. C., & Foust, T. D. (2020). Chapter Two - Biomass Characterization. In D. C. Dayton & T. D. Foust (Eds.), Analytical Methods for Biomass Characterization and Conversion (pp. 19–35). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-815605-6.00002-0de Jong, W., & van Ommen, J. R. (2014). Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes. Wiley. https://books.google.com.co/books?id=gm8TBwAAQBAJde Kuyper, J. C. V, & Morales, S. R. (2014). Fuentes de energía, renovables y no renovables: aplicaciones. Alfaomega. https://books.google.com.co/books?id=-P78jgEACAAJDincer, I., & Rosen, M. A. (2007). Exergy: Energy, Environment and Sustainable Development. Elsevier Science. https://books.google.com.co/books?id=ruR7U3IjrR0CDNP Colombia. (2016). Pérdida y Desperdicio de alimentos en Colombia: Estudio de la Dirección de Seguimiento y Evaluación de Políticas Públicas. Departamento Nacional de Planeación.El Haj Assad, M., Nazari, M. A., Ehyaei, M. A., & Rosen, M. A. (2021). Heat pumps and absorption chillers. In Design and Performance Optimization of Renewable Energy Systems (pp. 163–180). Elsevier. https://doi.org/10.1016/b978-0-12-821602-6.00013-4Fao. (2012). Pérdidas y desperdicio de alimentos en el mundo – Alcance, causas y prevención. In Roma. https://doi.org/10.3738/1982.2278.562Fenalce. (2020). Maíz para Colombía, visión 2030. Www.Fenalce.Org. https://www.fenalce.org/alfa/pg.php?pa=1Fuess, L. T., & Garcia, M. L. (2017). Anaerobic biodigestion for enhanced bioenergy generation in ethanol biorefineries: Understanding the potentials of vinasse as a biofuel. In Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen (pp. 149–183). Elsevier Inc. https://doi.org/10.1016/B978-0-08-101031-0.00005-3Gamarra Quintero, J. S., Gonzalez, C. A. D., & Pacheco Sandoval, L. (2021). Exergoeconomic analysis of a simulated system of biomass gasification-based power generation with surplus syngas storage in a rural zone in Colombia. Sustainable Energy Technologies and Assessments, 44, 101075. https://doi.org/10.1016/j.seta.2021.101075Gebrehawariat, E., Animut, G., Urge, M., & Mekasha, Y. (2016). Sun-Dried Bovine Rumen Content (SDRC) as an Ingredient of a Ration for White Leghorn Layers. East African Journal of Sciences, 10(1), 29–40.Gomez, R. D., Palacio, M., Arango, J. F., Avila, A. E., & Mendoza, J. M. (2021). Evaluation of the energy generation potential by an experimental characterization of residual biomass blends from Córdoba, Colombia in a downdraft gasifier. Waste Management, 120, 522–529. https://doi.org/10.1016/j.wasman.2020.10.014IDEAM. (2020). Atlas de radiación solar. http://atlas.ideam.gov.co/visorAtlasRadiacion.htmlIPSE. (2020). Caracterizacion energética de zonas no interconectadas (Vol. 2). https://ipse.gov.co/cnm/caracterizacion-de-las-zni/Isaza, C., Pilatowsky, I., Romero, R., & Cortés, F. (2010). Análisis termodinámico de un sistema de refrigeración solar por absorción usando soluciones de Monometolamina - agua para la conservación de alimentos. Biotecnología En El Sector Agropecuario y Agroindustrial, 8, 18–25. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692- 35612010000100003&nrm=isoISO 562-10. (2010). specifies a method of determining the volatile matter of hard coal and of coke. https://www.iso.org/standard/55943.htmlLazzarin, R. M., & Noro, M. (2018). Past, present, future of solar cooling: Technical and economical considerations. Solar Energy. https://doi.org/10.1016/j.solener.2017.12.055León Mejía, J. M., & Novoa Posada, A. L. (2018). Evaluación del rendimiento energético del biogás de estiércol bovino empleando la tecnología mci en ciclo otto y diésel para la generación de potencia en el departamento de Córdoba. https://repositorio.unicordoba.edu.co/handle/ucordoba/668Lesme, R. L., Martillo, J., & Oliva, L. (2020). Estudio de la gasificación de la tusa del maíz para la generación de electricidad Study of the corn cob gasification of the for the electricity generation Métodos y Materiales. 23(3), 1–9.Li, X., Kan, X., Sun, X., Zhao, Y., Ge, T., Dai, Y., & Wang, C. H. (2019). Performance analysis of a biomass gasification-based CCHP system integrated with variable-effect LiBr-H2O absorption cooling and desiccant dehumidification. Energy, 176, 961–979. https://doi.org/10.1016/J.ENERGY.2019.04.040López, A. R., Krumm, A., Schattenhofer, L., Burandt, T., Montoya, F. C., Oberländer, N., & Oei, P. Y. (2020). Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market. Renewable Energy, 148, 1266–1279. https://doi.org/10.1016/j.renene.2019.10.066López González, L. M., Pereda Reyes, I., Escobar Román, R., Pedraza Garciga, J., & Romero Romero, O. (2018). Efecto de la aplicación de métodos de pre-tratamientos en el proceso de digestión anaerobia de la biomasa lignocelulósica. Tecnología Química, 38(2), 324–334. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224- 61852018000200010&lng=es&nrm=iso&tlng=esMacriss, R A; Gutraj, J M; Zawacki, T. S. (1988). Absorption fluids data survey: Final report on worldwide data. https://doi.org/AC05-84OR21400Mansouri, R., Bourouis, D. M., & Dr. Ahmed Bellagi. (2016). ABSORPTION / DIFFUSION REFRIGERATING MACHINES USING AMMONIA AS A REFRIGERANT : SIMULATION UNDER STEADY-STATE AND DYNAMIC REGIMES The eoretic cal and d expe riment tal stud dy of a absorpt tion an nd abs orption n / diffus sion re efrigera ating m machin e. Universitat Rovira I Virgili.Martillo Aseffe, J. A., Martínez González, A., Jaén, R. L., & Silva Lora, E. E. (2021). The corn cob gasification-based renewable energy recovery in the life cycle environmental performance of seed-corn supply chain: An Ecuadorian case study. Renewable Energy, 163, 1523–1535. https://doi.org/10.1016/j.renene.2020.10.053Mendoza, J., Rhenals-Julio, J., Avila, A., & Durando, E. (2021). Análise Exergoeconômica da Gasificação de Sabugo de Milho Integrado em um Sistema de Geração de Energia: Estudo de Caso na Colômbia. 76, 1–7.Ministerio de minas y energías. (2016). Plan de acción indicativo de eficiencia energética 2017- 2022. http://www1.upme.gov.co/Documents/PAI_PROURE_2017_2022.pdfMoharramian, A., Soltani, S., Rosen, M. A., Mahmoudi, S. M. S., & Jafari, M. (2019). Conventional and enhanced thermodynamic and exergoeconomic analyses of a photovoltaic combined cycle with biomass post firing and hydrogen production. Applied Thermal Engineering, 160, 113996. https://doi.org/10.1016/j.applthermaleng.2019.113996Molina, G., Gupta, V. K., Singh, B. N., & Gathergood, N. (2020). Bioprocessing for Biomolecules Production. Wiley. https://books.google.com.co/books?id=Eb64DwAAQBAJNeveras triviales. (2021). No Title. https://www.serviciodometicwaeco.com/neveras-trivalentesf8.htmlNikbakhti, R., Wang, X., Hussein, A. K., & Iranmanesh, A. (2020). Absorption cooling systems – Review of various techniques for energy performance enhancement. Alexandria Engineering Journal, 59(2), 707–738. https://doi.org/10.1016/J.AEJ.2020.01.036Olaya, Y., & Gonzalez, L. (2009). Fundamentos para el diseño de biodigestores. Módulo para la asignatura de Construcciones Agrícolas. In Universidad nacional de Colombia (Vol. 51, Issue 2). https://doi.org/10.1017/CBO9781107415324.004OPUREB&DANM. (2016). Desarrollo de integración tecnológica de recursos energéticos renovables en sistemas productivos agrícolas y agroindustriales Montería, Córdoba, Caribe.Palencia-Severiche, G., Mercado-F, T., & Combath-Caballero, E. (2006). Estudio agroclimático de Córdoba. In Facultad de Ciencias Agrícolas. Universidad de Córdoba. Montería, Colombia.Querol, E., Gonzalez-Regueral, B., & Perez-Benedito, J. L. (2012). Practical Approach to Exergy and Thermoeconomic Analyses of Industrial Processes. Springer London. https://books.google.com.co/books?id=d8BPo78kjocCRazmi, A. R., & Janbaz, M. (2020). Exergoeconomic assessment with reliability consideration of a green cogeneration system based on compressed air energy storage (CAES). Energy Conversion and Management, 204, 112320. https://doi.org/10.1016/j.enconman.2019.112320REN21. (2017). Ren 21 - Renewable Global Futures Report. Great debates towards 100 % renewable energy. Ren21. https://doi.org/10.1109/JRPROC.1918.217382Rhenals, J. D., & Torres, M. L. (2016). ANÁLISIS EXERGOECONÓMICO DE LA GASIFICACIÓN DE TUSA DE MAÍZ EMPLEANDO VAPOR DE AGUA COMO AGENTE GASIFICANTE, INTEGRADO A UN SISTEMA DE GENERACIÓN DE POTENCIA. https://repositorio.unicordoba.edu.co/handle/ucordoba/669Rodríguez-Muñoz, J. L., & Belman-Flores, J. M. (2014). Review of diffusion-absorption refrigeration technologies. In Renewable and Sustainable Energy Reviews (Vol. 30, pp. 145–153). Pergamon. https://doi.org/10.1016/j.rser.2013.09.019Rokni, M. (2018). Design and analysis of a waste gasification energy system with solid oxide fuel cells and absorption chillers. International Journal of Hydrogen Energy, 43(11), 5922– 5938. https://doi.org/10.1016/J.IJHYDENE.2017.10.123Sagastume, A., Mendoza, J. M., Cabello, J. J., & Rhenals, J. D. (2021). The Available Waste-toenergy Potential from Agricultural Wastes in the Department of Córdoba , Colombia. 11(3), 44–50.Sakirkin, S., Morgan, C., Macdonald, J., & Auvermann, B. (2011). Effect of Diet Composition on the Determination of Ash and Moisture Content in Solid Cattle Manure Using Visible and Near-Infrared Spectroscopy. Applied Spectroscopy, 65, 1056–1061. https://doi.org/10.1366/11-06333Sayadi, Z., Ben Thameur, N., Bourouis, M., & Bellagi, A. (2013). Performance optimization of solar driven small-cooled absorption-diffusion chiller working with light hydrocarbons. Energy Conversion and Management, 74, 299–307. https://doi.org/10.1016/j.enconman.2013.05.029Secretaría de desarrollo economico de Córdoba. (2018). Evaluaciones agropecuarias municipales. Gobernación de Córdoba.Sevinchan, E., Dincer, I., & Lang, H. (2019). Energy and exergy analyses of a biogas driven multigenerational system. Energy, 166, 715–723. https://doi.org/10.1016/J.ENERGY.2018.10.085Shariff, A., Mohamad Aziz, N. S., Ismail, N. I., & Abdullah, N. (2016). Corn Cob as a Potential Feedstock for Slow Pyrolysis of Biomass. Journal of Physical Science, 27(2), 123–137. https://doi.org/10.21315/jps2016.27.2.9Siddiki, S. Y. A., Uddin, M. N., Mofijur, M., Fattah, I. M. R., Ong, H. C., Lam, S. S., Kumar, P.S., & Ahmed, S. F. (2021). Theoretical calculation of biogas production and greenhouse gas emission reduction potential of livestock, poultry and slaughterhouse waste in Bangladesh. Journal of Environmental Chemical Engineering, 9(3), 105204. https://doi.org/10.1016/j.jece.2021.105204SIEL. (2017). Cobertura de Energía Eléctrica a 2016. http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadi sticas/tabid/81/Default.aspxSIEL. (2018). Indice de cobertura de energía electrica. http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadi sticas/tabid/81/Default.aspxSilva, S. R., Bonanato, G., Costa, E. F. da, Sarrouh, B., & Costa, A. O. S. da. (2021). Specific chemical exergy prediction for biological molecules using hybrid models. Chemical Engineering Science, 235, 116462. https://doi.org/10.1016/j.ces.2021.116462Unidad de Planeación Minero-Energética [UPME]. (2021). Balance energético Colombiano. Balance Energético Colombiano. http://www1.upme.gov.co/InformacionCifras/Paginas/PETROLEO.aspxUnidad de Planeación Minero Energética. (2015). Integración de las Energías Renovables No Convencionales en Colombia. In Unidad de Planeación Minero Energética. http://www1.upme.gov.co/DemandaEnergetica/INTEGRACION_ENERGIAS_RENOVAN LES_WEB.pdfUnidad de Planeación Minero Energética - UPME. (2016). Boletín Estadístico de Minas y energía 2012 – 2016. Ministerio de Minas y Energía. https://doi.org/10.1017/CBO9781107415324.004Vazini Modabber, H., & Khoshgoftar Manesh, M. H. (2021). 4E dynamic analysis of a waterpower cogeneration plant integrated with solar parabolic trough collector and absorption chiller. Thermal Science and Engineering Progress, 21, 100785. https://doi.org/10.1016/J.TSEP.2020.100785Yildiz, A., & Ersöz, M. A. (2013). Energy and exergy analyses of the diffusion absorption refrigeration system. Energy, 60, 407–415. https://doi.org/10.1016/J.ENERGY.2013.07.062Yildiz, A., Ersöz, M. A., & Gözmen, B. (2014). Effect of insulation on the energy and exergy performances in Diffusion Absorption Refrigeration (DAR) systems. International Journal of Refrigeration, 44, 161–167. https://doi.org/10.1016/J.IJREFRIG.2014.04.021ORIGINALAnálisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor.pdfAnálisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor.pdfapplication/pdf1519019https://repositorio.cuc.edu.co/bitstream/11323/8516/1/An%c3%a1lisis%20energ%c3%a9tico%20y%20exerg%c3%a9tico%20de%20un%20sistema%20de%20refrigeraci%c3%b3n%20absorci%c3%b3n-difusi%c3%b3n%20con%20diferentes%20fuentes%20de%20calor.pdf8e09db310f903eefd9eeb1f9e956da0cMD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstream/11323/8516/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8516/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILAnálisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor.pdf.jpgAnálisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor.pdf.jpgimage/jpeg27028https://repositorio.cuc.edu.co/bitstream/11323/8516/4/An%c3%a1lisis%20energ%c3%a9tico%20y%20exerg%c3%a9tico%20de%20un%20sistema%20de%20refrigeraci%c3%b3n%20absorci%c3%b3n-difusi%c3%b3n%20con%20diferentes%20fuentes%20de%20calor.pdf.jpgd4786a05577b2ec6b975d7a33b1d0e0aMD54open accessTEXTAnálisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor.pdf.txtAnálisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor.pdf.txttext/plain139182https://repositorio.cuc.edu.co/bitstream/11323/8516/5/An%c3%a1lisis%20energ%c3%a9tico%20y%20exerg%c3%a9tico%20de%20un%20sistema%20de%20refrigeraci%c3%b3n%20absorci%c3%b3n-difusi%c3%b3n%20con%20diferentes%20fuentes%20de%20calor.pdf.txtc8aa714a92d4f3c2b78ba8594d1b991bMD55open access11323/8516oai:repositorio.cuc.edu.co:11323/85162023-12-14 17:11:59.743Attribution-NonCommercial-ShareAlike 4.0 International|||http://creativecommons.org/licenses/by-nc-sa/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==