Optimal planning for cellular networks for smart metering infrastructure in rural and remote areas

Smart metering is used to control, mon-itor and know the system status in real time; to this effect, the incorporation of smart grids primarily benefits the electrical system; similarly, the reuse of infrastructure and cellular spectrum help mitigate the time and cost of its implementation. In order...

Full description

Autores:
Masache, Andrés
Inga, Esteban
Hincapié, Roberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2561
Acceso en línea:
https://hdl.handle.net/11323/2561
https://doi.org/10.17981/ingecuc.11.2.2015.05
https://repositorio.cuc.edu.co/
Palabra clave:
Smart grid
Smart metering
AMI
Cellular network
Optimal planning
Traffic
Optimal routing
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id RCUC2_c3658e1d86a58ec78e321c34af361087
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2561
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Optimal planning for cellular networks for smart metering infrastructure in rural and remote areas
title Optimal planning for cellular networks for smart metering infrastructure in rural and remote areas
spellingShingle Optimal planning for cellular networks for smart metering infrastructure in rural and remote areas
Smart grid
Smart metering
AMI
Cellular network
Optimal planning
Traffic
Optimal routing
title_short Optimal planning for cellular networks for smart metering infrastructure in rural and remote areas
title_full Optimal planning for cellular networks for smart metering infrastructure in rural and remote areas
title_fullStr Optimal planning for cellular networks for smart metering infrastructure in rural and remote areas
title_full_unstemmed Optimal planning for cellular networks for smart metering infrastructure in rural and remote areas
title_sort Optimal planning for cellular networks for smart metering infrastructure in rural and remote areas
dc.creator.fl_str_mv Masache, Andrés
Inga, Esteban
Hincapié, Roberto
dc.contributor.author.spa.fl_str_mv Masache, Andrés
Inga, Esteban
Hincapié, Roberto
dc.subject.spa.fl_str_mv Smart grid
Smart metering
AMI
Cellular network
Optimal planning
Traffic
Optimal routing
topic Smart grid
Smart metering
AMI
Cellular network
Optimal planning
Traffic
Optimal routing
description Smart metering is used to control, mon-itor and know the system status in real time; to this effect, the incorporation of smart grids primarily benefits the electrical system; similarly, the reuse of infrastructure and cellular spectrum help mitigate the time and cost of its implementation. In order to reduce traffic and saturation of cellular networks, this paper aims at determining the optimal route for in-formation transmission analyzing the optimal routing through distances and optimal routing through traf-fic flow. This analysis helps determine what the opti-mal route is, when there is no traffic on the wireless network, or when there is prolonged traffic, and what the traffic tendencies are, that may occur by excessive information transmission of smart meters to electric distribution companies
publishDate 2015
dc.date.issued.none.fl_str_mv 2015-09-28
dc.date.accessioned.none.fl_str_mv 2019-02-15T22:17:55Z
dc.date.available.none.fl_str_mv 2019-02-15T22:17:55Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Masache, A., Inga, E., & Hincapié, R. (2015). Óptima planeación de redes celulares para la infraestructura de medición inteligente en zonas rurales y remotas. INGE CUC, 11(2), 49-58. https://doi.org/10.17981/ingecuc.11.2.2015.05
dc.identifier.issn.spa.fl_str_mv 0122-6517, 2382-4700 electrónico
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/2561
dc.identifier.url.spa.fl_str_mv https://doi.org/10.17981/ingecuc.11.2.2015.05
dc.identifier.doi.spa.fl_str_mv 10.17981/ingecuc.11.2.2015.05
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.pissn.spa.fl_str_mv 0122-6517
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Masache, A., Inga, E., & Hincapié, R. (2015). Óptima planeación de redes celulares para la infraestructura de medición inteligente en zonas rurales y remotas. INGE CUC, 11(2), 49-58. https://doi.org/10.17981/ingecuc.11.2.2015.05
0122-6517, 2382-4700 electrónico
10.17981/ingecuc.11.2.2015.05
2382-4700
Corporación Universidad de la Costa
0122-6517
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/2561
https://doi.org/10.17981/ingecuc.11.2.2015.05
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv INGE CUC; Vol. 11, Núm. 2 (2015)
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
INGE CUC
dc.relation.references.spa.fl_str_mv [1] R. F. Arritt and R. C. Dugan, “Distribution System Analysis and the Future Smart Grid,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2343–2350, Nov. 2011. DOI: 10.1109/REPCON.2011.5756725
[2] J. Kim, S. Cho, and H. Shin, “Advanced Power Distribution System Con fi guration for Smart Grid,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 353–358, 2013. DOI: 10.1109/TSG.2012.2233771
[3] C. Selva, K. Srinivas, G. Ayyappan, and M. Venkatachala, “Advanced Metering Infrastructure for Smart Grid Applications,” Recent Trends Inf. Technol. (ICRTIT), 2012 Int. Conf. IEEE, pp. 145–150, 2012. DOI: 10.1109/ICRTIT.2012.6206777
[4] S. SAydjari and V. Varadharajan, “The Smarter Grid,” Secur. Privacy, IEEE, vol. 8, no. 1, pp. 60 – 63, 2010. DOI: 10.1109/MSP.2010.52
[5] L. Chun-hao and N. Ansari, “CONSUMER : A Novel Hybrid Intrusion Detection System for Distribution Networks in Smart Grid,” IEEE Trans. Emerg. Top. Comput., vol. 1, no. 1, pp. 33 – 44, 2013. DOI: 10.1109/TETC.2013.2274043
[6] E. Inga and J. Inga, “Wireless Communications and Virtual Operator for Residential Electric Metering,” 12th Lat. Am. Caribb. Conf. Eng. Technol., pp. 1–9, 2014.
[7] B. Karimi and V. Namboodiri, “On the Capacity of a Wireless Backhaul for the Distribution Level of the Smart Grid,” Syst. Journal, IEEE, vol. 8, no. 2, pp. 521–532, 2014. DOI: 10.1109/JSYST.2013.2260701
[8] E. Inga, R. Hincapie, C. Suarez, and G. Arevalo, “Shortest path for optimal routing on Advanced Metering Infrastructure using cellular networks,” in Communications and Computing (COLCOM), 2015 IEEE Colombian Conference on, 2015, pp. 1 – 6.
[9] Z. Jia, J. Chen, and Y. Liao, “State estimation in distribution system considering effects of AMI data,” 2013 Proc. IEEE Southeastcon, pp. 1–6, Apr. 2013. DOI: 10.1109/SECON.2013.6567406
[10] R. R. Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar, “Application of Advanced Metering Infrastructure in Smart Grids,” Control Autom. (MED), 2014 22nd Mediterr. Conf. IEEE, pp. 822 – 828, 2014. DOI: 10.1109/MED.2014.696147
[11] C. Lo and N. Ansari, “The Progressive Smart Grid System from Both Power and Communications Aspects,” Commun. Surv. Tutorials, IEEE, vol. 14, no. 3, pp. 799–821, 2012. DOI: 10.1109/SURV.2011.072811.00089
[12] P. Kulkarni, S. Gormus, Z. Fan, and F. Ramos, “AMI Mesh Networks—A Practical Solution and Its Performance Evaluation,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1469–1481, Sep. 2012. DOI: 10.1109/TSG.2012.2205023
[13] E. Hossain, Z. Han, and H. V. Poor, Smart Grid communication and networking, First edit. United Stated of America: Cambridge University Press, 2012, p. 481.
[14] H. Sui and W.-J. Lee, “An AMI based measurement and control system in smart distribution grid,” 2011 IEEE Ind. Commer. Power Syst. Tech. Conf., pp. 1–5, May 2011. DOI: 10.1109/ICPS.2011.5890876
[15] C. Andres and C. John, The Advanced Smart Grid Edge Power Driving Sustainability, First Edit. 2011, p. 268.
[16] M. R. Souryal and N. Golmie, “Analysis of advanced metering over a Wide Area Cellular Network,” 2011 IEEE Int. Conf. Smart Grid Commun., pp. 102–107, Oct. 2011. DOI: 10.1109/SmartGridComm.2011.6102299
[17] B. Saint, “Rural Distribution System Planning using Smart Grid Technologies,” Rural Electr. Power Conf. 2009. REPC ’09. IEEE, no. 09, pp. 0–8, 2009. DOI: 10.1109/REPCON.2009.4919421
[18] S. Li, J. Huang, and S. Member, “Dynamic Profit Maximization of Cognitive Mobile Virtual Network Operator,” IEEE Trans. Mob. Comput., vol. 13, no. 3, pp. 526–540, 2014. DOI: 10.1109/TMC.2013.10
[19] M. Gupta, S. Gupta, and T. Thakur, “Design and impact of wireless AMI for distribution utilities,” 2013 Annu. IEEE India Conf., pp. 1–6, Dec. 2013. DOI: 10.1109/INDCON.2013.6726103
[20] H. Li, S. Gong, L. Lai, Z. Han, S. Member, R. C. Qiu, and D. Yang, “Efficient and Secure Wireless Communications for Advanced Metering Infrastructure in Smart Grids,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1540–1551, 2012. DOI: 10.1109/TSG.2012.2203156
[21] A. Peralta-Sevilla, E. Inga, R. Cumbal, and R. Hincapie, “Optimum deployment of FiWi Networks using wireless sensors based on Universal Data Aggregation Points,” in Communications and Computing (COLCOM), 2015 IEEE Colombian Conference on, 2015, pp. 1 – 6. DOI: 10.1109/ColComCon.2015.7152079
[22] I. E. Reid and H. A. Stevens, Smart Meters and the Smart Grid: Privacy and Cybersecurity Considerations, First edit. Nova Science Publishers, Incorporated, 2012, p. 153.
[23] S. Cespedes, A. A. Cardenas, and T. Iwao, “Comparison of Data Forwarding Mechanisms for AMI networks,” Innov. Smart Grid Technol. (ISGT), 2012 IEEE PES, pp. 1 – 8, 2012. DOI: 10.1109/ISGT.2012.6175683
[24] C. Scordino and G. Lipari, “A Resource Reservation Algorithm for Power-Aware Scheduling of Periodic and Aperiodic Real-Time Tasks,” Comput. IEEE Trans., vol. 55, no. 12, pp. 1509 – 1522, 2006. DOI: 10.1109/TC.2006.190
[25] L. Duan, J. Huang, and B. Shou, “Cognitive Mobile Virtual Network Operator : Investment and Pricing with Supply Uncertainty,” INFOCOM, 2010 Proc. IEEE, pp. 1 – 9, 2010. DOI: 10.1109/INFCOM.2010.5462146
[26] Z. Fan and R. Zhang, “Spectrum allocation and medium access in cognitive radio wireless networks,” 2009 Eur. Wirel. Conf. IEEE, pp. 90–95, May 2009. DOI: 10.1109/EW.2009.5357757
[27] L. Mastroeni and M. Naldi, “Spectrum reservation options for Mobile Virtual Network Operators,” IEEE 6th EURO-NGI Conf. Next Gener. Internet, vol. 13, p. 15, Jun. 2010. DOI: 10.1109/NGI.2010.5534477
[28] E. Inga, G. Arévalo, and R. Hincapié, “Optimal Deployment of Cellular Networks for Advanced Measurement Infrastructure in Smart Grid,” 2014 IEEE Colomb. Conf. Commun. Comput., no. 1The 2014 IEEE Colombian Conference on Communications and Computing, p. 6, 2014. DOI: 10.1109/ColComCon.2014.6860421
[29] A. D. Dabbagh, R. Ratasuk, and A. Ghosh, “On UMTS-LTE Physical Uplink Shared and Control Channels,” Veh. Technol. Conf. 2008. VTC 2008-Fall. IEEE 68th, pp. 1 – 8, 2008. DOI: 10.1109/VETECF.2008.323
[30] R. Agrawal, R. Berry, J. Huang, and V. Subramanian, “Optimal Scheduling for OFDMA Systems,” Signals, Syst. Comput. 2006. ACSSC ’06. Fortieth Asilomar Conf. IEEE, pp. 1347 – 1351, 2006. DOI: 10.1109/ACSSC.2006.354976
[31] S. Sesia, I. Toufik, and M. Baker, LTE the UMTS Long Term Evolution from theory to practice, Second edi. Great Britain, 2011, p. 794.
[32] J. Markkula and J. Haapola, “Impact of smart grid traffic peak loads on shared LTE network performance,” Commun. (ICC), 2013 IEEE Int. Conf., pp. 4046 – 4051, 2013. DOI: 10.1109/ICC.2013.6655193
[33] X. Qin and R. Berry, “Distributed Resource Allocation and Scheduling in OFDMA Wireless Networks,” Signals, Syst. Comput. 2006. ACSSC ’06. Fortieth Asilomar Conf. IEEE, pp. 1942 – 1946, 2006. DOI: 10.1109/ACSSC.2006.355102
[34] E. Ortega, D. Cazco, V. Luna, and J. Ortega, “Comunicaciones celulares para medición inteligente de energía eléctrica en sistemas de distribución,” ingenius.ups.edu.ec, pp. 21–33, 2013.
[35] I. Joe, J. Y. J. Zhang, and Fu-Quan, “Design and Implementation of AMI System Using Binary CDMA for Smart Grid,” Intell. Syst. Des. Eng. Appl. (ISDEA), 2013 Third Int. Conf. IEEE, pp. 544 – 549, 2013. DOI: 10.1109/ISDEA.2012.133
[36] K. S. Zigangirov, Theory Of Code Division Multiple Access Communication, First edit. Canada, 2004, p. 412.
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.ispartofjournalabbrev.spa.fl_str_mv INGE CUC
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv INGE CUC
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/509
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/c5d81406-dd6c-44e0-b6ab-8f819fcbf765/download
https://repositorio.cuc.edu.co/bitstreams/ade94f81-1662-4a1b-943b-d27ad3bbc080/download
https://repositorio.cuc.edu.co/bitstreams/a26cd0d2-b422-4938-8015-81ae64b88a28/download
https://repositorio.cuc.edu.co/bitstreams/f78236f6-0f7f-4c40-b82c-637d1507a1c5/download
bitstream.checksum.fl_str_mv f37fc7f8e593a20ba37c8ff1be6fe9b3
8a4605be74aa9ea9d79846c1fba20a33
4fc349d1e7016aa9e1268af5338718ac
ab2aca97c2739ef3ffd7dc9cecc88dba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166865891885056
spelling Masache, AndrésInga, EstebanHincapié, Roberto2019-02-15T22:17:55Z2019-02-15T22:17:55Z2015-09-28Masache, A., Inga, E., & Hincapié, R. (2015). Óptima planeación de redes celulares para la infraestructura de medición inteligente en zonas rurales y remotas. INGE CUC, 11(2), 49-58. https://doi.org/10.17981/ingecuc.11.2.2015.050122-6517, 2382-4700 electrónicohttps://hdl.handle.net/11323/2561https://doi.org/10.17981/ingecuc.11.2.2015.0510.17981/ingecuc.11.2.2015.052382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Smart metering is used to control, mon-itor and know the system status in real time; to this effect, the incorporation of smart grids primarily benefits the electrical system; similarly, the reuse of infrastructure and cellular spectrum help mitigate the time and cost of its implementation. In order to reduce traffic and saturation of cellular networks, this paper aims at determining the optimal route for in-formation transmission analyzing the optimal routing through distances and optimal routing through traf-fic flow. This analysis helps determine what the opti-mal route is, when there is no traffic on the wireless network, or when there is prolonged traffic, and what the traffic tendencies are, that may occur by excessive information transmission of smart meters to electric distribution companiesLa medición inteligente se emplea para controlar, monitorear y conocer el estado del sistema en tiempo real; por ese motivo, la incorporación de redes inteligentes beneficia primordialmente al sistema eléctrico. Así mismo, con la reutilización de la infraestructura y del espectro celular, ayuda a mitigar el tiempo y el costo de su implementación. Con la finalidad de reducir el tráfico y la saturación de las redes celulares, se propone determinar la ruta óptima para el envío de la información, para ello se analiza un ruteo óptimo por medio de distancias y un ruteo óptimo por medio de flujo de tráfico. Gracias a este análisis, se determina cuál es la ruta óptima cuando no existe tráfico en la red celular o cuando existe un tráfico prolongado, y cuáles son las tendencias de tráfico que se pueden producir por el envío excesivo de la información de los medidores inteligentes hacia las empresas eléctricas de distribución.Masache, AndrésInga, EstebanHincapié, Robertoapplication/pdfengCorporación Universidad de la CostaINGE CUC; Vol. 11, Núm. 2 (2015)INGE CUCINGE CUC[1] R. F. Arritt and R. C. Dugan, “Distribution System Analysis and the Future Smart Grid,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2343–2350, Nov. 2011. DOI: 10.1109/REPCON.2011.5756725[2] J. Kim, S. Cho, and H. Shin, “Advanced Power Distribution System Con fi guration for Smart Grid,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 353–358, 2013. DOI: 10.1109/TSG.2012.2233771[3] C. Selva, K. Srinivas, G. Ayyappan, and M. Venkatachala, “Advanced Metering Infrastructure for Smart Grid Applications,” Recent Trends Inf. Technol. (ICRTIT), 2012 Int. Conf. IEEE, pp. 145–150, 2012. DOI: 10.1109/ICRTIT.2012.6206777[4] S. SAydjari and V. Varadharajan, “The Smarter Grid,” Secur. Privacy, IEEE, vol. 8, no. 1, pp. 60 – 63, 2010. DOI: 10.1109/MSP.2010.52[5] L. Chun-hao and N. Ansari, “CONSUMER : A Novel Hybrid Intrusion Detection System for Distribution Networks in Smart Grid,” IEEE Trans. Emerg. Top. Comput., vol. 1, no. 1, pp. 33 – 44, 2013. DOI: 10.1109/TETC.2013.2274043[6] E. Inga and J. Inga, “Wireless Communications and Virtual Operator for Residential Electric Metering,” 12th Lat. Am. Caribb. Conf. Eng. Technol., pp. 1–9, 2014.[7] B. Karimi and V. Namboodiri, “On the Capacity of a Wireless Backhaul for the Distribution Level of the Smart Grid,” Syst. Journal, IEEE, vol. 8, no. 2, pp. 521–532, 2014. DOI: 10.1109/JSYST.2013.2260701[8] E. Inga, R. Hincapie, C. Suarez, and G. Arevalo, “Shortest path for optimal routing on Advanced Metering Infrastructure using cellular networks,” in Communications and Computing (COLCOM), 2015 IEEE Colombian Conference on, 2015, pp. 1 – 6.[9] Z. Jia, J. Chen, and Y. Liao, “State estimation in distribution system considering effects of AMI data,” 2013 Proc. IEEE Southeastcon, pp. 1–6, Apr. 2013. DOI: 10.1109/SECON.2013.6567406[10] R. R. Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar, “Application of Advanced Metering Infrastructure in Smart Grids,” Control Autom. (MED), 2014 22nd Mediterr. Conf. IEEE, pp. 822 – 828, 2014. DOI: 10.1109/MED.2014.696147[11] C. Lo and N. Ansari, “The Progressive Smart Grid System from Both Power and Communications Aspects,” Commun. Surv. Tutorials, IEEE, vol. 14, no. 3, pp. 799–821, 2012. DOI: 10.1109/SURV.2011.072811.00089[12] P. Kulkarni, S. Gormus, Z. Fan, and F. Ramos, “AMI Mesh Networks—A Practical Solution and Its Performance Evaluation,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1469–1481, Sep. 2012. DOI: 10.1109/TSG.2012.2205023[13] E. Hossain, Z. Han, and H. V. Poor, Smart Grid communication and networking, First edit. United Stated of America: Cambridge University Press, 2012, p. 481.[14] H. Sui and W.-J. Lee, “An AMI based measurement and control system in smart distribution grid,” 2011 IEEE Ind. Commer. Power Syst. Tech. Conf., pp. 1–5, May 2011. DOI: 10.1109/ICPS.2011.5890876[15] C. Andres and C. John, The Advanced Smart Grid Edge Power Driving Sustainability, First Edit. 2011, p. 268.[16] M. R. Souryal and N. Golmie, “Analysis of advanced metering over a Wide Area Cellular Network,” 2011 IEEE Int. Conf. Smart Grid Commun., pp. 102–107, Oct. 2011. DOI: 10.1109/SmartGridComm.2011.6102299[17] B. Saint, “Rural Distribution System Planning using Smart Grid Technologies,” Rural Electr. Power Conf. 2009. REPC ’09. IEEE, no. 09, pp. 0–8, 2009. DOI: 10.1109/REPCON.2009.4919421[18] S. Li, J. Huang, and S. Member, “Dynamic Profit Maximization of Cognitive Mobile Virtual Network Operator,” IEEE Trans. Mob. Comput., vol. 13, no. 3, pp. 526–540, 2014. DOI: 10.1109/TMC.2013.10[19] M. Gupta, S. Gupta, and T. Thakur, “Design and impact of wireless AMI for distribution utilities,” 2013 Annu. IEEE India Conf., pp. 1–6, Dec. 2013. DOI: 10.1109/INDCON.2013.6726103[20] H. Li, S. Gong, L. Lai, Z. Han, S. Member, R. C. Qiu, and D. Yang, “Efficient and Secure Wireless Communications for Advanced Metering Infrastructure in Smart Grids,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1540–1551, 2012. DOI: 10.1109/TSG.2012.2203156[21] A. Peralta-Sevilla, E. Inga, R. Cumbal, and R. Hincapie, “Optimum deployment of FiWi Networks using wireless sensors based on Universal Data Aggregation Points,” in Communications and Computing (COLCOM), 2015 IEEE Colombian Conference on, 2015, pp. 1 – 6. DOI: 10.1109/ColComCon.2015.7152079[22] I. E. Reid and H. A. Stevens, Smart Meters and the Smart Grid: Privacy and Cybersecurity Considerations, First edit. Nova Science Publishers, Incorporated, 2012, p. 153.[23] S. Cespedes, A. A. Cardenas, and T. Iwao, “Comparison of Data Forwarding Mechanisms for AMI networks,” Innov. Smart Grid Technol. (ISGT), 2012 IEEE PES, pp. 1 – 8, 2012. DOI: 10.1109/ISGT.2012.6175683[24] C. Scordino and G. Lipari, “A Resource Reservation Algorithm for Power-Aware Scheduling of Periodic and Aperiodic Real-Time Tasks,” Comput. IEEE Trans., vol. 55, no. 12, pp. 1509 – 1522, 2006. DOI: 10.1109/TC.2006.190[25] L. Duan, J. Huang, and B. Shou, “Cognitive Mobile Virtual Network Operator : Investment and Pricing with Supply Uncertainty,” INFOCOM, 2010 Proc. IEEE, pp. 1 – 9, 2010. DOI: 10.1109/INFCOM.2010.5462146[26] Z. Fan and R. Zhang, “Spectrum allocation and medium access in cognitive radio wireless networks,” 2009 Eur. Wirel. Conf. IEEE, pp. 90–95, May 2009. DOI: 10.1109/EW.2009.5357757[27] L. Mastroeni and M. Naldi, “Spectrum reservation options for Mobile Virtual Network Operators,” IEEE 6th EURO-NGI Conf. Next Gener. Internet, vol. 13, p. 15, Jun. 2010. DOI: 10.1109/NGI.2010.5534477[28] E. Inga, G. Arévalo, and R. Hincapié, “Optimal Deployment of Cellular Networks for Advanced Measurement Infrastructure in Smart Grid,” 2014 IEEE Colomb. Conf. Commun. Comput., no. 1The 2014 IEEE Colombian Conference on Communications and Computing, p. 6, 2014. DOI: 10.1109/ColComCon.2014.6860421[29] A. D. Dabbagh, R. Ratasuk, and A. Ghosh, “On UMTS-LTE Physical Uplink Shared and Control Channels,” Veh. Technol. Conf. 2008. VTC 2008-Fall. IEEE 68th, pp. 1 – 8, 2008. DOI: 10.1109/VETECF.2008.323[30] R. Agrawal, R. Berry, J. Huang, and V. Subramanian, “Optimal Scheduling for OFDMA Systems,” Signals, Syst. Comput. 2006. ACSSC ’06. Fortieth Asilomar Conf. IEEE, pp. 1347 – 1351, 2006. DOI: 10.1109/ACSSC.2006.354976[31] S. Sesia, I. Toufik, and M. Baker, LTE the UMTS Long Term Evolution from theory to practice, Second edi. Great Britain, 2011, p. 794.[32] J. Markkula and J. Haapola, “Impact of smart grid traffic peak loads on shared LTE network performance,” Commun. (ICC), 2013 IEEE Int. Conf., pp. 4046 – 4051, 2013. DOI: 10.1109/ICC.2013.6655193[33] X. Qin and R. Berry, “Distributed Resource Allocation and Scheduling in OFDMA Wireless Networks,” Signals, Syst. Comput. 2006. ACSSC ’06. Fortieth Asilomar Conf. IEEE, pp. 1942 – 1946, 2006. DOI: 10.1109/ACSSC.2006.355102[34] E. Ortega, D. Cazco, V. Luna, and J. Ortega, “Comunicaciones celulares para medición inteligente de energía eléctrica en sistemas de distribución,” ingenius.ups.edu.ec, pp. 21–33, 2013.[35] I. Joe, J. Y. J. Zhang, and Fu-Quan, “Design and Implementation of AMI System Using Binary CDMA for Smart Grid,” Intell. Syst. Des. Eng. Appl. (ISDEA), 2013 Third Int. Conf. IEEE, pp. 544 – 549, 2013. DOI: 10.1109/ISDEA.2012.133[36] K. S. Zigangirov, Theory Of Code Division Multiple Access Communication, First edit. Canada, 2004, p. 412.211INGE CUCINGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/509Smart gridSmart meteringAMICellular networkOptimal planningTrafficOptimal routingOptimal planning for cellular networks for smart metering infrastructure in rural and remote areasArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALOptimal Planning for Cellular Networks for Smart Metering Infrastructure in Rural and Remote Areas.pdfOptimal Planning for Cellular Networks for Smart Metering Infrastructure in Rural and Remote Areas.pdfapplication/pdf1938155https://repositorio.cuc.edu.co/bitstreams/c5d81406-dd6c-44e0-b6ab-8f819fcbf765/downloadf37fc7f8e593a20ba37c8ff1be6fe9b3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/ade94f81-1662-4a1b-943b-d27ad3bbc080/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILOptimal Planning for Cellular Networks for Smart Metering Infrastructure in Rural and Remote Areas.pdf.jpgOptimal Planning for Cellular Networks for Smart Metering Infrastructure in Rural and Remote Areas.pdf.jpgimage/jpeg56335https://repositorio.cuc.edu.co/bitstreams/a26cd0d2-b422-4938-8015-81ae64b88a28/download4fc349d1e7016aa9e1268af5338718acMD54TEXTOptimal Planning for Cellular Networks for Smart Metering Infrastructure in Rural and Remote Areas.pdf.txtOptimal Planning for Cellular Networks for Smart Metering Infrastructure in Rural and Remote Areas.pdf.txttext/plain45974https://repositorio.cuc.edu.co/bitstreams/f78236f6-0f7f-4c40-b82c-637d1507a1c5/downloadab2aca97c2739ef3ffd7dc9cecc88dbaMD5511323/2561oai:repositorio.cuc.edu.co:11323/25612024-09-17 14:19:39.239open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=