Prediction of the corn grains yield through artificial intelligence

Currently, the determination of the quality of the cereals is done manually by grain classifier experts prior to the marketing stage. In this paper we present a web software tool that allows determining the quality level of a corn sample automatically from an image of it. Image processing algorithms...

Full description

Autores:
Varela, Noel
Silva, Jesus
Bonerge Pineda, Omar
Cabrera, Danelys
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8785
Acceso en línea:
https://hdl.handle.net/11323/8785
https://doi.org/10.1016/j.procs.2020.03.080
https://repositorio.cuc.edu.co/
Palabra clave:
Cereal quality
Image processing
Web tool
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_c2616d280fd53666b15c95595e83cfd7
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8785
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Prediction of the corn grains yield through artificial intelligence
title Prediction of the corn grains yield through artificial intelligence
spellingShingle Prediction of the corn grains yield through artificial intelligence
Cereal quality
Image processing
Web tool
title_short Prediction of the corn grains yield through artificial intelligence
title_full Prediction of the corn grains yield through artificial intelligence
title_fullStr Prediction of the corn grains yield through artificial intelligence
title_full_unstemmed Prediction of the corn grains yield through artificial intelligence
title_sort Prediction of the corn grains yield through artificial intelligence
dc.creator.fl_str_mv Varela, Noel
Silva, Jesus
Bonerge Pineda, Omar
Cabrera, Danelys
dc.contributor.author.spa.fl_str_mv Varela, Noel
Silva, Jesus
Bonerge Pineda, Omar
Cabrera, Danelys
dc.subject.spa.fl_str_mv Cereal quality
Image processing
Web tool
topic Cereal quality
Image processing
Web tool
description Currently, the determination of the quality of the cereals is done manually by grain classifier experts prior to the marketing stage. In this paper we present a web software tool that allows determining the quality level of a corn sample automatically from an image of it. Image processing algorithms were implemented to correct distortions caused mainly by the capture process. The K-Means classification algorithm was used and a function was developed to calculate the hectolitre weight in relation to the sample area. The results obtained by the application for grades 1 and 2, are close to those measured by the experts. However, those for grade 3 have not been similar since the subsamples selected were not representative.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-08T20:49:28Z
dc.date.available.none.fl_str_mv 2021-10-08T20:49:28Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1877-0509
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8785
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.procs.2020.03.080
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1877-0509
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8785
https://doi.org/10.1016/j.procs.2020.03.080
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Ramírez, J. (2010). Rendimiento y calidad de cinco gramíneas en el Valle del Cauto. Tesis en opción al grado de Doctor en Ciencias Veterinarias. Instituto de Ciencias Agrícolas. La Habana. Cuba.
[2] SenseFly. (2014). El dron para la agricultura de precisión. Disponible en: https://www.sensefly.com/fileadmin/user_upload/sensefly/documents/bro chures/eBee_Ag_es.pdf [Consultado el 29 de septiembre del 2015].
[3] Cruz, M. C., Rodríguez, L. C. y Vi, R. G. (2013). Evaluación agronómica de cuatro nuevas variedades de pastos. Revista de Producción Animal, 25(1).
[4] Erenturk, K., Erenturk, S. yTabil, L. G. (2004). A comparative study for the estimation of dynamical drying behavior of Echinacea angustifolia: regression analysis and neural network. Computers and Electronics in Agriculture, 45(1-3).
[5] Hernández, D., Carballo, M. y Reyes, F. (2000). Reflexiones sobre el uso de los pastos en la producción sostenible de leche y carne de res en el trópico. Pastos y Forrajes,23(4).
[6] Hernández, R. M., Pérez, V. R. y Caraballo, E. A. H. (2012). Predicción del rendimiento de un cultivo de plátano mediante redes neuronales artificiales de regresión generalizada. Publicaciones en Ciencias y Tecnología, 6(1).
[7] López, A. M., Adolfo, A., Guido, J. P. y Ortega, A. C. (2006). Software de Predicción de la Producción Forrajera. Disponible en: http://www.unne.edu.ar/unnevieja/Web/cyt/cyt/2001/8-Exactas/E-002.pdf [Consultado el 29 de septiembre del 2015].
[8] Martín, B. yMolina, A. S. (2001). Redes neuronales y sistemas borrosos. 2ªed.España: Alfaomega. Ra-Ma.
[9] Lezama, O. B. P., Izquierdo, N. V., Fernández, D. P., Dorta, R. L. G., Viloria, A., Marín, L. R.: Models of Multivariate Regression for Labor Accidents in Different Production Sectors: Comparative Study. In International Conference on Data Mining and Big Data, Springer, Cham, 10942 (1), 43-52 (2018).
[10] Suárez, J. A., Beatón, P. A., Escalona, R. F., Montero, O. P.: Energy, environment and development in Cuba. Renewable and Sustainable Energy Reviews, 16(5), 2724-2731 (2012).
[11] Sala, S., Ciuffo, B., Nijkamp, P.: A systemic framework for sustainability assessment. Ecological Economics 119 (1), 314-325 (2015).
[12] Singh, R. K., Murty, H. R., Gupta, S. K., Dikshit, A. K.: An overview of sustainability assessment methodologies. Ecological indicators 9(2), 189-212 (2009).
[13] Sánchez L., Vásquez C., Viloria A., Rodríguez Potes L. (2018) Greenhouse Gases Emissions and Electric Power Generation in Latin American Countries in the Period 2006–2013. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham
[14] Aitkenhead, M. J., Dalgetty, I. A., Mullins, C. E. y Strachan, N. J. C. (2003). Weed and crop discrimination using image analysis and artificial intelligence methods. Computers and Electronics in Agriculture, 39(3).
[15] Varela, N., Fernandez, D., Pineda, O., Viloria, A.: Selection of the best regression model to explain the variables that influence labor accident case electrical company. Journal of Engineering and Applied Sciences 12 (1), 2956-2962 (2017).
[16] Olivera, Y., Machado, R. y Pozo, P. P. (2006). Características botánicas y agronómicas de especies forrajeras importantes del género Brachiaria. Pastos y Forrajes, 29(1).
[17] Bezerra, B. G.; Da Silva, B. B., Bezerra, J. R. C., Brandão, Z. N.: Evapotranspiração real obtida através da relação entre o coeficiente dual de cultura da FAO-56 e o NDVI. Revista Brasileira de Meteorologia 25 (3), 404 – 414 (2010).
[18] Diaz-Balteiro, L., González-Pachón, J., Romero, C.: Forest management with multiple criteria and multiple stakeholders: An application to two public forests in Spain. Scandinavian Journal of Forest Research 24(1), 87-93 (2009).
[19] Hák, T., Janoušková, S., Moldan, B.: Sustainable Development Goals: A need for relevant indicators. Ecological Indicators 60 (1), 565-573 (2016).
[20] Lampayan, R. M., Rejesus, R. M., Singleton, G. R., Bouman, B. A.: Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research 170 (1), 95-108 (2015).
[21] Delgado. A., Blanco, F. M.: Modelo Multicriterio Para El Análisis De Alternativas De Financiamiento De Productores De Arroz En El Estado Portuguesa, Venezuela. AGROALIMENTARIA 28 (1), 35-48 (2009).
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050920305172#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9d60fbb9-81fd-45b7-ba2d-6386765bd6f4/download
https://repositorio.cuc.edu.co/bitstreams/4621fc04-841a-44b5-b0cd-d351af186f77/download
https://repositorio.cuc.edu.co/bitstreams/c05e7da5-b8dd-43f2-adbf-a850bd8963d8/download
https://repositorio.cuc.edu.co/bitstreams/c8e81ec8-4b6e-4476-affd-27a926a08ed1/download
https://repositorio.cuc.edu.co/bitstreams/c05b3fb4-3815-41a8-b751-d52908d91c4e/download
bitstream.checksum.fl_str_mv 29a515f84b57ec4feca3fc8932b59d41
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
c164a812d4971294948ba825a1e44e18
423c52c77895b81725ff5cb3ff82d7cb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166835598524416
spelling Varela, NoelSilva, JesusBonerge Pineda, OmarCabrera, Danelys2021-10-08T20:49:28Z2021-10-08T20:49:28Z20211877-0509https://hdl.handle.net/11323/8785https://doi.org/10.1016/j.procs.2020.03.080Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Currently, the determination of the quality of the cereals is done manually by grain classifier experts prior to the marketing stage. In this paper we present a web software tool that allows determining the quality level of a corn sample automatically from an image of it. Image processing algorithms were implemented to correct distortions caused mainly by the capture process. The K-Means classification algorithm was used and a function was developed to calculate the hectolitre weight in relation to the sample area. The results obtained by the application for grades 1 and 2, are close to those measured by the experts. However, those for grade 3 have not been similar since the subsamples selected were not representative.Varela, NoelSilva, JesusBonerge Pineda, OmarCabrera, Danelysapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050920305172#!Cereal qualityImage processingWeb toolPrediction of the corn grains yield through artificial intelligenceArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Ramírez, J. (2010). Rendimiento y calidad de cinco gramíneas en el Valle del Cauto. Tesis en opción al grado de Doctor en Ciencias Veterinarias. Instituto de Ciencias Agrícolas. La Habana. Cuba.[2] SenseFly. (2014). El dron para la agricultura de precisión. Disponible en: https://www.sensefly.com/fileadmin/user_upload/sensefly/documents/bro chures/eBee_Ag_es.pdf [Consultado el 29 de septiembre del 2015].[3] Cruz, M. C., Rodríguez, L. C. y Vi, R. G. (2013). Evaluación agronómica de cuatro nuevas variedades de pastos. Revista de Producción Animal, 25(1).[4] Erenturk, K., Erenturk, S. yTabil, L. G. (2004). A comparative study for the estimation of dynamical drying behavior of Echinacea angustifolia: regression analysis and neural network. Computers and Electronics in Agriculture, 45(1-3).[5] Hernández, D., Carballo, M. y Reyes, F. (2000). Reflexiones sobre el uso de los pastos en la producción sostenible de leche y carne de res en el trópico. Pastos y Forrajes,23(4).[6] Hernández, R. M., Pérez, V. R. y Caraballo, E. A. H. (2012). Predicción del rendimiento de un cultivo de plátano mediante redes neuronales artificiales de regresión generalizada. Publicaciones en Ciencias y Tecnología, 6(1).[7] López, A. M., Adolfo, A., Guido, J. P. y Ortega, A. C. (2006). Software de Predicción de la Producción Forrajera. Disponible en: http://www.unne.edu.ar/unnevieja/Web/cyt/cyt/2001/8-Exactas/E-002.pdf [Consultado el 29 de septiembre del 2015].[8] Martín, B. yMolina, A. S. (2001). Redes neuronales y sistemas borrosos. 2ªed.España: Alfaomega. Ra-Ma.[9] Lezama, O. B. P., Izquierdo, N. V., Fernández, D. P., Dorta, R. L. G., Viloria, A., Marín, L. R.: Models of Multivariate Regression for Labor Accidents in Different Production Sectors: Comparative Study. In International Conference on Data Mining and Big Data, Springer, Cham, 10942 (1), 43-52 (2018).[10] Suárez, J. A., Beatón, P. A., Escalona, R. F., Montero, O. P.: Energy, environment and development in Cuba. Renewable and Sustainable Energy Reviews, 16(5), 2724-2731 (2012).[11] Sala, S., Ciuffo, B., Nijkamp, P.: A systemic framework for sustainability assessment. Ecological Economics 119 (1), 314-325 (2015).[12] Singh, R. K., Murty, H. R., Gupta, S. K., Dikshit, A. K.: An overview of sustainability assessment methodologies. Ecological indicators 9(2), 189-212 (2009).[13] Sánchez L., Vásquez C., Viloria A., Rodríguez Potes L. (2018) Greenhouse Gases Emissions and Electric Power Generation in Latin American Countries in the Period 2006–2013. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham[14] Aitkenhead, M. J., Dalgetty, I. A., Mullins, C. E. y Strachan, N. J. C. (2003). Weed and crop discrimination using image analysis and artificial intelligence methods. Computers and Electronics in Agriculture, 39(3).[15] Varela, N., Fernandez, D., Pineda, O., Viloria, A.: Selection of the best regression model to explain the variables that influence labor accident case electrical company. Journal of Engineering and Applied Sciences 12 (1), 2956-2962 (2017).[16] Olivera, Y., Machado, R. y Pozo, P. P. (2006). Características botánicas y agronómicas de especies forrajeras importantes del género Brachiaria. Pastos y Forrajes, 29(1).[17] Bezerra, B. G.; Da Silva, B. B., Bezerra, J. R. C., Brandão, Z. N.: Evapotranspiração real obtida através da relação entre o coeficiente dual de cultura da FAO-56 e o NDVI. Revista Brasileira de Meteorologia 25 (3), 404 – 414 (2010).[18] Diaz-Balteiro, L., González-Pachón, J., Romero, C.: Forest management with multiple criteria and multiple stakeholders: An application to two public forests in Spain. Scandinavian Journal of Forest Research 24(1), 87-93 (2009).[19] Hák, T., Janoušková, S., Moldan, B.: Sustainable Development Goals: A need for relevant indicators. Ecological Indicators 60 (1), 565-573 (2016).[20] Lampayan, R. M., Rejesus, R. M., Singleton, G. R., Bouman, B. A.: Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research 170 (1), 95-108 (2015).[21] Delgado. A., Blanco, F. M.: Modelo Multicriterio Para El Análisis De Alternativas De Financiamiento De Productores De Arroz En El Estado Portuguesa, Venezuela. AGROALIMENTARIA 28 (1), 35-48 (2009).PublicationORIGINALPrediction of the Corn Grains Yield through Artificial Intelligence.pdfPrediction of the Corn Grains Yield through Artificial Intelligence.pdfapplication/pdf1478055https://repositorio.cuc.edu.co/bitstreams/9d60fbb9-81fd-45b7-ba2d-6386765bd6f4/download29a515f84b57ec4feca3fc8932b59d41MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/4621fc04-841a-44b5-b0cd-d351af186f77/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/c05e7da5-b8dd-43f2-adbf-a850bd8963d8/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPrediction of the Corn Grains Yield through Artificial Intelligence.pdf.jpgPrediction of the Corn Grains Yield through Artificial Intelligence.pdf.jpgimage/jpeg43846https://repositorio.cuc.edu.co/bitstreams/c8e81ec8-4b6e-4476-affd-27a926a08ed1/downloadc164a812d4971294948ba825a1e44e18MD54TEXTPrediction of the Corn Grains Yield through Artificial Intelligence.pdf.txtPrediction of the Corn Grains Yield through Artificial Intelligence.pdf.txttext/plain27928https://repositorio.cuc.edu.co/bitstreams/c05b3fb4-3815-41a8-b751-d52908d91c4e/download423c52c77895b81725ff5cb3ff82d7cbMD5511323/8785oai:repositorio.cuc.edu.co:11323/87852024-09-17 14:15:58.207http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==