Diabetes diagnostic prediction using vector support machines

The most important factors for the diagnosis of diabetes mellitus (DM) are age, body mass index (BMI) and blood glucose concentration. Diagnosis of DM by a doctor is complicated, because several factors are involved in the disease, and the diagnosis is subject to human error. A blood test does not p...

Full description

Autores:
amelec, viloria
Herazo-Beltrán, Yaneth
Cabrera, Danelys
Bonerge Pineda, Omar
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6460
Acceso en línea:
https://hdl.handle.net/11323/6460
https://repositorio.cuc.edu.co/
Palabra clave:
Medical diagnosis
Diabetes mellitus
Medical computing
Machine learning
Vector support machines
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_c2c8ca720894f7c44ccd737fb5036cfd
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6460
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Diabetes diagnostic prediction using vector support machines
title Diabetes diagnostic prediction using vector support machines
spellingShingle Diabetes diagnostic prediction using vector support machines
Medical diagnosis
Diabetes mellitus
Medical computing
Machine learning
Vector support machines
title_short Diabetes diagnostic prediction using vector support machines
title_full Diabetes diagnostic prediction using vector support machines
title_fullStr Diabetes diagnostic prediction using vector support machines
title_full_unstemmed Diabetes diagnostic prediction using vector support machines
title_sort Diabetes diagnostic prediction using vector support machines
dc.creator.fl_str_mv amelec, viloria
Herazo-Beltrán, Yaneth
Cabrera, Danelys
Bonerge Pineda, Omar
dc.contributor.author.spa.fl_str_mv amelec, viloria
Herazo-Beltrán, Yaneth
Cabrera, Danelys
Bonerge Pineda, Omar
dc.subject.spa.fl_str_mv Medical diagnosis
Diabetes mellitus
Medical computing
Machine learning
Vector support machines
topic Medical diagnosis
Diabetes mellitus
Medical computing
Machine learning
Vector support machines
description The most important factors for the diagnosis of diabetes mellitus (DM) are age, body mass index (BMI) and blood glucose concentration. Diagnosis of DM by a doctor is complicated, because several factors are involved in the disease, and the diagnosis is subject to human error. A blood test does not provide enough information to make a correct diagnosis of the disease. A vector support machine (SVM) was implemented to predict the diagnosis of DM based on the factors mentioned in patients. The classes of the output variable are three: without diabetes, with a predisposition to diabetes and with diabetes. An SVM was obtained with an accuracy of 99.2% with Colombian patients and an accuracy of 65.6% with a data set of patients of a different ethnic background.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-05T18:42:18Z
dc.date.available.none.fl_str_mv 2020-07-05T18:42:18Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1877-0509
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6460
dc.identifier.doi.spa.fl_str_mv 10.1016/j.procs.2020.03.065
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1877-0509
10.1016/j.procs.2020.03.065
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6460
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Bates, D., Mäechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models using lme4. Journal of Statistical Software, 67(1), 1-48. doi: 10.18637/jss.v067.i01.
[2] INEGI, “Estadistica a Proporsito del Día Mundial de la Diabetes,” Día Mund. la Diabetes., p. 18, 2013.
[3] T. Santhanam and M. S. Padmavathi, “Application of K-Means and genetic algorithms for dimension reduction by integrating SVM for diabetes diagnosis,” Procedia Comput. Sci., vol. 47, no. C, pp. 76–83, 2014.
[4] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham
[5] S. Li, H. Zhao, Z. Ru, and Q. Sun, “Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope,” Eng. Geol., vol. 203, pp. 178–190, 2016.
[6] T. Zheng et al., “A machine learning-based framework to identify type 2 diabetes through electronic health records,” Int. J. Med. Inform., vol. 97, pp. 120–127, 2017.
[7]Shankaracharya, D. Odedra, S. Samanta, and A. S. Vidyarthi, “Computational intelligence in early diabetes diagnosis: A review,” Rev. Diabet. Stud., vol. 7, no. 4, pp. 252–261, 2010.
[8] K. V. S. R. P. Varma, A. A. Rao, T. Sita Maha Lakshmi, and P. V. Nageswara Rao, “A computational intelligence approach for a better diagnosis of diabetic patients,” Comput. Electr. Eng., vol. 40, no. 5, pp. 1758–1765, 2014.
[9] D. Çalişir and E. Dogantekin, “An automatic diabetes diagnosis system based on LDA-Wavelet Support Vector Machine Classifier,” Expert Syst. Appl., vol. 38, no. 7, pp. 8311–8315, 2011.
[10] H. Temurtas, N. Yumusak, and F. Temurtas, “A comparative study on diabetes disease diagnosis using neural networks,” Expert Syst. Appl., vol. 36, no. 4, pp. 8610–8615, 2009.
[11] Mellado A., Suárez, N., Altimir, C., Martínez, C., Pérez J. C., Krause, M., & Horvath, A. (2017) Disentangling the change-alliance relationship: Observational assessment of the therapeutic alliance during change and stuck episodes. Psychotherapy Research, 27(5), 595-607. doi: 10.1080/10503307.2016.1147657
[12] Ogles, B. M. (2013). Measuring change in psychotherapy research. En M. J. Lambert (Ed.), Bergin and Garfields’s Handbook of Psychotherapy and Behavior Change (pp.134– 166). New Jersey: Wiley.
[13] El Pasante, «Ventajas y desventajas de las bases de datos,» 17 Junio 2015. [En línea]. Available: https://educacion.elpensante.com/ventajasy-desventajas-de-las-bases-de- datos/. [Último acceso: 12 Noviembre 2018].
[14] Probability Formula, «Hypergeometric Distribution,» [En línea]. Available: http://www.probabilityformula.org/hypergeometricdistribution.html. [Último acceso: 16 Noviembre 2018].
[15] Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling. Boca Raton: Chapman & Hall/CRC
[16] J. Swamidass† y P. Baldi, «Mathematical Correction for Fingerprint Similarity Measures to Improve Chemical Retrieval,» Journal of Chemical Information and Modeling, vol. 47, nº 1, pp. 952-964, 2006.
[17] S. Arif, J. Holliday y P. Willett, «Comparison of chemical similarity measures using different numbers of query structures,» Journal of Information Science, vol. 39, nº 1, pp. 1-8, 2013.
[18] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. [2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data [pp. 149-158). Springer, Cham
[19] Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J. P., Parody, A., Bent, D. E. S., & López, L. A. B. (2018, June). Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In International Conference on Data Mining and Big Data (pp. 304-313). Springer, Cham.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/4e42ddd6-cf3d-460d-8a23-ead7d7466e4a/download
https://repositorio.cuc.edu.co/bitstreams/679f576d-b933-49c4-995a-3f8c633fc289/download
https://repositorio.cuc.edu.co/bitstreams/f66bd18f-9a72-4da7-9a41-77ac66a47f95/download
https://repositorio.cuc.edu.co/bitstreams/13e1d2ee-1382-4728-b589-66bd791ca95c/download
https://repositorio.cuc.edu.co/bitstreams/4d947420-cf31-4269-8711-5a01ec8f0004/download
bitstream.checksum.fl_str_mv 18012e6a5cab67c03e0031bef3443c51
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
d28367678808007eb7c8955b185d4c92
722052201bb70c4625675655524ebdb1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760845399523328
spelling amelec, viloriaHerazo-Beltrán, YanethCabrera, DanelysBonerge Pineda, Omar2020-07-05T18:42:18Z2020-07-05T18:42:18Z20201877-0509https://hdl.handle.net/11323/646010.1016/j.procs.2020.03.065Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The most important factors for the diagnosis of diabetes mellitus (DM) are age, body mass index (BMI) and blood glucose concentration. Diagnosis of DM by a doctor is complicated, because several factors are involved in the disease, and the diagnosis is subject to human error. A blood test does not provide enough information to make a correct diagnosis of the disease. A vector support machine (SVM) was implemented to predict the diagnosis of DM based on the factors mentioned in patients. The classes of the output variable are three: without diabetes, with a predisposition to diabetes and with diabetes. An SVM was obtained with an accuracy of 99.2% with Colombian patients and an accuracy of 65.6% with a data set of patients of a different ethnic background.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Herazo-Beltrán, Yaneth-will be generated-orcid-0000-0003-3752-4353-600Cabrera, Danelys-will be generated-orcid-0000-0002-9486-9764-600Bonerge Pineda, OmarengProcedia Computer ScienceCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Medical diagnosisDiabetes mellitusMedical computingMachine learningVector support machinesDiabetes diagnostic prediction using vector support machinesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Bates, D., Mäechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models using lme4. Journal of Statistical Software, 67(1), 1-48. doi: 10.18637/jss.v067.i01.[2] INEGI, “Estadistica a Proporsito del Día Mundial de la Diabetes,” Día Mund. la Diabetes., p. 18, 2013.[3] T. Santhanam and M. S. Padmavathi, “Application of K-Means and genetic algorithms for dimension reduction by integrating SVM for diabetes diagnosis,” Procedia Comput. Sci., vol. 47, no. C, pp. 76–83, 2014.[4] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham[5] S. Li, H. Zhao, Z. Ru, and Q. Sun, “Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope,” Eng. Geol., vol. 203, pp. 178–190, 2016.[6] T. Zheng et al., “A machine learning-based framework to identify type 2 diabetes through electronic health records,” Int. J. Med. Inform., vol. 97, pp. 120–127, 2017.[7]Shankaracharya, D. Odedra, S. Samanta, and A. S. Vidyarthi, “Computational intelligence in early diabetes diagnosis: A review,” Rev. Diabet. Stud., vol. 7, no. 4, pp. 252–261, 2010.[8] K. V. S. R. P. Varma, A. A. Rao, T. Sita Maha Lakshmi, and P. V. Nageswara Rao, “A computational intelligence approach for a better diagnosis of diabetic patients,” Comput. Electr. Eng., vol. 40, no. 5, pp. 1758–1765, 2014.[9] D. Çalişir and E. Dogantekin, “An automatic diabetes diagnosis system based on LDA-Wavelet Support Vector Machine Classifier,” Expert Syst. Appl., vol. 38, no. 7, pp. 8311–8315, 2011.[10] H. Temurtas, N. Yumusak, and F. Temurtas, “A comparative study on diabetes disease diagnosis using neural networks,” Expert Syst. Appl., vol. 36, no. 4, pp. 8610–8615, 2009.[11] Mellado A., Suárez, N., Altimir, C., Martínez, C., Pérez J. C., Krause, M., & Horvath, A. (2017) Disentangling the change-alliance relationship: Observational assessment of the therapeutic alliance during change and stuck episodes. Psychotherapy Research, 27(5), 595-607. doi: 10.1080/10503307.2016.1147657[12] Ogles, B. M. (2013). Measuring change in psychotherapy research. En M. J. Lambert (Ed.), Bergin and Garfields’s Handbook of Psychotherapy and Behavior Change (pp.134– 166). New Jersey: Wiley.[13] El Pasante, «Ventajas y desventajas de las bases de datos,» 17 Junio 2015. [En línea]. Available: https://educacion.elpensante.com/ventajasy-desventajas-de-las-bases-de- datos/. [Último acceso: 12 Noviembre 2018].[14] Probability Formula, «Hypergeometric Distribution,» [En línea]. Available: http://www.probabilityformula.org/hypergeometricdistribution.html. [Último acceso: 16 Noviembre 2018].[15] Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling. Boca Raton: Chapman & Hall/CRC[16] J. Swamidass† y P. Baldi, «Mathematical Correction for Fingerprint Similarity Measures to Improve Chemical Retrieval,» Journal of Chemical Information and Modeling, vol. 47, nº 1, pp. 952-964, 2006.[17] S. Arif, J. Holliday y P. Willett, «Comparison of chemical similarity measures using different numbers of query structures,» Journal of Information Science, vol. 39, nº 1, pp. 1-8, 2013.[18] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. [2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data [pp. 149-158). Springer, Cham[19] Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J. P., Parody, A., Bent, D. E. S., & López, L. A. B. (2018, June). Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In International Conference on Data Mining and Big Data (pp. 304-313). Springer, Cham.PublicationORIGINALDiabetes diagnostic prediction using vector support machines.pdfDiabetes diagnostic prediction using vector support machines.pdfapplication/pdf927921https://repositorio.cuc.edu.co/bitstreams/4e42ddd6-cf3d-460d-8a23-ead7d7466e4a/download18012e6a5cab67c03e0031bef3443c51MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/679f576d-b933-49c4-995a-3f8c633fc289/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/f66bd18f-9a72-4da7-9a41-77ac66a47f95/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILDiabetes diagnostic prediction using vector support machines.pdf.jpgDiabetes diagnostic prediction using vector support machines.pdf.jpgimage/jpeg44553https://repositorio.cuc.edu.co/bitstreams/13e1d2ee-1382-4728-b589-66bd791ca95c/downloadd28367678808007eb7c8955b185d4c92MD54TEXTDiabetes diagnostic prediction using vector support machines.pdf.txtDiabetes diagnostic prediction using vector support machines.pdf.txttext/plain35683https://repositorio.cuc.edu.co/bitstreams/4d947420-cf31-4269-8711-5a01ec8f0004/download722052201bb70c4625675655524ebdb1MD5511323/6460oai:repositorio.cuc.edu.co:11323/64602024-09-17 14:09:54.123http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==