Magnetic micro-macro biocatalysts applied to industrial bioprocesses
The use of magnetic biocatalysts is highly beneficial in bioprocesses technology, as it allows their easy recovering and enhances biocatalyst lifetime. Thus, it simplifies operational processing and increases efficiency, leading to more cost-effective processes. The use of small-size matrices as car...
- Autores:
-
Del Arco, Jon
Alcántara, Andrés R.
Fernández-Lafuente, Roberto
Fernández-Lucas, Jesús
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8052
- Acceso en línea:
- https://hdl.handle.net/11323/8052
https://doi.org/10.1016/j.biortech.2020.124547
https://repositorio.cuc.edu.co/
- Palabra clave:
- Enzyme immobilization
Magnetic supports
Industrial bioprocesses
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_c27e8f1fa18e15b8ea50e74b908adac3 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8052 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Magnetic micro-macro biocatalysts applied to industrial bioprocesses |
title |
Magnetic micro-macro biocatalysts applied to industrial bioprocesses |
spellingShingle |
Magnetic micro-macro biocatalysts applied to industrial bioprocesses Enzyme immobilization Magnetic supports Industrial bioprocesses |
title_short |
Magnetic micro-macro biocatalysts applied to industrial bioprocesses |
title_full |
Magnetic micro-macro biocatalysts applied to industrial bioprocesses |
title_fullStr |
Magnetic micro-macro biocatalysts applied to industrial bioprocesses |
title_full_unstemmed |
Magnetic micro-macro biocatalysts applied to industrial bioprocesses |
title_sort |
Magnetic micro-macro biocatalysts applied to industrial bioprocesses |
dc.creator.fl_str_mv |
Del Arco, Jon Alcántara, Andrés R. Fernández-Lafuente, Roberto Fernández-Lucas, Jesús |
dc.contributor.author.spa.fl_str_mv |
Del Arco, Jon Alcántara, Andrés R. Fernández-Lafuente, Roberto Fernández-Lucas, Jesús |
dc.subject.spa.fl_str_mv |
Enzyme immobilization Magnetic supports Industrial bioprocesses |
topic |
Enzyme immobilization Magnetic supports Industrial bioprocesses |
description |
The use of magnetic biocatalysts is highly beneficial in bioprocesses technology, as it allows their easy recovering and enhances biocatalyst lifetime. Thus, it simplifies operational processing and increases efficiency, leading to more cost-effective processes. The use of small-size matrices as carriers for enzyme immobilization enables to maximize surface area and catalysts loading, also reducing diffusion limitations. As highly expensive nanoparticles (nm size) usually aggregate, their application at large scale is not recommended. In contrast, the use of magnetic micro-macro (µm-mm size) matrices leads to more homogeneous biocatalysts with null or very low aggregation, which facilitates an easy handling and recovery. The present review aims to highlight recent trends in the application of medium-to-high size magnetic biocatalysts in different areas (biodiesel production, food and pharma industries, protein purification or removal of environmental contaminants). The advantages and disadvantages of these above-mentioned magnetic biocatalysts in bioprocess |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-03-23T13:36:38Z |
dc.date.available.none.fl_str_mv |
2021-03-23T13:36:38Z |
dc.date.issued.none.fl_str_mv |
2021-02 |
dc.date.embargoEnd.none.fl_str_mv |
2023-02 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0960-8524 1873-2976 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8052 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.biortech.2020.124547 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0960-8524 1873-2976 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8052 https://doi.org/10.1016/j.biortech.2020.124547 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Al-Qodah, Z., Al-Shannag, M., Al-Busoul, M., Penchev, I., Orfali, W., 2017. Immobilized enzymes bioreactors utilizing a magnetic field: a review. Biochem. Eng. J. 121, 94–106. Al-Qodah, Z., Al-Shannag, M., Al-Bosoul, M., Penchev, I., Al-Ahmadi, H., Al-Qodah, K., 2018. On the performance of immobilized cell bioreactors utilizing a magnetic field. Rev. Chem. Eng. 34, 385–408. Amaral-Fonseca, M., Kopp, W., Giordano, R.D.C., Fernandez-Lafuente, R., Tardioli, P.W.,´ 2018. Preparation of magnetic cross-linked amyloglucosidase aggregates: Solving some activity problems. Catalysts 8, 21. Amini, Z., Ilham, Z., Ong, H.C., Mazaheri, H., Chen, W.H., 2017. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Convers. Manag. 141, 339–353. Andreeva, Y.I., Drozdov, A.S., Avnir, D., Vinogradov, V.V., 2018. Enzymatic nanocomposites with radio frequency field-modulated activity. Am. Chem. Soc. Biomater. Sci. Eng. 4, 3962–3967. Arana-Pena, S., Carballares, D., Morellon-Sterlling, R., Berenguer-Murcia,˜ A.,´ Alcantara, A.R., Rodrigues, R.C., Fer´ nandez-Lafuente, R., 2020. Enzyme co-´ immobilization: always the biocatalyst designers’ choice…or not? Biotechnol. Adv. 107584. Arca-Ramos, A., Kumar, V.V., Eibes, G., Moreira, M.T., Cabana, H., 2016. Recyclable cross-linked laccase aggregates coupled to magnetic silica microbeads for elimination of pharmaceuticals from municipal wastewater. Environ. Sci. Pollut. Res. 23, 8929–8939. Armenia, I., Grazú Bonavia, M.V., De Matteis, L., Ivanchenko, P., Martra, G., Gornati, R., de la Fuente, J.M., Bernardini, G., 2019. Enzyme activation by alternating magnetic field: importance of the bioconjugation methodology. J. Colloid Interface Sci. 537, 615–628. Arregui, L., Ayala, M., Gomez-Gil, X., Guti´ ´errez-Soto, G., Hernandez-Luna, C.E., de los ´ Santos, M.H., Levin, L., Rojo-Domínguez, A., Romero-Martínez, D., Saparrat, M.C.N., Trujillo-Roldan, M.A., Valdez-Cruz, N.A., 2019. Laccases: structure, function, and ´ potential application in water bioremediation. Microb. Cell Fact. 18, 200. Arnold, F.H., 1991. Metal-affinity separations: a new dimension in protein processing. Nat. Biotechnol. 9, 151–156. Azocar, L., Heipieper, H.J., Navia, R., 2010. Biotechnological processes for biodiesel´ production using alternative oils. Appl. Microbiol. Biotechnol. 88, 621–636. Badoei-dalfard, A., Karami, Z., Malekabadi, S., 2019. Construction of CLEAs-lipase on magnetic graphene oxide nanocomposite: an efficient nanobiocatalyst for biodiesel production. Bioresour. Technol. 278, 473–476. Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R.C., Fernandez-´ Lafuente, R., 2013. Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules 14, 2433–2462. Bas¸ar, N., Uzun, L., Güner, A., Denizli, A., 2007. Lysozyme purification with dye-affinity beads under magnetic field. Int. J. Biol. Macromol. 41, 234–242. Bayramoglu, G., Yilmaz, M., Arica, M.Y., 2010. Preparation and characterization of epoxy-functionalized magnetic chitosan beads: laccase immobilized for degradation of reactive dyes. Bioproc. Biosyst. Eng. 33, 439–448. Bedade, D.K., Muley, A.B., Singhal, R.S., 2019. Magnetic cross-linked enzyme aggregates of acrylamidase from Cupriavidus oxalaticus ICTDB921 for biodegradation of acrylamide from industrial waste water. Bioresour. Technol. 272, 137–145. Bernardino, S.M., Fernandes, P., Fonseca, L.P., 2009. A new biocatalyst: Penicillin G acylase immobilized in sol-gel micro-particles with magnetic properties. Biotechnol. J. 4, 695–702. Berry, D.R., Paterson, A., 1990. Enzymes in the food industry. In: Suckling, C. (Ed.), Enzyme Chemistry. Springer, Dordrecht, pp. 306–351. Bilal, M., Zhao, Y., Rasheed, T., Iqbal, H.M.N., 2018. Magnetic nanoparticles as versatile carriers for enzymes immobilization: a review. Int. J. Biol. Macromol. 120, 2530–2544. Bilal, M., Mehmood, S., Rasheed, T., Iqbal, H., 2019. Bio-catalysis and biomedical perspectives of magnetic nanoparticles as versatile carriers. Magnetochemistry 5, 42. Bilal, M., Ashraf, S.S., Iqbal, H.M., 2020. Laccase-mediated bioremediation of dye-based hazardous pollutants. In: Ahamed, M.I., Lichtfouse, E., Asiri, A.M. (Eds.), Methods for Bioremediation of Water and Wastewater Pollution. Springer, Cham, pp. 137–160. Bodakowska-Boczniewicz, J., Garncarek, Z., 2019. Immobilization of naringinase from Penicillium decumbens on chitosan microspheres for debittering grapefruit juice. Molecules 24, 4234. Bodakowska-Boczniewicz, J., Garncarek, Z., 2020. Immobilization of naringinase from Aspergillus niger on a magnetic polysaccharide carrier. Molecules 25, 2731. Borlido, L., Azevedo, A.M., Roque, A.C.A., Aires-Barros, M.R., 2013. Magnetic separations in biotechnology. Biotechnol. Adv. 31, 1374–1385. Cao, G., Gao, J., Zhou, L., Huang, Z., He, Y., Zhu, M., Jiang, Y., 2017. Fabrication of Ni2+- nitrilotriacetic acid functionalized magnetic mesoporous silica nanoflowers for one pot purification and immobilization of His-tagged ω-transaminase. Biochem. Eng. J. 128, 116–125. Cao, M., Li, Z., Wang, J., Ge, W., Yue, T., Li, R., Colvin, V.L., William, W.Y., 2012. Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci. Technol. 27, 47–56. Chen, G., Liu, J., Qi, Y., Yao, J., Yan, B., 2016. Biodiesel production using magnetic whole-cell biocatalysts by immobilization of Pseudomonas mendocina on Fe3O4- chitosan microspheres. Biochem. Eng. J. 113, 86–92. Cipolatti, E.P., Valerio, A., Henriques, R.O., Moritz, D.E., Ninow, J.L., Freire, D.M., Manoel, E.A., Fernandez-Lafuente, R., de Oliveira, D., 2016. Nanomaterials for biocatalyst immobilization–state of the art and future trends. R. Soc. Chem. Adv. 6, 104675–104692. Cruz-Izquierdo, A., Pi´ co, E.A., ´ Lopez, C., Serra, J.L., Llama, M.J., 2014. Magnetic cross-´ linked enzyme aggregates (mCLEAs) of Candida antarctica lipase: an efficient and stable biocatalyst for biodiesel synthesis. PLoS ONE 9, e115202. Dal Magro, L., Silveira, V.C., de Menezes, E.W., Benvenutti, E.V., Nicolodi, S., Hertz, P.F., Klein, M.P., Rodrigues, R.C., 2018. Magnetic biocatalysts of pectinase and cellulase: synthesis and characterization of two preparations for application in grape juice clarification. Int. J. Biol. Macromol. 115, 35–44. Dal Magro, L., de Moura, K.S., Backes, B.E., de Menezes, E.W., Benvenutti, E.V., Nicolodi, S., Klein, M.P., Fernandez-Lafuente, R., Rodrigues, R.C., 2019.´ Immobilization of pectinase on chitosan-magnetic particles: influence of particle preparation protocol on enzyme properties for fruit juice clarification. Biotechnol. Rep. 24, e00373. Del Arco, J., Fernandez-Lucas, J., 2018. Purine and pyrimidine salvage pathway in´ thermophiles: a valuable source of biocatalysts for the industrial production of nucleic acid derivatives. Appl. Microbiol. Biotechnol. 102, 7805–7820. Del Arco, J., Martínez-Pascual, S., Clemente-Suarez, V.J., Corral, O.J., Jordaan, J.,´ Hormigo, D., Perona, A., Fernandez-Lucas, J., 2018. One-pot, one-step production of´ dietary nucleotides by magnetic biocatalysts. Catalysts 8, 184. Del Arco, J., Jordaan, J., Moral-Dard´e, V., Fernandez-Lucas, J., 2019a. Sustainable´production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles. Bioresour. Technol. 289, 121772. Del Arco, J., P´erez, E., Naitow, H., Matsuura, Y., Kunishima, N., Fernandez-Lucas, J., 2019b. Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues. Bioresour. Technol. 276, 244–252. Del Arco, J., Galindo, J., Clemente-Suarez, V.J., Corrales, A., Fer´ nandez-Lucas, J., 2020.´ Sustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus. Biochim. Biophys. Acta Proteins Proteom. 1868, 140251. De Lima, L.N., Vieira, G.N.A., Kopp, W., Tardioli, P.W., Giordano, R.L., 2016. Mono-and heterofunctionalized silica magnetic microparticles (SMMPs) as new carriers for immobilization of lipases. J. Mol. Catal. B Enzym. 133, S491–S499. Digigow, R.G., Dech´ezelles, J.F., Kaufmann, J., Vanhecke, D., Knapp, H., Lattuada, M., Rothen-Rutishauser, B., Petri-Fink, A., 2014. Magnetic microreactors for efficient and reliable magnetic nanoparticle surface functionalization. Lab Chip 14, 2276–2286. Feng, N., Zhang, H., Li, Y., Liu, Y., Xu, L., Wang, Y., Fei, X., Tian, J., 2020. A novel catalytic material for hydrolyzing cow’s milk allergenic proteins: papain- Cu3(PO4)2⋅3H2O-magnetic nanoflowers. Food Chem. 311, 125911. Fernandez-Lucas, J., 2015. Multienzymatic synthesis of nucleic acid derivatives: a´ general perspective. Appl. Microbiol. Biotechnol. 99, 4615–4627. Fernandez-Lucas, J., Harris, R., Mata-Casar, I., Heras, A., de la Mata, I., Arroyo, M., 2013.´ Magnetic chitosan beads for covalent immobilization of nucleoside 2′- deoxyribosyltransferase: application in nucleoside analogues synthesis. J. Ind. Microbiol. Biotechnol. 40, 955–966. Ferreira, L., Afonso, C., Vila-Real, H., Alfaia, A., Ribeiro, M.H.L., 2008. Debittering of grapefruit juice with naringinase. Food Technol. Biotechnol. 46, 144–148. Franzreb, M., Siemann-Herzberg, M., Hobley, T.J., Thomas, O.R., 2006. Protein purification using magnetic adsorbent particles. Appl. Microbiol. Biotechnol. 70, 505–516. Frost, C.G., Mutton, L., 2010. Heterogeneous catalytic synthesis using microreactor technology. Green Chem. 12, 1687–1703. Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., Rodrigues, R.C., 2011.´ Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 353, 2885–2904. Gharat, N., Rathod, V.K., 2013. Ultrasound assisted enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate. Ultrason. Sonochem. 20, 900–905. Girelli, A.M., Astolfi, M.L., Scuto, F.R., 2019. Agro-industrial wastes as potential carriers for enzyme immobilization: a review. Chemosphere 244, 125368. Gkantzou, E., Patila, M., Stamatis, H., 2018. Magnetic microreactors with immobilized enzymes-from assemblage to contemporary applications. Catalysts 8, 282. Gracida, J., Arredondo-Ochoa, T., García-Almendarez, B.E., Escamilla-García, M.,´ Shirai, K., Regalado, C., Amaro-Reyes, A., 2019. Improved thermal and reusability properties of xylanase by genipin cross-linking to magnetic chitosan particles. Appl. Biochem. Biotechnol. 188, 395–409. Guimaraes, J.R., Giordano, R.L.C., Fer˜ nandez-Lafuente, R., Tardioli, P.W., 2018.´ Evaluation of strategies to produce highly porous cross-linked aggregates of porcine pancreas lipase with magnetic properties. Molecules 23, 2993. Guldhe, A., Singh, B., Mutanda, T., Permaul, K., Bux, F., 2015. Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew. Sustain. Energy Rev. 41, 1447–1464. Han, J., Wang, L., Wang, L., Li, C., Mao, Y., Wang, Y., 2019. Fabrication of a core-shell- shell magnetic polymeric microsphere with excellent performance for separation and purification of bromelain. Food Chem. 283, 1–10. Hero, J.S., Morales, A.H., Perotti, N.I., Romero, C.M., Martinez, M.A., 2020. Improved development in magnetic Xyl-CLEA technology for biotransformation of agro- industrial by-products through the use of a novel macromolecular cross-linker. React. Funct. Polym. 154, 104676. Hotze, E.M., Phenrat, T., Lowry, G.V., 2010. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 39, 1909–1924. Hwang, E.T., Lee, S., 2019. Multienzymatic cascade reactions via enzyme complex by immobilization. Am. Chem. Soc. Catal. 9, 4402–4425. Illanes, A., Wilson, L., Aguirre, C., 2008. Synthesis of cephalexin in aqueous medium with carrier-bound and carrier-free penicillin acylase biocatalysts. Appl. Biochem. Biotechnol. 157, 98–110. Ismail, A.R., Baek, K.H., 2020. Lipase immobilization with support materials, preparation techniques, and applications: present and future aspects. Int. J. Biol. Macromol. 163, 1624–1639. Jiménez-Sanchez, C., Lozano-´ Sanchez, J., Segura-Carretero, A., Fer´ nandez-Gut´ i´errez, A., 2017. Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications. Crit. Rev. Food Sci. Nutr. 57, 501–523. Kallenberg, A.I., van Rantwijk, F., Sheldon, R.A., 2005. Immobilization of penicillin G acylase: the key to optimum performance. Adv. Synth. Catal. 347, 905–926. Kang, J.K., Kim, J.C., Shin, Y., Han, S.M., Won, W.R., Her, J., Park, J.Y., Oh, K.T., 2020. Principles and applications of nanomaterial-based hyperthermia in cancer therapy. Arch. Pharmacal Res. 43, 46–57. Kim, K.H., Lee, O.K., Lee, E.Y., 2018. Nano-immobilized biocatalysts for biodiesel production from renewable and sustainable resources. Catalysts 8, 68. Kopp, W., Silva, F.A., Lima, L.N., Masunaga, S.H., Tardioli, P.W., Giordano, R.C., Araújo- Moreira, F.M., Giordano, R.L., 2015. Synthesis and characterization of robust magnetic carriers for bioprocess applications. Mater. Sci. Eng. B 193, 217–228. Krishnan, B.P., Prieto-Lopez, L.O., Hoefgen, S., Xue, L., Wang, S., Valiante, V., Cui, J.,´ 2020. Thermomagneto-responsive smart biocatalysts for malonyl-coenzyme a synthesis. Am. Chem. Soc. Appl. Mater. Interfaces 12, 20982–20990. Kumar, V.V., Cabana, H., 2016. Towards high potential magnetic biocatalysts for on- demand elimination of pharmaceuticals. Bioresour. Technol. 200, 81–89. Kumar, V.V., Sivanesan, S., Cabana, H., 2014. Magnetic cross-linked laccase aggregates Bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci. Total Environ. 487, 830–839. Lam, S.Y., Yeung, R.C.Y., Yu, T.H., Sze, K.H., Wong, K.B., 2011. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity. PLoS Biol. 9, e1001027. Laurent, S., Dutz, S., Hafeli, U.O., Mahmoudi, M., 2011. Magnetic fluid hyperthermia:¨ Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166, 8–23. Lee, I., Cheon, H.J., Adhikari, M.D., Tran, T.D., Yeon, K.M., Kim, M.I., Kim, J., 2020. Glucose oxidase-copper hybrid nanoflowers embedded with magnetic nanoparticles as an effective antibacterial agent. Int. J. Biol. Macromol. 155, 1520–1531. Lee, J., Lee, D., Oh, E., Kim, J., Kim, Y.P., Jin, S., Kim, H.S., Hwang, Y., Kwak, J.H., Park, J.G., Shin, C.H., 2005. Preparation of a magnetically switchable bio- electrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angew. Chem. Int. Ed. 44, 7427–7432. Leung, D.Y.C., Wu, X., Leung, M.K.H., 2010. A review on biodiesel production using catalyzed transesterification. Appl. Energy 87, 1083–1095. Li, X., Tian, L., Ali, Z., Wang, W., Zhang, Q., 2018. Design of flexible dendrimer-grafted flower-like magnetic microcarriers for penicillin G acylase immobilization. J. Mater. Sci. 53, 937–947. Lin, J., Fan, L., Miao, R., Le, X., Chen, S., Zhou, X., 2015. Enhancing catalytic performance of laccase via immobilization on chitosan/CeO2 microspheres. Int. J. Biol. Macromol. 78, 1–8. Lin, J., Lai, Q., Liu, Y., Chen, S., Le, X., Zhou, X., 2017. Laccase–methacrylyol functionalized magnetic particles: highly immobilized, reusable, and efficacious for methyl red decolourization. Int. J. Biol. Macromol. 102, 144–152. Liu, D.M., Dong, C., 2020. Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem. 92, 464–475. Liu, D.M., Chen, J., Shi, Y.P., 2018. Advances on methods and easy separated support materials for enzymes immobilization. Trends Anal. Chem. 102, 332–342. Liu, Y., Zeng, Z., Zeng, G., Tang, L., Pang, Y., Li, Z., Liu, C., Lei, X., Wu, M., Ren, P., Liu, Z., Chen, M., Xie, G., 2012. Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour. Technol. 115, 21–26. Liu, Y., Guo, C., Liu, C.Z., 2015. Enhancing the resolution of (R, S)-2-octanol catalyzed by magnetic cross-linked lipase aggregates using an alternating magnetic field. Chem. Eng. J. 280, 36–40. Liu, X., Yang, J., Yang, L., 2016. Capillary electrophoresis-integrated immobilized enzyme reactors. Rev. Anal. Chem. 35, 115–131. Mafra, A.C.O., Ulrich, L.G., Kornecki, J.F., Fernandez-Lafuente, R., Tardioli, P.W.,´ Ribeiro, M.P.A., 2019. Combi-CLEA of glucose oxidase and catalase for conversion of glucose to gluconic acid eliminating the hydrogen peroxide to maintain enzyme activity in a bubble column reactor. Catalysts 9, 657. Majeau, J.A., Brar, S.K., Tyagi, R.D., 2010. Laccases for removal of recalcitrant and emerging pollutants. Bioresour. Technol. 101, 2331–2350. Martins, A.B., Friedrich, J.L.R., Cavalheiro, J.C., Garcia-Galan, C., Barbosa, O., Ayub, M. A.Z., Fernandez-Lafuente, R., Rodrigues, R.C., 2013. Improved production of butyl´ butyrate with lipase from Thermomyces lanuginosus immobilized on styrene- divinylbenzene beads. Bioresour. Technol. 134, 417–422. Martins, S.L., Albuquerque, B.F., Nunes, M.A., Ribeiro, M.H., 2018. Exploring magnetic and imprinted cross-linked enzyme aggregates of rhamnopyranosidase in microbioreactors. Bioresour. Technol. 249, 704–712. Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R.,´ 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40, 1451–1463. Mehde, A.A., 2019. Development of magnetic cross-linked peroxidase aggregates on starch as enhancement template and their application for decolorization. Int. J. Biol. Macromol. 131, 721–733. Miranda, L.P., Guimaraes, J.R., Giordano, R.C., Fer˜ nandez-Lafuente, R., Tardioli, P.W.,´ 2020. Composites of crosslinked aggregates of Eversa® transform and magnetic nanoparticles. Performance in the ethanolysis of soybean oil. Catalysts 10, 1–22. Moazeni, F., Chen, Y.C., Zhang, G., 2019. Enzymatic transesterification for biodiesel production from used cooking oil, a review. J. Clean Prod. 216, 117–128. Modena, M.M., Rühle, B., Burg, T.P., Wuttke, S., 2019. Nanoparticle characterization: What to measure? Adv. Mater. 31, 1901556. Nadar, S.S., Rathod, V.K., 2016. Magnetic macromolecular cross linked enzyme aggregates (CLEA) of glucoamylase. Enzyme Microb. Technol. 83, 78–87. Naito, M., Yokoyama, T., Hosokawa, K., Nogi, K., 2018. Nanoparticle Technology Handbook, third ed. Elsevier, Amsterdam. Ngo, T.P., Li, A., Tiew, K.W., Li, Z., 2013. Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour. Technol. 145, 233–239. Odabas¸ı, M., Denizli, A., 2004. Cibacron Blue F3GA-attached magnetic poly (2- hydroxyethyl methacrylate) beads for human serum albumin adsorption. Polym. Int. 53, 332–338. Ortiz, C., Ferreira, M.L., Barbosa, O., Dos Santos, J.C.S., Rodrigues, R.C., Berenguer- Murcia, A., Briadn, L.E., Fer´ nandez-Lafuente, R., 2019. Novozym 435: The´ “perfect” lipase immobilized biocatalyst? Catal. Sci. Technolog. 9 (10), 2380–2420. Paitaid, P., Aran, H., 2020. Magnetic cross-linked enzyme aggregates of Aspergillus oryzae ST11 lipase using polyacrylonitrile coated magnetic nanoparticles for biodiesel production. Appl. Biochem. Biotechnol. 190, 1319–1332. Peirce, S., Virgen-Ortíz, J.J., Tacias-Pascacio, V.G., Rueda, N., Bartolome-Cabrero, R., Fernandez-Lopez, L., Russo, M.E., Marzocchella, A., Fernandez-Lafuente, R., 2016.´ Development of simple protocols to solve the problems of enzyme coimmobilization. Application to coimmobilize a lipase and a β-galactosidase. R. Soc. Chem. Adv. 6, 61707–61715. P´erez, E., Sanchez-Murcia, P.A., Jordaan, J., Blanco, M.D., Manch´ eno, J.M., Gago, F.,˜ Fernandez-Lucas, J., 2018. Enzymatic synthesis of therapeutic nucleosides using a´ highly versatile purine nucleoside 2’-deoxyribosylTransferase from Trypanosoma brucei. ChemCatChem 10, 4406–4416. Quayson, E., Amoah, J., Hama, S., Kondo, A., Ogino, C., 2020. Immobilized lipases for biodiesel production: current and future greening opportunities. Renew. Sustain. Energy Rev. 134, 110355. Raouf, I., Khalid, S., Khan, A., Lee, J., Kim, H.S., Kim, M.H., 2020. A review on numerical modeling for magnetic nanoparticle hyperthermia: progress and challenges. J. Therm. Biol. 91, 102644. Reis, P., Holmberg, K., Watzke, H., Leser, M.E., Miller, R., 2009. Lipases at interfaces: a review. Adv. Colloid Interface Sci. 147, 237–250. Rinaldi, F., Fernandez-Lucas, J., de la Fuente, D., Zheng, C., Bavaro, T., Peters, B.,´ Massolini, G., Annunziata, F., Conti, P., de la Mata, I., Terreni, M., Calleri, E., 2020. Immobilized enzyme reactors based on nucleoside phosphorylases and 2′- deoxyribosyltransferase for the in-flow synthesis of pharmaceutically relevant nucleoside analogues. Bioresour. Technol. 307, 123258. Rodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fer´ nandez-Lafuente, R.,´ 2013. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 42, 6290–6307. Sadeghzadeh, S., Ghobadi Nejad, Z., Ghasemi, S., Khafaji, M., Borghei, S.M., 2020. Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsuta. Bioresour. Technol. 306, 123169. Sahu, S.K., Chakrabarty, A., Bhattacharya, D., Ghosh, S.K., Pramanik, P., 2011. Single step surface modification of highly stable magnetic nanoparticles for purification of His-tag proteins. J. Nanoparticle Res. 13, 2475–2484. Samak, N.A., Tan, Y., Sui, K., 2018. CotA laccase immobilized on functionalized magnetic graphene oxide nano-sheets for efficient biocatalysis. Mol. Catal. 445, 269–278. Sarvothaman, V.P., Simpson, A.T., Ranade, V.V., 2019. Modelling of vortex based hydrodynamic cavitation reactors. Chem. Eng. J. 377, 119639. Shahrestani, H., Taheri-Kafrani, A., Soozanipour, A., Tavakoli, O., 2016. Enzymatic clarification of fruit juices using xylanase immobilized on 1,3,5-triazine-functionalized silica-encapsulated magnetic nanoparticles. Biochem. Eng. J. 109, 51–58. Sheldon, R.A., 2019. CLEA, combi-CLEA and ‘smart’ magnetic CLEA: Biocatalysis in a bio-based economy. Catalysts 9, 261. Sheldon, R.A., van Pelt, S., 2013. Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev. 42 (15), 6223–6235. Song, M.M., Nie, H.L., Zhou, Y.T., Zhu, L.M., Bao, J.Y., 2011. Affinity adsorption of bromelain on Reactive Red 120 immobilized magnetic composite particles. Sep. Sci. Technol. 46, 473–482. Talekar, S., Ghodake, V., Ghotage, T., Rathod, P., Deshmukh, P., Nadar, S., Mulla, M., Ladole, M., 2012. Novel magnetic cross-linked enzyme aggregates (magnetic CLEA) of alpha amylase. Bioresour. Technol. 123, 542–547. Tang, L., Zeng, G.M., Liu, J.X., Xu, X.M., Zhang, Y., Shen, G.L., Li, Y.P., Liu, C., 2008. Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks. Anal. Bioanal. Chem. 391, 679–685. Touahar, I.E., Haroune, L., Ba, S., Bellenger, J.P., Cabana, H., 2014. Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Sci. Total Environ. 481, 90–99. Truppo, M.D., 2017. Biocatalysis in the pharmaceutical industry: the need for speed. Am. Chem. Soc. Med. Chem. Lett. 8, 476–480. Tüzmen, N., Kalburcu, T., Denizli, A., 2012. α-Amylase immobilization onto dye attached magnetic beads: optimization and characterization. J. Mol. Catal. B Enzym. 78, 16–23. Wang, B., Cheng, F., Lu, Y., Ge, W., Zhang, M., Yue, B., 2013. Immobilization of pectinase from Penicillium oxalicum F67 onto magnetic cornstarch microspheres: characterization and application in juice production. J. Mol. Catal. B Enzym. 97, 137–143. Wang, J., Wu, D., Zhao, G., Li, M., Li, Y., Han, Y., He, A., Jiang, Y., 2014. Reversible immobilization of glucoamylase onto magnetic polystyrene beads with multifunctional groups. Process Biochem. 49, 845–849. Willard, M.A., Kurihara, L.K., Carpenter, E.E., Calvin, S., Harris, V.G., 2004. Chemically prepared magnetic nanoparticles. Int. Mater. Rev. 49, 125–170. Wu, X., Hou, M., Ge, J., 2015. Metal-organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization. Catal. Sci. Technol. 5, 5077–5085. Xia, Y.M., Zhang, J.H., Xia, M., Zhao, Y., Chu, S.P., Gao, W.W., 2020. Peony-like magnetic graphene oxide/Fe3O4/BiOI nanoflower as a novel photocatalyst for enhanced photocatalytic degradation of Rhodamine B and Methylene blue dyes. J. Mater. Sci. Mater. Electron. 31, 1996–2009. Xue, P., Su, W., Gu, Y., Liu, H., Wang, J., 2015. Hydrophilic porous magnetic poly (GMA- MBAA-NVP) composite microspheres containing oxirane groups: an efficient carrier for immobilizing penicillin G acylase. J. Magn. Magn. Mater. 378, 306–312. Xue, P., Gu, Y., Su, W., Shuai, H., Wang, J., 2016. In situ one-pot preparation of superparamagnetic hydrophilic porous microspheres for covalently immobilizing penicillin G acylase to synthesize amoxicillin. Appl. Surf. Sci. 362, 427–433. Zakharchenko, A., Guz, N., Laradji, A.M., Katz, E., Minko, S., 2018. Magnetic field remotely controlled selective biocatalysis. Nat. Catal. 1, 73–81. Zdarta, J., Meyer, A.S., Jesionowski, T., Pinelo, M., 2019. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: a critical review. Biotechnol. Adv. 37, 107401. Zhang, C., You, S., Liu, Y., Wang, C., Yan, Q., Qi, W., Su, R., He, Z., 2020a. Construction of luffa sponge-based magnetic carbon nanocarriers for laccase immobilization and its application in the removal of Bisphenol A. Bioresour. Technol. 305, 123085. Zhang, H., Liu, T., Zhu, Y., Hong, L., Li, T., Wang, X., Fu, Y., 2020b. Lipases immobilized on the modified polyporous magnetic cellulose support as an efficient and recyclable catalyst for biodiesel production from yellow horn seed oil. Renew. Energy 145, 1246–1254. Zhang, W., 2014. Nanoparticle aggregation: Principles and modeling. In: Capco, D., Chen, Y. (Eds.), Nanomaterial. Springer, Dordrecht, pp. 19–43. Zhang, W.W., Yang, X.L., Jia, J.Q., Wang, N., Hu, C.L., Yu, X.Q., 2015. Surfactant- activated magnetic cross-linked enzyme aggregates (magnetic CLEAs) of Thermomyces lanuginosus lipase for biodiesel production. J. Mol. Catal. B Enzym. 115, 83–89. Zhang, Y., Yang, Y., Ma, W., Guo, J., Lin, Y., Wang, C., 2013. Uniform magnetic core/ shell microspheres functionalized with Ni2+–iminodiacetic acid for one step purification and immobilization of his-tagged enzymes. Am. Chem. Soc. Appl. Mater. Interfaces 5, 2626–2633. Zhao, X., Qi, F., Yuan, C., Du, W., Liu, D., 2015. Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization. Renew. Sustain. Energy Rev. 44, 182–197. Zhaoyu, Z., Ping, X., Keren, S., Weiwei, Z., Chunmiao, H., Peng, L., 2020. Di-functional magnetic nanoflowers: a highly efficient support for immobilizing penicillin G acylase. J. Chin. Chem. Soc. 67, 1591–1601. Zhou, X., Mikhailopulo, I.A., Bournazou, M.N.C., Neubauer, P., 2015. Immobilization of thermostable nucleoside phosphorylases on MagReSyn® epoxide microspheres and their application for the synthesis of 2,6-dihalogenated purine nucleosides. J. Mol. Catal. B Enzym. 115, 119–127. Zhu, X., Zhu, L., Chen, Y., Tian, S., 2008. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J. Nanoparticle Res. 11, 67–75. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Bioresource Technology |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0960852420318216?dgcid=rss_sd_all#! |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/984a0226-d03c-4a8f-bd12-e93fbbe3c616/download https://repositorio.cuc.edu.co/bitstreams/d2ed5ba1-3d3f-4d52-b641-2815d8b03702/download https://repositorio.cuc.edu.co/bitstreams/29f57095-6a2d-4b73-9d21-b21afbaa78dd/download https://repositorio.cuc.edu.co/bitstreams/a3cd5ea3-443b-43c1-8ba0-b7a96e503958/download https://repositorio.cuc.edu.co/bitstreams/d73fd303-e560-4b79-8ae9-b82ec074ff8a/download |
bitstream.checksum.fl_str_mv |
d13d55d1f6b9339fcc2ea51bd43a645b 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad eeb343c48a0000c9acadb96dd02963cb cd4463224660203710f0622a3e8c6ff7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760840512110592 |
spelling |
Del Arco, JonAlcántara, Andrés R.Fernández-Lafuente, RobertoFernández-Lucas, Jesús2021-03-23T13:36:38Z2021-03-23T13:36:38Z2021-022023-020960-85241873-2976https://hdl.handle.net/11323/8052https://doi.org/10.1016/j.biortech.2020.124547Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The use of magnetic biocatalysts is highly beneficial in bioprocesses technology, as it allows their easy recovering and enhances biocatalyst lifetime. Thus, it simplifies operational processing and increases efficiency, leading to more cost-effective processes. The use of small-size matrices as carriers for enzyme immobilization enables to maximize surface area and catalysts loading, also reducing diffusion limitations. As highly expensive nanoparticles (nm size) usually aggregate, their application at large scale is not recommended. In contrast, the use of magnetic micro-macro (µm-mm size) matrices leads to more homogeneous biocatalysts with null or very low aggregation, which facilitates an easy handling and recovery. The present review aims to highlight recent trends in the application of medium-to-high size magnetic biocatalysts in different areas (biodiesel production, food and pharma industries, protein purification or removal of environmental contaminants). The advantages and disadvantages of these above-mentioned magnetic biocatalysts in bioprocessDel Arco, Jon-will be generated-orcid-0000-0003-4646-492X-600Alcántara, Andrés R.Fernández-Lafuente, RobertoFernández-Lucas, Jesús-will be generated-orcid-0000-0001-7045-8306-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bioresource Technologyhttps://www.sciencedirect.com/science/article/pii/S0960852420318216?dgcid=rss_sd_all#!Enzyme immobilizationMagnetic supportsIndustrial bioprocessesMagnetic micro-macro biocatalysts applied to industrial bioprocessesPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionAl-Qodah, Z., Al-Shannag, M., Al-Busoul, M., Penchev, I., Orfali, W., 2017. Immobilized enzymes bioreactors utilizing a magnetic field: a review. Biochem. Eng. J. 121, 94–106.Al-Qodah, Z., Al-Shannag, M., Al-Bosoul, M., Penchev, I., Al-Ahmadi, H., Al-Qodah, K., 2018. On the performance of immobilized cell bioreactors utilizing a magnetic field. Rev. Chem. Eng. 34, 385–408.Amaral-Fonseca, M., Kopp, W., Giordano, R.D.C., Fernandez-Lafuente, R., Tardioli, P.W.,´ 2018. Preparation of magnetic cross-linked amyloglucosidase aggregates: Solving some activity problems. Catalysts 8, 21.Amini, Z., Ilham, Z., Ong, H.C., Mazaheri, H., Chen, W.H., 2017. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Convers. Manag. 141, 339–353.Andreeva, Y.I., Drozdov, A.S., Avnir, D., Vinogradov, V.V., 2018. Enzymatic nanocomposites with radio frequency field-modulated activity. Am. Chem. Soc. Biomater. Sci. Eng. 4, 3962–3967.Arana-Pena, S., Carballares, D., Morellon-Sterlling, R., Berenguer-Murcia,˜ A.,´ Alcantara, A.R., Rodrigues, R.C., Fer´ nandez-Lafuente, R., 2020. Enzyme co-´ immobilization: always the biocatalyst designers’ choice…or not? Biotechnol. Adv. 107584.Arca-Ramos, A., Kumar, V.V., Eibes, G., Moreira, M.T., Cabana, H., 2016. Recyclable cross-linked laccase aggregates coupled to magnetic silica microbeads for elimination of pharmaceuticals from municipal wastewater. Environ. Sci. Pollut. Res. 23, 8929–8939.Armenia, I., Grazú Bonavia, M.V., De Matteis, L., Ivanchenko, P., Martra, G., Gornati, R., de la Fuente, J.M., Bernardini, G., 2019. Enzyme activation by alternating magnetic field: importance of the bioconjugation methodology. J. Colloid Interface Sci. 537, 615–628.Arregui, L., Ayala, M., Gomez-Gil, X., Guti´ ´errez-Soto, G., Hernandez-Luna, C.E., de los ´ Santos, M.H., Levin, L., Rojo-Domínguez, A., Romero-Martínez, D., Saparrat, M.C.N., Trujillo-Roldan, M.A., Valdez-Cruz, N.A., 2019. Laccases: structure, function, and ´ potential application in water bioremediation. Microb. Cell Fact. 18, 200.Arnold, F.H., 1991. Metal-affinity separations: a new dimension in protein processing. Nat. Biotechnol. 9, 151–156.Azocar, L., Heipieper, H.J., Navia, R., 2010. Biotechnological processes for biodiesel´ production using alternative oils. Appl. Microbiol. Biotechnol. 88, 621–636.Badoei-dalfard, A., Karami, Z., Malekabadi, S., 2019. Construction of CLEAs-lipase on magnetic graphene oxide nanocomposite: an efficient nanobiocatalyst for biodiesel production. Bioresour. Technol. 278, 473–476.Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R.C., Fernandez-´ Lafuente, R., 2013. Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules 14, 2433–2462.Bas¸ar, N., Uzun, L., Güner, A., Denizli, A., 2007. Lysozyme purification with dye-affinity beads under magnetic field. Int. J. Biol. Macromol. 41, 234–242.Bayramoglu, G., Yilmaz, M., Arica, M.Y., 2010. Preparation and characterization of epoxy-functionalized magnetic chitosan beads: laccase immobilized for degradation of reactive dyes.Bioproc. Biosyst. Eng. 33, 439–448.Bedade, D.K., Muley, A.B., Singhal, R.S., 2019. Magnetic cross-linked enzyme aggregates of acrylamidase from Cupriavidus oxalaticus ICTDB921 for biodegradation of acrylamide from industrial waste water. Bioresour. Technol. 272, 137–145.Bernardino, S.M., Fernandes, P., Fonseca, L.P., 2009. A new biocatalyst: Penicillin G acylase immobilized in sol-gel micro-particles with magnetic properties. Biotechnol. J. 4, 695–702.Berry, D.R., Paterson, A., 1990. Enzymes in the food industry. In: Suckling, C. (Ed.), Enzyme Chemistry. Springer, Dordrecht, pp. 306–351.Bilal, M., Zhao, Y., Rasheed, T., Iqbal, H.M.N., 2018. Magnetic nanoparticles as versatile carriers for enzymes immobilization: a review. Int. J. Biol. Macromol. 120, 2530–2544.Bilal, M., Mehmood, S., Rasheed, T., Iqbal, H., 2019. Bio-catalysis and biomedical perspectives of magnetic nanoparticles as versatile carriers. Magnetochemistry 5, 42.Bilal, M., Ashraf, S.S., Iqbal, H.M., 2020. Laccase-mediated bioremediation of dye-based hazardous pollutants. In: Ahamed, M.I., Lichtfouse, E., Asiri, A.M. (Eds.), Methods for Bioremediation of Water and Wastewater Pollution. Springer, Cham, pp. 137–160.Bodakowska-Boczniewicz, J., Garncarek, Z., 2019. Immobilization of naringinase from Penicillium decumbens on chitosan microspheres for debittering grapefruit juice. Molecules 24, 4234.Bodakowska-Boczniewicz, J., Garncarek, Z., 2020. Immobilization of naringinase from Aspergillus niger on a magnetic polysaccharide carrier. Molecules 25, 2731.Borlido, L., Azevedo, A.M., Roque, A.C.A., Aires-Barros, M.R., 2013. Magnetic separations in biotechnology. Biotechnol. Adv. 31, 1374–1385.Cao, G., Gao, J., Zhou, L., Huang, Z., He, Y., Zhu, M., Jiang, Y., 2017. Fabrication of Ni2+- nitrilotriacetic acid functionalized magnetic mesoporous silica nanoflowers for one pot purification and immobilization of His-tagged ω-transaminase. Biochem. Eng. J. 128, 116–125.Cao, M., Li, Z., Wang, J., Ge, W., Yue, T., Li, R., Colvin, V.L., William, W.Y., 2012. Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci. Technol. 27, 47–56.Chen, G., Liu, J., Qi, Y., Yao, J., Yan, B., 2016. Biodiesel production using magnetic whole-cell biocatalysts by immobilization of Pseudomonas mendocina on Fe3O4- chitosan microspheres. Biochem. Eng. J. 113, 86–92.Cipolatti, E.P., Valerio, A., Henriques, R.O., Moritz, D.E., Ninow, J.L., Freire, D.M., Manoel, E.A., Fernandez-Lafuente, R., de Oliveira, D., 2016. Nanomaterials for biocatalyst immobilization–state of the art and future trends. R. Soc. Chem. Adv. 6, 104675–104692.Cruz-Izquierdo, A., Pi´ co, E.A., ´ Lopez, C., Serra, J.L., Llama, M.J., 2014. Magnetic cross-´ linked enzyme aggregates (mCLEAs) of Candida antarctica lipase: an efficient and stable biocatalyst for biodiesel synthesis. PLoS ONE 9, e115202.Dal Magro, L., Silveira, V.C., de Menezes, E.W., Benvenutti, E.V., Nicolodi, S., Hertz, P.F., Klein, M.P., Rodrigues, R.C., 2018. Magnetic biocatalysts of pectinase and cellulase: synthesis and characterization of two preparations for application in grape juice clarification. Int. J. Biol. Macromol. 115, 35–44.Dal Magro, L., de Moura, K.S., Backes, B.E., de Menezes, E.W., Benvenutti, E.V., Nicolodi, S., Klein, M.P., Fernandez-Lafuente, R., Rodrigues, R.C., 2019.´ Immobilization of pectinase on chitosan-magnetic particles: influence of particle preparation protocol on enzyme properties for fruit juice clarification. Biotechnol. Rep. 24, e00373.Del Arco, J., Fernandez-Lucas, J., 2018. Purine and pyrimidine salvage pathway in´ thermophiles: a valuable source of biocatalysts for the industrial production of nucleic acid derivatives. Appl. Microbiol. Biotechnol. 102, 7805–7820.Del Arco, J., Martínez-Pascual, S., Clemente-Suarez, V.J., Corral, O.J., Jordaan, J.,´ Hormigo, D., Perona, A., Fernandez-Lucas, J., 2018. One-pot, one-step production of´ dietary nucleotides by magnetic biocatalysts. Catalysts 8, 184.Del Arco, J., Jordaan, J., Moral-Dard´e, V., Fernandez-Lucas, J., 2019a. Sustainable´production of nucleoside analogues by a high-efficient purine 2′- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles. Bioresour. Technol. 289, 121772.Del Arco, J., P´erez, E., Naitow, H., Matsuura, Y., Kunishima, N., Fernandez-Lucas, J., 2019b. Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues. Bioresour. Technol. 276, 244–252.Del Arco, J., Galindo, J., Clemente-Suarez, V.J., Corrales, A., Fer´ nandez-Lucas, J., 2020.´ Sustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus. Biochim. Biophys. Acta Proteins Proteom. 1868, 140251.De Lima, L.N., Vieira, G.N.A., Kopp, W., Tardioli, P.W., Giordano, R.L., 2016. Mono-and heterofunctionalized silica magnetic microparticles (SMMPs) as new carriers for immobilization of lipases. J. Mol. Catal. B Enzym. 133, S491–S499.Digigow, R.G., Dech´ezelles, J.F., Kaufmann, J., Vanhecke, D., Knapp, H., Lattuada, M., Rothen-Rutishauser, B., Petri-Fink, A., 2014. Magnetic microreactors for efficient and reliable magnetic nanoparticle surface functionalization. Lab Chip 14, 2276–2286.Feng, N., Zhang, H., Li, Y., Liu, Y., Xu, L., Wang, Y., Fei, X., Tian, J., 2020. A novel catalytic material for hydrolyzing cow’s milk allergenic proteins: papain- Cu3(PO4)2⋅3H2O-magnetic nanoflowers. Food Chem. 311, 125911.Fernandez-Lucas, J., 2015. Multienzymatic synthesis of nucleic acid derivatives: a´ general perspective. Appl. Microbiol. Biotechnol. 99, 4615–4627.Fernandez-Lucas, J., Harris, R., Mata-Casar, I., Heras, A., de la Mata, I., Arroyo, M., 2013.´ Magnetic chitosan beads for covalent immobilization of nucleoside 2′- deoxyribosyltransferase: application in nucleoside analogues synthesis. J. Ind. Microbiol. Biotechnol. 40, 955–966.Ferreira, L., Afonso, C., Vila-Real, H., Alfaia, A., Ribeiro, M.H.L., 2008. Debittering of grapefruit juice with naringinase. Food Technol. Biotechnol. 46, 144–148.Franzreb, M., Siemann-Herzberg, M., Hobley, T.J., Thomas, O.R., 2006. Protein purification using magnetic adsorbent particles. Appl. Microbiol. Biotechnol. 70, 505–516.Frost, C.G., Mutton, L., 2010. Heterogeneous catalytic synthesis using microreactor technology. Green Chem. 12, 1687–1703.Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., Rodrigues, R.C., 2011.´ Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 353, 2885–2904.Gharat, N., Rathod, V.K., 2013. Ultrasound assisted enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate. Ultrason. Sonochem. 20, 900–905.Girelli, A.M., Astolfi, M.L., Scuto, F.R., 2019. Agro-industrial wastes as potential carriers for enzyme immobilization: a review. Chemosphere 244, 125368.Gkantzou, E., Patila, M., Stamatis, H., 2018. Magnetic microreactors with immobilized enzymes-from assemblage to contemporary applications. Catalysts 8, 282.Gracida, J., Arredondo-Ochoa, T., García-Almendarez, B.E., Escamilla-García, M.,´ Shirai, K., Regalado, C., Amaro-Reyes, A., 2019. Improved thermal and reusability properties of xylanase by genipin cross-linking to magnetic chitosan particles. Appl. Biochem. Biotechnol. 188, 395–409.Guimaraes, J.R., Giordano, R.L.C., Fer˜ nandez-Lafuente, R., Tardioli, P.W., 2018.´ Evaluation of strategies to produce highly porous cross-linked aggregates of porcine pancreas lipase with magnetic properties. Molecules 23, 2993.Guldhe, A., Singh, B., Mutanda, T., Permaul, K., Bux, F., 2015. Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew. Sustain. Energy Rev. 41, 1447–1464.Han, J., Wang, L., Wang, L., Li, C., Mao, Y., Wang, Y., 2019. Fabrication of a core-shell- shell magnetic polymeric microsphere with excellent performance for separation and purification of bromelain. Food Chem. 283, 1–10.Hero, J.S., Morales, A.H., Perotti, N.I., Romero, C.M., Martinez, M.A., 2020. Improved development in magnetic Xyl-CLEA technology for biotransformation of agro- industrial by-products through the use of a novel macromolecular cross-linker. React. Funct. Polym. 154, 104676.Hotze, E.M., Phenrat, T., Lowry, G.V., 2010. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 39, 1909–1924.Hwang, E.T., Lee, S., 2019. Multienzymatic cascade reactions via enzyme complex by immobilization. Am. Chem. Soc. Catal. 9, 4402–4425.Illanes, A., Wilson, L., Aguirre, C., 2008. Synthesis of cephalexin in aqueous medium with carrier-bound and carrier-free penicillin acylase biocatalysts. Appl. Biochem. Biotechnol. 157, 98–110.Ismail, A.R., Baek, K.H., 2020. Lipase immobilization with support materials, preparation techniques, and applications: present and future aspects. Int. J. Biol. Macromol. 163, 1624–1639.Jiménez-Sanchez, C., Lozano-´ Sanchez, J., Segura-Carretero, A., Fer´ nandez-Gut´ i´errez, A., 2017. Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications. Crit. Rev. Food Sci. Nutr. 57, 501–523.Kallenberg, A.I., van Rantwijk, F., Sheldon, R.A., 2005. Immobilization of penicillin G acylase: the key to optimum performance. Adv. Synth. Catal. 347, 905–926.Kang, J.K., Kim, J.C., Shin, Y., Han, S.M., Won, W.R., Her, J., Park, J.Y., Oh, K.T., 2020. Principles and applications of nanomaterial-based hyperthermia in cancer therapy. Arch. Pharmacal Res. 43, 46–57.Kim, K.H., Lee, O.K., Lee, E.Y., 2018. Nano-immobilized biocatalysts for biodiesel production from renewable and sustainable resources. Catalysts 8, 68.Kopp, W., Silva, F.A., Lima, L.N., Masunaga, S.H., Tardioli, P.W., Giordano, R.C., Araújo- Moreira, F.M., Giordano, R.L., 2015. Synthesis and characterization of robust magnetic carriers for bioprocess applications. Mater. Sci. Eng. B 193, 217–228.Krishnan, B.P., Prieto-Lopez, L.O., Hoefgen, S., Xue, L., Wang, S., Valiante, V., Cui, J.,´ 2020. Thermomagneto-responsive smart biocatalysts for malonyl-coenzyme a synthesis. Am. Chem. Soc. Appl. Mater. Interfaces 12, 20982–20990.Kumar, V.V., Cabana, H., 2016. Towards high potential magnetic biocatalysts for on- demand elimination of pharmaceuticals. Bioresour. Technol. 200, 81–89.Kumar, V.V., Sivanesan, S., Cabana, H., 2014. Magnetic cross-linked laccase aggregates Bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci. Total Environ. 487, 830–839.Lam, S.Y., Yeung, R.C.Y., Yu, T.H., Sze, K.H., Wong, K.B., 2011. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity. PLoS Biol. 9, e1001027.Laurent, S., Dutz, S., Hafeli, U.O., Mahmoudi, M., 2011. Magnetic fluid hyperthermia:¨ Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166, 8–23.Lee, I., Cheon, H.J., Adhikari, M.D., Tran, T.D., Yeon, K.M., Kim, M.I., Kim, J., 2020. Glucose oxidase-copper hybrid nanoflowers embedded with magnetic nanoparticles as an effective antibacterial agent. Int. J. Biol. Macromol. 155, 1520–1531.Lee, J., Lee, D., Oh, E., Kim, J., Kim, Y.P., Jin, S., Kim, H.S., Hwang, Y., Kwak, J.H., Park, J.G., Shin, C.H., 2005. Preparation of a magnetically switchable bio- electrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angew. Chem. Int. Ed. 44, 7427–7432.Leung, D.Y.C., Wu, X., Leung, M.K.H., 2010. A review on biodiesel production using catalyzed transesterification. Appl. Energy 87, 1083–1095.Li, X., Tian, L., Ali, Z., Wang, W., Zhang, Q., 2018. Design of flexible dendrimer-grafted flower-like magnetic microcarriers for penicillin G acylase immobilization. J. Mater. Sci. 53, 937–947.Lin, J., Fan, L., Miao, R., Le, X., Chen, S., Zhou, X., 2015. Enhancing catalytic performance of laccase via immobilization on chitosan/CeO2 microspheres. Int. J. Biol. Macromol. 78, 1–8.Lin, J., Lai, Q., Liu, Y., Chen, S., Le, X., Zhou, X., 2017. Laccase–methacrylyol functionalized magnetic particles: highly immobilized, reusable, and efficacious for methyl red decolourization. Int. J. Biol. Macromol. 102, 144–152.Liu, D.M., Dong, C., 2020. Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem. 92, 464–475.Liu, D.M., Chen, J., Shi, Y.P., 2018. Advances on methods and easy separated support materials for enzymes immobilization. Trends Anal. Chem. 102, 332–342.Liu, Y., Zeng, Z., Zeng, G., Tang, L., Pang, Y., Li, Z., Liu, C., Lei, X., Wu, M., Ren, P., Liu, Z., Chen, M., Xie, G., 2012. Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour. Technol. 115, 21–26.Liu, Y., Guo, C., Liu, C.Z., 2015. Enhancing the resolution of (R, S)-2-octanol catalyzed by magnetic cross-linked lipase aggregates using an alternating magnetic field. Chem. Eng. J. 280, 36–40.Liu, X., Yang, J., Yang, L., 2016. Capillary electrophoresis-integrated immobilized enzyme reactors. Rev. Anal. Chem. 35, 115–131.Mafra, A.C.O., Ulrich, L.G., Kornecki, J.F., Fernandez-Lafuente, R., Tardioli, P.W.,´ Ribeiro, M.P.A., 2019. Combi-CLEA of glucose oxidase and catalase for conversion of glucose to gluconic acid eliminating the hydrogen peroxide to maintain enzyme activity in a bubble column reactor. Catalysts 9, 657.Majeau, J.A., Brar, S.K., Tyagi, R.D., 2010. Laccases for removal of recalcitrant and emerging pollutants. Bioresour. Technol. 101, 2331–2350.Martins, A.B., Friedrich, J.L.R., Cavalheiro, J.C., Garcia-Galan, C., Barbosa, O., Ayub, M. A.Z., Fernandez-Lafuente, R., Rodrigues, R.C., 2013. Improved production of butyl´ butyrate with lipase from Thermomyces lanuginosus immobilized on styrene- divinylbenzene beads. Bioresour. Technol. 134, 417–422.Martins, S.L., Albuquerque, B.F., Nunes, M.A., Ribeiro, M.H., 2018. Exploring magnetic and imprinted cross-linked enzyme aggregates of rhamnopyranosidase in microbioreactors. Bioresour. Technol. 249, 704–712.Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R.,´ 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40, 1451–1463.Mehde, A.A., 2019. Development of magnetic cross-linked peroxidase aggregates on starch as enhancement template and their application for decolorization. Int. J. Biol. Macromol. 131, 721–733.Miranda, L.P., Guimaraes, J.R., Giordano, R.C., Fer˜ nandez-Lafuente, R., Tardioli, P.W.,´ 2020. Composites of crosslinked aggregates of Eversa® transform and magnetic nanoparticles. Performance in the ethanolysis of soybean oil. Catalysts 10, 1–22.Moazeni, F., Chen, Y.C., Zhang, G., 2019. Enzymatic transesterification for biodiesel production from used cooking oil, a review. J. Clean Prod. 216, 117–128.Modena, M.M., Rühle, B., Burg, T.P., Wuttke, S., 2019. Nanoparticle characterization: What to measure? Adv. Mater. 31, 1901556.Nadar, S.S., Rathod, V.K., 2016. Magnetic macromolecular cross linked enzyme aggregates (CLEA) of glucoamylase. Enzyme Microb. Technol. 83, 78–87.Naito, M., Yokoyama, T., Hosokawa, K., Nogi, K., 2018. Nanoparticle Technology Handbook, third ed. Elsevier, Amsterdam.Ngo, T.P., Li, A., Tiew, K.W., Li, Z., 2013. Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour. Technol. 145, 233–239.Odabas¸ı, M., Denizli, A., 2004. Cibacron Blue F3GA-attached magnetic poly (2- hydroxyethyl methacrylate) beads for human serum albumin adsorption. Polym. Int. 53, 332–338.Ortiz, C., Ferreira, M.L., Barbosa, O., Dos Santos, J.C.S., Rodrigues, R.C., Berenguer- Murcia, A., Briadn, L.E., Fer´ nandez-Lafuente, R., 2019. Novozym 435: The´ “perfect” lipase immobilized biocatalyst? Catal. Sci. Technolog. 9 (10), 2380–2420.Paitaid, P., Aran, H., 2020. Magnetic cross-linked enzyme aggregates of Aspergillus oryzae ST11 lipase using polyacrylonitrile coated magnetic nanoparticles for biodiesel production. Appl. Biochem. Biotechnol. 190, 1319–1332.Peirce, S., Virgen-Ortíz, J.J., Tacias-Pascacio, V.G., Rueda, N., Bartolome-Cabrero, R., Fernandez-Lopez, L., Russo, M.E., Marzocchella, A., Fernandez-Lafuente, R., 2016.´ Development of simple protocols to solve the problems of enzyme coimmobilization. Application to coimmobilize a lipase and a β-galactosidase. R. Soc. Chem. Adv. 6, 61707–61715.P´erez, E., Sanchez-Murcia, P.A., Jordaan, J., Blanco, M.D., Manch´ eno, J.M., Gago, F.,˜ Fernandez-Lucas, J., 2018. Enzymatic synthesis of therapeutic nucleosides using a´ highly versatile purine nucleoside 2’-deoxyribosylTransferase from Trypanosoma brucei. ChemCatChem 10, 4406–4416.Quayson, E., Amoah, J., Hama, S., Kondo, A., Ogino, C., 2020. Immobilized lipases for biodiesel production: current and future greening opportunities. Renew. Sustain. Energy Rev. 134, 110355.Raouf, I., Khalid, S., Khan, A., Lee, J., Kim, H.S., Kim, M.H., 2020. A review on numerical modeling for magnetic nanoparticle hyperthermia: progress and challenges. J. Therm. Biol. 91, 102644.Reis, P., Holmberg, K., Watzke, H., Leser, M.E., Miller, R., 2009. Lipases at interfaces: a review. Adv. Colloid Interface Sci. 147, 237–250.Rinaldi, F., Fernandez-Lucas, J., de la Fuente, D., Zheng, C., Bavaro, T., Peters, B.,´ Massolini, G., Annunziata, F., Conti, P., de la Mata, I., Terreni, M., Calleri, E., 2020. Immobilized enzyme reactors based on nucleoside phosphorylases and 2′- deoxyribosyltransferase for the in-flow synthesis of pharmaceutically relevant nucleoside analogues. Bioresour. Technol. 307, 123258.Rodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fer´ nandez-Lafuente, R.,´ 2013. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 42, 6290–6307.Sadeghzadeh, S., Ghobadi Nejad, Z., Ghasemi, S., Khafaji, M., Borghei, S.M., 2020. Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsuta. Bioresour. Technol. 306, 123169.Sahu, S.K., Chakrabarty, A., Bhattacharya, D., Ghosh, S.K., Pramanik, P., 2011. Single step surface modification of highly stable magnetic nanoparticles for purification of His-tag proteins. J. Nanoparticle Res. 13, 2475–2484.Samak, N.A., Tan, Y., Sui, K., 2018. CotA laccase immobilized on functionalized magnetic graphene oxide nano-sheets for efficient biocatalysis. Mol. Catal. 445, 269–278.Sarvothaman, V.P., Simpson, A.T., Ranade, V.V., 2019. Modelling of vortex based hydrodynamic cavitation reactors. Chem. Eng. J. 377, 119639.Shahrestani, H., Taheri-Kafrani, A., Soozanipour, A., Tavakoli, O., 2016. Enzymatic clarification of fruit juices using xylanase immobilized on 1,3,5-triazine-functionalized silica-encapsulated magnetic nanoparticles. Biochem. Eng. J. 109, 51–58.Sheldon, R.A., 2019. CLEA, combi-CLEA and ‘smart’ magnetic CLEA: Biocatalysis in a bio-based economy. Catalysts 9, 261.Sheldon, R.A., van Pelt, S., 2013. Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev. 42 (15), 6223–6235.Song, M.M., Nie, H.L., Zhou, Y.T., Zhu, L.M., Bao, J.Y., 2011. Affinity adsorption of bromelain on Reactive Red 120 immobilized magnetic composite particles. Sep. Sci. Technol. 46, 473–482.Talekar, S., Ghodake, V., Ghotage, T., Rathod, P., Deshmukh, P., Nadar, S., Mulla, M., Ladole, M., 2012. Novel magnetic cross-linked enzyme aggregates (magnetic CLEA) of alpha amylase. Bioresour. Technol. 123, 542–547.Tang, L., Zeng, G.M., Liu, J.X., Xu, X.M., Zhang, Y., Shen, G.L., Li, Y.P., Liu, C., 2008. Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks. Anal. Bioanal. Chem. 391, 679–685.Touahar, I.E., Haroune, L., Ba, S., Bellenger, J.P., Cabana, H., 2014. Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Sci. Total Environ. 481, 90–99.Truppo, M.D., 2017. Biocatalysis in the pharmaceutical industry: the need for speed. Am. Chem. Soc. Med. Chem. Lett. 8, 476–480.Tüzmen, N., Kalburcu, T., Denizli, A., 2012. α-Amylase immobilization onto dye attached magnetic beads: optimization and characterization. J. Mol. Catal. B Enzym. 78, 16–23.Wang, B., Cheng, F., Lu, Y., Ge, W., Zhang, M., Yue, B., 2013. Immobilization of pectinase from Penicillium oxalicum F67 onto magnetic cornstarch microspheres: characterization and application in juice production. J. Mol. Catal. B Enzym. 97, 137–143.Wang, J., Wu, D., Zhao, G., Li, M., Li, Y., Han, Y., He, A., Jiang, Y., 2014. Reversible immobilization of glucoamylase onto magnetic polystyrene beads with multifunctional groups. Process Biochem. 49, 845–849.Willard, M.A., Kurihara, L.K., Carpenter, E.E., Calvin, S., Harris, V.G., 2004. Chemically prepared magnetic nanoparticles. Int. Mater. Rev. 49, 125–170.Wu, X., Hou, M., Ge, J., 2015. Metal-organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization. Catal. Sci. Technol. 5, 5077–5085.Xia, Y.M., Zhang, J.H., Xia, M., Zhao, Y., Chu, S.P., Gao, W.W., 2020. Peony-like magnetic graphene oxide/Fe3O4/BiOI nanoflower as a novel photocatalyst for enhanced photocatalytic degradation of Rhodamine B and Methylene blue dyes. J. Mater. Sci. Mater. Electron. 31, 1996–2009.Xue, P., Su, W., Gu, Y., Liu, H., Wang, J., 2015. Hydrophilic porous magnetic poly (GMA- MBAA-NVP) composite microspheres containing oxirane groups: an efficient carrier for immobilizing penicillin G acylase. J. Magn. Magn. Mater. 378, 306–312.Xue, P., Gu, Y., Su, W., Shuai, H., Wang, J., 2016. In situ one-pot preparation of superparamagnetic hydrophilic porous microspheres for covalently immobilizing penicillin G acylase to synthesize amoxicillin. Appl. Surf. Sci. 362, 427–433.Zakharchenko, A., Guz, N., Laradji, A.M., Katz, E., Minko, S., 2018. Magnetic field remotely controlled selective biocatalysis. Nat. Catal. 1, 73–81.Zdarta, J., Meyer, A.S., Jesionowski, T., Pinelo, M., 2019. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: a critical review. Biotechnol. Adv. 37, 107401.Zhang, C., You, S., Liu, Y., Wang, C., Yan, Q., Qi, W., Su, R., He, Z., 2020a. Construction of luffa sponge-based magnetic carbon nanocarriers for laccase immobilization and its application in the removal of Bisphenol A. Bioresour. Technol. 305, 123085.Zhang, H., Liu, T., Zhu, Y., Hong, L., Li, T., Wang, X., Fu, Y., 2020b. Lipases immobilized on the modified polyporous magnetic cellulose support as an efficient and recyclable catalyst for biodiesel production from yellow horn seed oil. Renew. Energy 145, 1246–1254.Zhang, W., 2014. Nanoparticle aggregation: Principles and modeling. In: Capco, D., Chen, Y. (Eds.), Nanomaterial. Springer, Dordrecht, pp. 19–43.Zhang, W.W., Yang, X.L., Jia, J.Q., Wang, N., Hu, C.L., Yu, X.Q., 2015. Surfactant- activated magnetic cross-linked enzyme aggregates (magnetic CLEAs) of Thermomyces lanuginosus lipase for biodiesel production. J. Mol. Catal. B Enzym. 115, 83–89.Zhang, Y., Yang, Y., Ma, W., Guo, J., Lin, Y., Wang, C., 2013. Uniform magnetic core/ shell microspheres functionalized with Ni2+–iminodiacetic acid for one step purification and immobilization of his-tagged enzymes. Am. Chem. Soc. Appl. Mater. Interfaces 5, 2626–2633.Zhao, X., Qi, F., Yuan, C., Du, W., Liu, D., 2015. Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization. Renew. Sustain. Energy Rev. 44, 182–197.Zhaoyu, Z., Ping, X., Keren, S., Weiwei, Z., Chunmiao, H., Peng, L., 2020. Di-functional magnetic nanoflowers: a highly efficient support for immobilizing penicillin G acylase. J. Chin. Chem. Soc. 67, 1591–1601.Zhou, X., Mikhailopulo, I.A., Bournazou, M.N.C., Neubauer, P., 2015. Immobilization of thermostable nucleoside phosphorylases on MagReSyn® epoxide microspheres and their application for the synthesis of 2,6-dihalogenated purine nucleosides. J. Mol. Catal. B Enzym. 115, 119–127.Zhu, X., Zhu, L., Chen, Y., Tian, S., 2008. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J. Nanoparticle Res. 11, 67–75.PublicationORIGINALMagnetic micro-macro biocatalysts applied to industrial bioprocesses.pdfMagnetic micro-macro biocatalysts applied to industrial bioprocesses.pdfapplication/pdf143247https://repositorio.cuc.edu.co/bitstreams/984a0226-d03c-4a8f-bd12-e93fbbe3c616/downloadd13d55d1f6b9339fcc2ea51bd43a645bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/d2ed5ba1-3d3f-4d52-b641-2815d8b03702/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/29f57095-6a2d-4b73-9d21-b21afbaa78dd/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILMagnetic micro-macro biocatalysts applied to industrial bioprocesses.pdf.jpgMagnetic micro-macro biocatalysts applied to industrial bioprocesses.pdf.jpgimage/jpeg53627https://repositorio.cuc.edu.co/bitstreams/a3cd5ea3-443b-43c1-8ba0-b7a96e503958/downloadeeb343c48a0000c9acadb96dd02963cbMD54TEXTMagnetic micro-macro biocatalysts applied to industrial bioprocesses.pdf.txtMagnetic micro-macro biocatalysts applied to industrial bioprocesses.pdf.txttext/plain30126https://repositorio.cuc.edu.co/bitstreams/d73fd303-e560-4b79-8ae9-b82ec074ff8a/downloadcd4463224660203710f0622a3e8c6ff7MD5511323/8052oai:repositorio.cuc.edu.co:11323/80522024-09-17 14:08:50.22http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |