A 25 W 70% efficiency Doherty power amplifier at 6 dB output back-off for 2.4 GHz applications with VGS, PEAK control
This paper shows the design and simulation results of a hybrid Doherty power amplifier. The amplifier has been designed at 2,4 GHz, obtaining power-added efficiency above 70 % for 6 dB output power back-off, together with a small signal gain of 17 dB. Design and analysis equations are presented cons...
- Autores:
-
Moreno Rubio, Jorge
Angarita Malaver, Edison
Fernández González, Herman
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1697
- Acceso en línea:
- https://hdl.handle.net/11323/1697
https://doi.org/10.17981/ingecuc.11.1.2015.04
https://repositorio.cuc.edu.co/
- Palabra clave:
- Power Amplifier
High Efficiency
GaN Devices
Doherty
Microwave Circuits
Amplificador de potencia
Alta eficiencia
Dispositivos GaN
Circuitos de microondas
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
RCUC2_c33ea136af9437057dd0702ff5e883dc |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1697 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A 25 W 70% efficiency Doherty power amplifier at 6 dB output back-off for 2.4 GHz applications with VGS, PEAK control |
dc.title.translated.eng.fl_str_mv |
Amplificador de potencia Doherty de 25 W, 70% de eficiencia y back off de salida de 6 dB para aplicaciones a 2,4 GHz, con control de VGS, PEAK |
title |
A 25 W 70% efficiency Doherty power amplifier at 6 dB output back-off for 2.4 GHz applications with VGS, PEAK control |
spellingShingle |
A 25 W 70% efficiency Doherty power amplifier at 6 dB output back-off for 2.4 GHz applications with VGS, PEAK control Power Amplifier High Efficiency GaN Devices Doherty Microwave Circuits Amplificador de potencia Alta eficiencia Dispositivos GaN Circuitos de microondas |
title_short |
A 25 W 70% efficiency Doherty power amplifier at 6 dB output back-off for 2.4 GHz applications with VGS, PEAK control |
title_full |
A 25 W 70% efficiency Doherty power amplifier at 6 dB output back-off for 2.4 GHz applications with VGS, PEAK control |
title_fullStr |
A 25 W 70% efficiency Doherty power amplifier at 6 dB output back-off for 2.4 GHz applications with VGS, PEAK control |
title_full_unstemmed |
A 25 W 70% efficiency Doherty power amplifier at 6 dB output back-off for 2.4 GHz applications with VGS, PEAK control |
title_sort |
A 25 W 70% efficiency Doherty power amplifier at 6 dB output back-off for 2.4 GHz applications with VGS, PEAK control |
dc.creator.fl_str_mv |
Moreno Rubio, Jorge Angarita Malaver, Edison Fernández González, Herman |
dc.contributor.author.spa.fl_str_mv |
Moreno Rubio, Jorge Angarita Malaver, Edison Fernández González, Herman |
dc.subject.eng.fl_str_mv |
Power Amplifier High Efficiency GaN Devices Doherty Microwave Circuits Amplificador de potencia Alta eficiencia Dispositivos GaN Circuitos de microondas |
topic |
Power Amplifier High Efficiency GaN Devices Doherty Microwave Circuits Amplificador de potencia Alta eficiencia Dispositivos GaN Circuitos de microondas |
description |
This paper shows the design and simulation results of a hybrid Doherty power amplifier. The amplifier has been designed at 2,4 GHz, obtaining power-added efficiency above 70 % for 6 dB output power back-off, together with a small signal gain of 17 dB. Design and analysis equations are presented considering class AB bias conditions for the main amplifier and class C for the peak one in back-off larger than 6 dB, and FET device assumption. An additional control on the bias point of the peak device has been carried out, in order to increase the gain on the Doherty region and ease the design of the peak branch. A Cree’s GaN-HEMT CGH40010F device has been used with a nonlinear model guarantied up to 6 GHz and with an expected output power of 10 W. The obtained output power is higher than 25-W. The simulation has been carried out using Agilent ADS CAD tools. The present design could present the state of the art in terms of continuous-wave (CW) characterization. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015-01-05 |
dc.date.accessioned.none.fl_str_mv |
2018-11-22T14:03:25Z |
dc.date.available.none.fl_str_mv |
2018-11-22T14:03:25Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Moreno Rubio, J., Angarita Malaver, E., & Fernández González, H. (2015). Amplificador de Potencia Doherty de 25 W, 70% de Eficiencia y Back Off de Salida de 6 dB para Aplicaciones a 2,4 GHz, con Control de VGS, PEAK. INGE CUC, 11(1), 48-52. Recuperado a partir de https://revistascientificas.cuc.edu.co/ingecuc/article/view/384 |
dc.identifier.issn.spa.fl_str_mv |
0122-6517, 2382-4700 electrónico |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1697 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.17981/ingecuc.11.1.2015.04 |
dc.identifier.doi.spa.fl_str_mv |
10.17981/ingecuc.11.1.2015.04 |
dc.identifier.eissn.spa.fl_str_mv |
2382-4700 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.pissn.spa.fl_str_mv |
0122-6517 |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Moreno Rubio, J., Angarita Malaver, E., & Fernández González, H. (2015). Amplificador de Potencia Doherty de 25 W, 70% de Eficiencia y Back Off de Salida de 6 dB para Aplicaciones a 2,4 GHz, con Control de VGS, PEAK. INGE CUC, 11(1), 48-52. Recuperado a partir de https://revistascientificas.cuc.edu.co/ingecuc/article/view/384 0122-6517, 2382-4700 electrónico 10.17981/ingecuc.11.1.2015.04 2382-4700 Corporación Universidad de la Costa 0122-6517 REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1697 https://doi.org/10.17981/ingecuc.11.1.2015.04 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
INGE CUC; Vol. 11, Núm. 1 (2015) |
dc.relation.ispartofjournal.spa.fl_str_mv |
INGE CUC INGE CUC |
dc.relation.references.spa.fl_str_mv |
[1] J. Moreno, J. Fang, R. Quaglia, V. Camarchia, M. Pirola, and G. Ghione, “Development of single-stage and doherty GaN-based hybrid RF power amplifiers for quasi-constant envelope and high peak to average power ratio wireless standards,” Microw. Opt. Technol. Lett., vol. 54, no. 1, pp. 206–210, 2012. DOI:10.1002/mop.26459 [2] S. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Norwood: Artech House, 2006. [3] P. Colantonio, F. Giannini, and E. Limiti, High Efficiency RF and Microwave Solid State Power Amplifiers, 1st ed. Gran Bretaña: Wiley, 2009. [4] K. Bumman, M. Junghwan, and K. Ildu, “Efficiently Amplified,” IEEE Microw. Mag., vol. 11, no. 5, pp. 87–100, 2010. DOI:10.1109/MMM.2010.937099 [5] W. Doherty, “A New High Efficiency Power Amplifier for Modulated Waves,” IEEE RFIC Virtual J., vol. 24, no. 1, pp. 1163–1182, 2006. DOI:10.1109/JRPROC.1936.228468 [6] B. Kim, I. Kim, and J. Moon, “Advanced Doherty Architecture,” IEEE Microw. Mag., vol. 11, no. 5, pp. 72–86, 2010. DOI:10.1109/MMM.2010.937098 [7] J. Shealy, J. Smart, M. Poulton, R. Sadler, D. Grider, S. Gibb, B. Hosse, B. Sousa, D. Halchin, and V. Steel, “Gallium nitride (GaN) HEMT’s: Progress and potential for commercial applications,” in Symposium Gallium Arsenide Integrated Circuit (GaAs IC), 2002, pp. 243–246. DOI:10.1109/gaas.2002.1049069 [8] J. Lu, Y. Wang, L. Ma, and Z. Yu, “A new small-signal modeling and extraction method in AlGaN/GaN HEMTs,” Solid. State. Electron., vol. 52, no. 1, pp. 115–120, 2008. DOI:10.1016/j.sse.2007.07.009 [9] J. Rubio, J. Fang, R. Quaglia, V. Camarchia, M. Pirola, S. Guerrieri, and G. Ghione, “A 22W 65% efficiency GaN Doherty Power Amplifier at 3.5 GHz for WiMAX applications,” in Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMIC), 2011, pp. 1–4. DOI:10.1109/inmmic.2011.5773332 [10] J. Rubio, J. Fang, R. Quaglia, V. Camarchia, M. Pirola, S. Guerrieri, and G. Ghione, “"3-3.6-GHz Wideband GaN Doherty Power Amplifier Exploiting Output Compensation Stages,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2543–2548, 2012. DOI:10.1109/TMTT.2012.2201745 [11] V. Camarchia, J. Fang, J. Moreno Rubio, M. Pirola, and R. Quaglia, “7 GHz MMIC GaN Doherty Power Amplifier With 47% Efficiency at 7 dB Output Back-Off,” IEEE Microw. Wirel. Components Lett., vol. 23, no. 1, pp. 34–36, 2012. DOI:10.1109/LMWC.2012.2234090 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
11 |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
INGE CUC |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
INGE CUC |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/384 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a34622de-c6df-40ec-9b75-f7401dd965f0/download https://repositorio.cuc.edu.co/bitstreams/bc3d1b6d-9bd9-409a-aec1-887f0670e6d3/download https://repositorio.cuc.edu.co/bitstreams/e3ed2500-b833-4ad5-86b3-9924a1343fa1/download https://repositorio.cuc.edu.co/bitstreams/1e62dd17-57f6-4d09-9c65-f027877f6026/download |
bitstream.checksum.fl_str_mv |
8aecd91218871e3461ce377c2f51b9e1 8a4605be74aa9ea9d79846c1fba20a33 2a47b08a429213bb0eb3d1681d3b1db4 3738f1c7cff3f00fb0194d04b86b8e13 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166885903958016 |
spelling |
Moreno Rubio, JorgeAngarita Malaver, EdisonFernández González, Herman2018-11-22T14:03:25Z2018-11-22T14:03:25Z2015-01-05Moreno Rubio, J., Angarita Malaver, E., & Fernández González, H. (2015). Amplificador de Potencia Doherty de 25 W, 70% de Eficiencia y Back Off de Salida de 6 dB para Aplicaciones a 2,4 GHz, con Control de VGS, PEAK. INGE CUC, 11(1), 48-52. Recuperado a partir de https://revistascientificas.cuc.edu.co/ingecuc/article/view/3840122-6517, 2382-4700 electrónicohttps://hdl.handle.net/11323/1697https://doi.org/10.17981/ingecuc.11.1.2015.0410.17981/ingecuc.11.1.2015.042382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper shows the design and simulation results of a hybrid Doherty power amplifier. The amplifier has been designed at 2,4 GHz, obtaining power-added efficiency above 70 % for 6 dB output power back-off, together with a small signal gain of 17 dB. Design and analysis equations are presented considering class AB bias conditions for the main amplifier and class C for the peak one in back-off larger than 6 dB, and FET device assumption. An additional control on the bias point of the peak device has been carried out, in order to increase the gain on the Doherty region and ease the design of the peak branch. A Cree’s GaN-HEMT CGH40010F device has been used with a nonlinear model guarantied up to 6 GHz and with an expected output power of 10 W. The obtained output power is higher than 25-W. The simulation has been carried out using Agilent ADS CAD tools. The present design could present the state of the art in terms of continuous-wave (CW) characterization.Este artículo muestra el diseño y los resultados de simulación de un amplificador de potencia Doherty sobre tecnología híbrida. El amplificador fue diseñado a 2,4 GHz, obteniendo una eficiencia de potencia aditiva arriba del 70 % a 6-dB debajo de saturación, junto con una ganancia a pequeña señal de 17 dB. Las ecuaciones de análisis y diseño son presentadas considerando polarización clase AB para el amplificador principal y clase C para el amplificador auxiliar a 6-dB debajo de saturación, y dispositivos FET. Un control adicional sobre el punto de polarización del dispositivo auxiliar se ha llevado a cabo, para incrementar la ganancia en la región Doherty y facilitar el diseño de la rama auxiliar. Un dispositivo GaN-HEMT CGH40010 de Cree ha sido usado con un modelo no-lineal garantizado hasta 6-GHz y con una potencia de salida esperada de 10-W. La potencia de salida obtenida es mayor a 25-W. La simulación ha sido llevada a cabo usando Agilent ADS. El presente diseño representaría el estado del arte en términos de caracterización de onda continua (OC).Moreno Rubio, JorgeAngarita Malaver, EdisonFernández González, Hermanapplication/pdfengCorporación Universidad de la CostaINGE CUC; Vol. 11, Núm. 1 (2015)INGE CUCINGE CUC[1] J. Moreno, J. Fang, R. Quaglia, V. Camarchia, M. Pirola, and G. Ghione, “Development of single-stage and doherty GaN-based hybrid RF power amplifiers for quasi-constant envelope and high peak to average power ratio wireless standards,” Microw. Opt. Technol. Lett., vol. 54, no. 1, pp. 206–210, 2012. DOI:10.1002/mop.26459[2] S. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Norwood: Artech House, 2006.[3] P. Colantonio, F. Giannini, and E. Limiti, High Efficiency RF and Microwave Solid State Power Amplifiers, 1st ed. Gran Bretaña: Wiley, 2009.[4] K. Bumman, M. Junghwan, and K. Ildu, “Efficiently Amplified,” IEEE Microw. Mag., vol. 11, no. 5, pp. 87–100, 2010. DOI:10.1109/MMM.2010.937099[5] W. Doherty, “A New High Efficiency Power Amplifier for Modulated Waves,” IEEE RFIC Virtual J., vol. 24, no. 1, pp. 1163–1182, 2006. DOI:10.1109/JRPROC.1936.228468[6] B. Kim, I. Kim, and J. Moon, “Advanced Doherty Architecture,” IEEE Microw. Mag., vol. 11, no. 5, pp. 72–86, 2010. DOI:10.1109/MMM.2010.937098[7] J. Shealy, J. Smart, M. Poulton, R. Sadler, D. Grider, S. Gibb, B. Hosse, B. Sousa, D. Halchin, and V. Steel, “Gallium nitride (GaN) HEMT’s: Progress and potential for commercial applications,” in Symposium Gallium Arsenide Integrated Circuit (GaAs IC), 2002, pp. 243–246. DOI:10.1109/gaas.2002.1049069[8] J. Lu, Y. Wang, L. Ma, and Z. Yu, “A new small-signal modeling and extraction method in AlGaN/GaN HEMTs,” Solid. State. Electron., vol. 52, no. 1, pp. 115–120, 2008. DOI:10.1016/j.sse.2007.07.009[9] J. Rubio, J. Fang, R. Quaglia, V. Camarchia, M. Pirola, S. Guerrieri, and G. Ghione, “A 22W 65% efficiency GaN Doherty Power Amplifier at 3.5 GHz for WiMAX applications,” in Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMIC), 2011, pp. 1–4. DOI:10.1109/inmmic.2011.5773332[10] J. Rubio, J. Fang, R. Quaglia, V. Camarchia, M. Pirola, S. Guerrieri, and G. Ghione, “"3-3.6-GHz Wideband GaN Doherty Power Amplifier Exploiting Output Compensation Stages,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2543–2548, 2012. DOI:10.1109/TMTT.2012.2201745[11] V. Camarchia, J. Fang, J. Moreno Rubio, M. Pirola, and R. Quaglia, “7 GHz MMIC GaN Doherty Power Amplifier With 47% Efficiency at 7 dB Output Back-Off,” IEEE Microw. Wirel. Components Lett., vol. 23, no. 1, pp. 34–36, 2012. DOI:10.1109/LMWC.2012.2234090111INGE CUCINGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/384Power AmplifierHigh EfficiencyGaN DevicesDohertyMicrowave CircuitsAmplificador de potenciaAlta eficienciaDispositivos GaNCircuitos de microondasA 25 W 70% efficiency Doherty power amplifier at 6 dB output back-off for 2.4 GHz applications with VGS, PEAK controlAmplificador de potencia Doherty de 25 W, 70% de eficiencia y back off de salida de 6 dB para aplicaciones a 2,4 GHz, con control de VGS, PEAKArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALA 25 W 70% Efficiency Doherty Power.pdfA 25 W 70% Efficiency Doherty Power.pdfapplication/pdf1273014https://repositorio.cuc.edu.co/bitstreams/a34622de-c6df-40ec-9b75-f7401dd965f0/download8aecd91218871e3461ce377c2f51b9e1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/bc3d1b6d-9bd9-409a-aec1-887f0670e6d3/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILA 25 W 70% Efficiency Doherty Power.pdf.jpgA 25 W 70% Efficiency Doherty Power.pdf.jpgimage/jpeg60792https://repositorio.cuc.edu.co/bitstreams/e3ed2500-b833-4ad5-86b3-9924a1343fa1/download2a47b08a429213bb0eb3d1681d3b1db4MD54TEXTA 25 W 70% Efficiency Doherty Power.pdf.txtA 25 W 70% Efficiency Doherty Power.pdf.txttext/plain16917https://repositorio.cuc.edu.co/bitstreams/1e62dd17-57f6-4d09-9c65-f027877f6026/download3738f1c7cff3f00fb0194d04b86b8e13MD5511323/1697oai:repositorio.cuc.edu.co:11323/16972024-09-17 14:22:03.796open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |